
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

SC-HACKS: A LIVE CODING FRAMEWORK FOR GESTURAL PERFORMANCE AND
ELECTRONIC MUSIC

Iannis Zannos

Department of Audiovisual Arts
Ionian University, Corfu, Greece

zannos@gmail.com

ABSTRACT

This paper presents a library for SuperCollider that enables live cod-
ing adapted to two domains of performance: telematic dance with
wireless sensors and electroacoustic music performance. The library
solves some fundamental issues of usability in SuperCollider which
have been also addressed by the established live-coding framework
JITLib, such as modifying synth and pattern processes while they
are working, linking control and audio i/o between synths, and gen-
eration of GUIs. It offers new implementations, which are more
compact and easy to use while emphasizing transparency and scal-
ability of code. It introduces binary operators which when coupled
to polymorphism facilitate live coding. Several foundation classes
are introduced whose purpose is to support programming patterns or
commonly used practices such as the observer pattern, function call-
backs and system-wide object messaging between language, server
processes and GUI.

The use of the library is demonstrated in two contexts: a telem-
atic dance project with custom low-cost movement sensors, and dig-
ital implementations of early electroacoustic music scores by J. Har-
vey and K. Stockhausen. The latter involves coding of a complex
score and generation of a GUI representation with time tracking and
live control.

1. BACKGROUND

1.1. Bridging Live Coding and Gestural Interaction

The performance practice known as live coding emerged from the
ability of software to modify state and behavior through the inter-
active evaluation of code fragments and to synthesize audio at run-
time. As a result, several programming environments and technolo-
gies supporting live coding have been developed in the past 20 years,
such as SuperCollider[1], Impromptu[2], ChucK[3] , Extempore[4],
Gibber[5], and others. It has been noted, however, that such envi-
ronments and practices suffer from a lack of immediacy and those
visible gestural elements that are traditionally associated with live
performance [6]. Recent research projects attempt to re-introduce
gestural aspects or to otherwise support social and interactive ele-
ments in musical performance using technologies associated with
live coding ([7], [8], [9], [10]). Amongst various types of gestural
interaction, dance is arguably the one least related to textual coding.
Few recent studies exist which prepare the field for bridging dance
with coding ([11]). The challenges in this domain can be summa-
rized as the problem of bridging the symbolic domains of dance and
music notation and the subsymbolic numerical domain of control
data streams input from sensors. This also implies translating be-
tween continuous streams of data and individual timed events, pos-
sibly tagged with symbolic values. This is a technologically higly

demanding task which is subject of research in various gestural in-
terface applications. The work related in the present paper repre-
sents an indirect and bottom-up approach to the topic, based on DIY
and open source components and emphasizing transparency and self-
sufficiency at each step. It does not address the task of gesture recog-
nition, but rather it aims at supporting live coding in conjunction with
dancers and instrumental performers. Ongoing experiments together
with such performers, are helping to identify low-level tasks and fea-
tures which are essential for practical work. This type of work is
purely empirical, and tries to identify useability criteria purely from
practice, rather than to develop features that are inferred from known
interaction paradigms in other related domains. At this stage of the
project it is still too early to formulate conclusions from these ex-
periments. Instead, this paper concentrates on the fundamentals of
the implemenation framework on which this work is based. These
are readily identifiable and their potential impact on further develop-
ment work as well as experiments are visible. This paper therefore
describes the basic principles and design strategy of the sc-hacks li-
brary, and discusses its perceived impact on performances. Finally,
it outlines some future perspectives for work involving data analysis
and machine learning.

1.2. Live Coding Frameworks in SuperCollider

1.2.1. Types of Live Coding Frameworks

Live Coding libraries can be divided into two main categories de-
pending on the level of generality of their implementation and their
application scope. First, there are libraries which extend Super-
Collider usage in order to simplify the coding of very behaviors
or features which are very common in performance, but are other-
wise inconvenient to code in SuperCollider. To this category be-
longs the JITLib framework. JITLib (Just-In-Time programming Li-
brary) has been around since at least August 2006, with an early
version since ca 2000 1 and is very widely used in the commu-
nity, being the de-facto go-to tool for live coding in SuperCollider.
The second category consists of libraries that concentrate on spe-
cialized usage scenarios and attempt to create domain-specific mini-
languages for those scenarios on top of SuperCollider. Such are:
IXI-Lang (a sequencer / sample playing mini-language by Thor Mag-
nusson [12]), SuperSampler (a polyphonic concatenative sampler
with automatic arrangement of sounds on a 2-dimensional plane,
by Shu-Cheng Allen Wu [13]), and Colliding (An "environment for
synthesis-oientd live coding", simplifying the coding of Unit Gen-
erator graphs, by Gerard Roma [14]). Finally, TidalCycles by Alex
McLean [15] should be mentioned, which develops its own live cod-
ing language based on Haskell and focussing on the coding of com-

1See https://swiki.hfbk-hamburg.de/
MusicTechnology/566 (accessed 20-December-2018)

http://avarts.ionio.gr
mailto:zannos@gmail.com
https://swiki.hfbk-hamburg.de/MusicTechnology/566
https://swiki.hfbk-hamburg.de/MusicTechnology/566

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

plex layers of synchronized beat cycles with sample playback and
synthesis, and uses the SuperCollider synthesis server as audio en-
gine.

1.2.2. sc-hacks Objectives and Approach

sc-hacks belongs to the first category of frameworks, and its initial
motivation was partly to implement some of the solutions of JITLib
in more robust, simple, and general ways. In parallel, inspiration
from ChucK’s => operator led to the development of a minimal ex-
tension of the language based on 4 binary operators (+>, <+, *>

*<), which, coupled with polymorphism, permit simplified and com-
pact coding of several common sound-structure coding patterns. Fur-
thermore, the implementation of some basic programming patterns 2

opened new possibilities for the creation of GUI elements which up-
date their state. This led to a proliferation of GUI building and man-
agement facilities and resulted in several interfaces for live coding
tasks, such as a code browser based on the concept of code snippets,
a browser for editing and controlling the behavior of named players
holding synth or pattern items, and shortcuts for building GUI wid-
gets displaying values of parameters controlled by OSC, MIDI or al-
gorithmic processes. Finally, ongoing experiments with dancers and
instrumentalists are giving rise to new interface and notation ideas.
The current focus is on building tools for recording, visualising and
playback of data received from wireless sensors via OSC, in order
to experiment with the data in performance, and to apply machine-
learning algorithms on them.

2. APPROACH

2.1. Players and Player Environments

JITLib addresses four fundamental problems in coding for concur-
rent sound processes: (a) Use of named placeholders for sound gen-
erating processes, (b) managing the control parameters of processes
in separate namespaces, (c) modifying event-generating algorithmic
processes (known in SuperCollider as Patterns) on the fly and (d)
interconnecting audio signals between inputs and outputs of synth
processes. Sc-lib offers alternative solutions to these problems which
present advantages, described in the following sections:

2.1.1. Named placeholders: -def classes vs. Player class

To use a name as placeholder for a synth process in order to start,
stop or modify the process on the fly, JITLib introduces the [X-]def
convention, i.e. it defines a number of classes which act as named
containers for different types of processes (Synths: Ndef, Tasks:
Tdef, Patterns Pdef, etc.). Sc-hacks uses a single Player object
class instead. A Player instance can play a Synth or a Pattern de-
pending on the type of source which it is asked to play, i.e. synth
definition, synth function, or event-stream generating instance (see
for example code below 3). This provides greater flexibility and sim-
plicity in the coding of synth processes over JITLib.

2.1.2. Separate parameter namespaces: ProxySpace vs. Nevent

A significant innovation introduced by JITLib consisted in the con-
cept of a ProxySpace, that is, a namespace that can function as the
current environment. ProxySpace is based on EnvironmentRedirect,

2See for example the Observer pattern: https://en.wikipedia.
org/wiki/Observer_pattern (accessed 20-December-2018)

a Class which holds a Dictionary and ensures that a predefined cus-
tom function is executed each time that a value is stored in one of
the keys of the Dictionary. Sc-hacks defines a subclass of Environ-
mentRedirect similar to ProxySpace, but defines a custom function
that provides extra flexibility in setting values which is useful during
performance in accessing control parameters. This enables keeping
track of which parameter refers to which process, storing parameter
values between subsequent starts of a process belonging to a player,
and updating GUI elements to display values as these change. Ad-
ditionally, sc-hacks makes the environment of the player current af-
ter certain operations, in order to make the current context the one
normally expected by the performer. This however is not always a
secure solution. For this reason, the target environment can be pro-
vided as adjective argument in binary operators involving players,
which ensures that code will work as expected even when changing
the order of execution of code in irregular manner.

2.1.3. Modifying event generating processes on the fly

Event generating algorihm processes are implemented in SuperCol-
lider through class Pbind. Pbind takes an array of keys and associ-
ated streams as argument and creates a Routine that calculates pa-
rameters and event types for each set of keys and values obtained
from their associated streams, and schedules them according to the
duration obtained from the stream stored under the key dur. The im-
plementation of Pbind allows no access to the values of each event,
i.e. it is not possible to read or to modify the value of a key at any
moment. Furthermore, it is not possible to modify the structure of
the dictionary of keys and streams while its event-generating pro-
cess is playing. This means that Pbind processes cannot be modified
interactively while they are playing. In order to circumvent this lim-
itation, a number of techniques have been devised which require to
add code for any key that one wishes to read or to modify. JITLib
uses such techniques and also provides a way to substitute a Pbind
process while it is running with a new one, thereby indirectly al-
lowing modification of that process. Sc-hacks provides a new ap-
proach for playing event-generating processes, which uses the same
Event-playing mechanism as Pbind, but grants both read and write
access to the data which generate the event stream, and thus permits
modification of the generating key-stream collection on the fly. This
radically simplifies the task of modifying event generating processes
while they are playing. For example, adding or substituting key-
value stream pairs to a process while it is playing can be achieved
simply by sending the corresponding key-stream pairs as events to
the same player, as shown in the following code 1.

(dur: 0.1) +> \mystream;
// Substitute duration stream:
(dur: [0.1, 0.2].prand) +> \mystream;
// Add degree stream:
(degree: (-10..10).prand) +> \mystream;

Figure 1: Adding and substituting key streams to event generators.

2.1.4. Interconnecting audio signals

The task of connecting the output of one audio process with the input
of another audio process is complicated in SuperCollider by the
requirements (a) to specify the bus which will carry the signal to be
shared and (b) to ensure that the synth reading from the signal will
be placed after the bus which is writing to the signal in the execution

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

order of the synth engine (scsynth). The implementation of the
solution in JITLib involves several classes with several instance vari-
ables and hundreds of lines of code and defies description within the
scope of the present paper. Additionally, coding the configuration of
one-to-many or many-to-one interconnections of audio i/o between
synth processes can be both verbose and complex, as witnessed for
example in exchanges on the SuperCollider mailing list such as
this one: https://sc-users.bham.ac.narkive.com/
PAapaSaM/many-to-one-audio-routing-in-jitlib
(accessed 20-December-2018). Sc-hacks introduces a new solu-
tion which permits simpler coding and guarantees persistence of
established configurations even when the server is rebooted during
a work session. The implementation is based on mechanisms
for hierarchical namespaces and function callback implemented
in sc-hacks through two new classes discussed below: Registry
and Notification. The coding of one-to-many and many-to-one
connections is exemplified through the following code 2:

// many - to - one interconnection
\source1 *> \fx1;
\source2 *> \fx1;
// one - to - many interconnection
\source3 *< \fx2;
\source3 *< \fx3;

Figure 2: Interconnecting audio signals.

Note that no additional coding is required if using the default input
and output parameter names \in and \out and number of chan-
nels (1). PersistentBusProxy is used to specify custom parameter
names and channel numbers. The operator @ can optionally be used
as shortcut to create PersistentBusProxy instances.

2.2. Binary operators

The primary coding strategy of sc-hacks for sound processes is built
around a small number of binary operators. Each operator encapsu-
lates a group of actions on sound objects such as synthesis parame-
ters, player objects holding single synths or synth processes, busses,
buffers, midi or osc control instances. The operators are:

left operand operator right operand
source +> player
source *> player
parameter <+ value
parameter *< value

2.2.1. +> : Play source in player

The +> plays the source in the player. The source can be the name
of a synthesis definition as symbol, a synthesis function, or an event.
For example the code in 3 can be evaluated line-by-line to play in
the player named ’example’ in sequence a synth using SynthDef
named ’default’, a Unit Generator Synth Graph containing a
Sine Oscillator, an empty event with default parameters (degree: 0,
dur: 1), an event with duration 0.1, and an event with degree a pattern
using a brownian stream with values between -10 and 10 and max-
imum step 2. Sending different types of sources (synthdef names,
synth functions, events) to the same player will replace the previous
source with the newest one. Sending nil stops the player.

\default +> \example; // play synthdef
{ SinOsc.ar(440, 0, 0.1) } +> \example;
() +> \example; // play event
(dur: 0.1) +> \example; // modify event
(degree: [-10, 10, 2].pbrown) +> \example;
nil +> \example // stop player;

Figure 3: Player operator +>.

Additionally, sc-hacks permits one to browse the code executed for
each player on a dedicated GUI (similar to operations on Shreds in
the miniAudicle GUI of ChucK), to edit existing code and resend it
to the player, and to start or stop a player by clicking on its name in
the list of existing players, as shown in Figure 4. The list of evaluated
code strings is permanently saved on file for each session.

Figure 4: Player GUI.

2.2.2. *> : Advanced operations on player argument

The *> operator takes different meanings depending on the type of
the right operand, as follows:

type of left operand action
Event set parameter values without starting events
Function Play function as routine in environment
Symbol Add receiver as audio source to argument
PersistentBusProxy Add source with custom i/o mapping

2.2.3. <+ : Set or map parameter

The <+ operator acts on the parameter named by the receiver (left
operand) depending on the type of the argument (right operand), as
follows:

type of right operand action
Integer or Float Set parameter value
Symbol Map parameter to named control bus
Envelope Map parameter to envelope signal
Function Map parameter to Synth Function output
MIDI Bind parameter to MIDI input
OSC Bind parameter to OSC input

https://sc-users.bham.ac.narkive.com/PAapaSaM/many-to-one-audio-routing-in-jitlib
https://sc-users.bham.ac.narkive.com/PAapaSaM/many-to-one-audio-routing-in-jitlib

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

The parameter named by the left operand belongs by default to the
current environment. In order to specify a different environment, one
can name the environment as an adverb to the binary operator using
standard SuperCollider syntax, e.g.: \freq <+.myenvir 660.

2.2.4. *<+ : One-to-many audio i/o interconnections

The *< operator, in analogy to *>, is used to create one-to-many i/o
interconnections, that is, to connect the audio output from one Player
to the inputs of several different Players.

2.3. Fundamental Classes

To implement the above features, sc-hacks introduces classes which
implement pattern-language-like features that enable functionality
across a wide variety of tasks such as storing and retrieving single
instances in tree data structures (Registry Class), updating state of
concerned items in response to changes (Notification Class), and en-
forcing sequential order of execution in asynchronous calls to the
server when booting, loading synthdefs and loading or initializing
audio buffers (ActionSequence Class). These classes formed the
backbone for rapid creation of custom extensions to the library to
meet needs of performance requirements described in the next sec-
tion. These results are encouraging indications that the library will
serve as framework to develop more ambitious applications in the
next stages of this work.

3. APPLICATIONS

3.1. Telematic Dance

Sc-hacks was first used in a telematic dance project whose goal is
to enable dancers to perform together concurrently in different cities
by sharing data from motion sensors sent via OSC over the internet
[16]. Sensors were constructed using LSM9D0 motion sensor mod-
ules and Feather Huzzah ESP8266 wifi modules from Adafruit, and
connected to SuperCollider via micro-osc package on micropython.
Several sessions with dancers in Tokyo, Athens and Corfu served
to experiment with different sound synthesis algorithms and to test
the usabiity of the interface and algorithms for dance improvisation.
The results were generally more encouraging than expected, except
in Corfu where the dancers showed a more cerebral approach em-
phasizing control over the sound result rather than free exploration
of the sonic landscape through movement.
A significant new turn in the development of the library was
prompted during the initial tests for remote collaboration performed
during a workshop organized at the University of Manchester by
Prof. Ricardo Climent for the EASTN-DC EU-Culture program.
This showed the need for distributing versions of the library to differ-
ent remote partners, using different custom settings for each partner.
Opening files in the SuperCollider IDE in order to select and exe-
cute appropriate code segments was soon proven to be impractical
under the pressed time circumstances of preparing the test within a
large scale workshop and awkward time-zone difference between the
partners involved. Thus, a plug-and-play solution had to be devised,
or at least one that relied on selecting options from menus or lists
and clicking on buttons rather than opening files and executing code.
This gave rise to a new interface as a GUI for selecting and evaluating
snippets of code contained within files within subfolders of a global
"Snippets" folder 5. The scheme has since served for the archival of
experiments and performances, facilitating easy overview and reuse

of past code. It is furthermore integrated for use with EMACS as
primary IDE for SuperCollider, with automatic updates of code be-
tween EMACS and the SuperCollider based GUI.
Two further features were necessary for the experiments with
dancers. First, a GUI that displays OSC data as they are received,
and second a mechanism that scales and assigns incoming OSC data
to the desired parameters. The following code shows how to generate
a gui that displays data changes for a set of named parameters. Up-
dates are displayed whenever a parameter is changed, independently
of the source of the change (i.e. automated algorithm, evaluation of
code, MIDI or OSC input).

\lsm1.v(
\dur.slider([0.1, 12], \lsm1),
\pos.slider([0.0, 1.0], \lsm1),
\rate.slider([0.2, 15], \lsm1),
\gps.slider([0.5, 20.0], \lsm1),
\pan.slider([-1, 1.0], \lsm1),
\amp.slider(\amp, \lsm1)

);

The GUI in figure 6 was generated by the code above.
Following example shows how to scale data input from OSC mes-
sages and to assign them to named parameters in a specified envi-
ronment ’lsm1’.

\dur <+.lsm1
’/gyroscope1’.osc(0, [-40, 40], [0.01, 12.5]);

\pos <+.lsm1
’/gyroscope1’.osc(1, [-20, 40], [0.0, 1.0]);

\rate <+.lsm1
’/gyroscope1’.osc(2, [-20, 40], [0.1, 15]);

\gps <+.lsm1
’/magnetometer1’.osc(0, [-1.0, 0.5],

[0.2, 15]);
\pan <+.lsm1

’/magnetometer1’.osc(1, [-0.25, 0.25],
[-1, 1]);

\amp <+.lsm1
’/magnetometer1’.osc(2, [-0.05, 0.25],

\amp);

The above features are only the beginning. As experiments with
dancers have shown, other GUIs and coding schemes are needed to
facilitate adjustment of the responsiveness of the sensors and adap-
tation of their sound control aspects during performance. In this re-
spect a considerable amount of work is still required.

3.2. Coding Electroacoustic Music Performances

A second test scenario was provided through the collaboration with
Dan Weinstein, a concert cellist specializing in contemporary music
performance with good knowledge of contemporary audio tools in
Linux. Mr. Weinstein selected two pieces from the early repertory
of electroacoustic music scored for tape recorder: Jonathan Harvey’s
"Ricercare una melodia" and Karlheinz Stockhausen’s Solo 19. Both
pieces had to be coded in SuperCollider and rehearsed within one
week during a residency of Mr. Weinstein in Corfu, leading to a
public performance of the pieces. The time constraints were critical
because the pieces were both complex and demanding in terms of
score interpretation, following and coordination. The Stockhausen

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 5: Snippet List GUI.

Figure 6: Grain Control GUI.

piece proved to be especially difficult as it is initially scored for 4 as-
sistants in the electronic part, where each assistant is assigned control
of the recording, playback and feedback levels of two tape recording
channels with varying loop durations between sections, using two
potentiometers. To execute this with a single performer on the com-
puter, the slider actions as well as the loop duration changes had to
be automated according to the indications in the score. Even under
these circumstances, an ideal faithful performance was impossible,
because each of the 6 levels demanded constant adjustment accord-
ing to the actual level of the instrumental performer, and each transi-

tion had to be timed manually to prevent abrupt noticeable changes.
Still, this proved to be a fruitful exercise in creating a user inter-
face and coding the entire score, consisting of 6 different realization
versions. It resulted in a compact coding scheme for durations of
prescribed length (see 7 for the notation of the first version - Form-
schema I, and 8 for its translation into GUI and automated perfor-
mance). This notation mechanism can in the future be repurposed as
a type of beat sequencing notation similar to this found in ixilang or
TidalCycles (although the Cycle scheme of Tidal has other features
which go beyond the scope of the present discussion).

4. CONCLUSIONS AND FUTURE WORK

Sc-hacks is a general purpose extension to SuperCollider, and the
intense use of several binary operators may raise doubts about its
legibility or the general validity of its design priorities. However,
stress-testing sc-hacks through collaborations with dancers and in-
strumentalists has shown its strong potential to solve diverse and
demanding problems under time pressure, and furthermore has pro-
vided indications of its scalability in terms of coding various fea-
tures. This indicates that it is a suitable platform for further work,
and it is hoped that it will serve as a tool for addressing questions
of machine listening in live performance as well as other advanced
topics.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 7: Code for Formschema I of Stockhausen Solo 19.

Recording data received from sensors is a first priority in the project.
A first prototype has been implemented using the built-in archival
facilities of SuperCollider. A second implementation is currently
under development, which will record data into multichannel audio
signal buffers, and employ an extra channel to record the time inter-
val between receipt of successive OSC messages. Based on this, and
using the existing graphic visualization facilities of SuperCollider
for audio signals, a functionality similar to the MuBu tools from IR-
CAM 3 is envisaged. In collaboration with PhD students working on
Machine Learning, it is planned to use this for further research.
In parallel, work is being done to connect data sent over the internet
in remote performances, and in developing a performance repertory
with instrumental soloists interested in improvisation with live elec-
tronics. In both these cases, the most serious challenge consists in
making the software stable and easy to use enough to be able to re-
lease it to non-specialist performers for work in real-world creative
events without the need of specialized technical assistance to run it.
This remains a major driving factor and design guideline in devel-
oping this software. At the same time it is expected that these re-
quirements will help create best practice solutions that constitute the
wider contribution of this project. In this sense, the present project is
placed within the scope of efforts for developing contemporary lan-
guages of notation for performance practice that have lasting impact
on the community and its aesthetics.

5. REFERENCES

[1] S. Wilson, D. Cottle, and N. Collins, Eds., The SuperCollider
Book, MIT Press, 2011.

[2] A. Sorensen, “Impromptu: An interactive programming envi-
ronment for composition and performance,” Proceedings of the
Australasian Computer Music Conference, 01 2005.

[3] A. Kapur, P. Cook, S. Salazar, and G. Wang, Creating music
with ChucK, Manning, 2015.

[4] A. Sorensen, Extempore: The design, implementation and ap-
plication of a cyber-physical programming language, Ph.D.
thesis, The Australian National University, 2018.

3http://forumnet.ircam.fr/product/mubu-en/ (accessed
20-December-2018)

[5] C. Roberts, M. Wright, and J. Kuchera-Morin, “Music pro-
gramming in gibber,” in Proceedings of the 2015 International
Computer Music Conference, pp. 50–57. 01 2015.

[6] D. Stowell and A. McLean, “Live music-making: A rich open
task requires a rich open interface,” in Music and Human-
Computer Interaction, pp. 139–152. Springer, 2013.

[7] S. Salazar, “Searching for gesture and embodiment in live cod-
ing,” in Proceedings of the International Conference on Live
Coding. 2017.

[8] G. Wang, G. Essl, J. Smith, S. Salazar, P. Cook, R. Hamilton,
and R. Fiebrink, “Smule= sonic media: An intersection of the
mobile, musical, and social,” in Proceedings of the Interna-
tional Computer Music Conference, p. 16–21. 2009.

[9] S. Salazar and J. Armitage, Re-engaging
the Body and Gesture in Musical Live Cod-
ing, 2018, [Online; accessed 20-December-2018],
https://embodiedlivecoding.github.io/
nime2018-workshop/workshop-paper.html.

[10] J. Armitage and A. McPherson, “The stenophone: live coding
on a chorded keyboard with continuous control,” in Proceed-
ings of the International Conference on Live Coding. 2017.

[11] K. Sicchio, “Hacking choreography: Dance and live coding,”
Computer Music Journal, vol. 38, no. 1, pp. 31–39, 2014.

[12] T. Magnusson, “The ixi lang: A supercollider parasite for live
coding,” in Proceedings of the International Computer Music
Conference, pp. 503–506. 2011.

[13] A. W. Shu-Cheng, “Supersampler: A new polyphonic concate-
native sampler synthesizeer in supercollider for sound motive
creating, live coding, and improvisation,” in Proceedings of the
International Computer Music Conference. 2017.

[14] G. Roma, “Colliding: a supercollider environment for
synthesis-oriented live coding,” in Proceedings of the 2016
International Conference on Live Interfaces. 2016.

[15] A. McLean and G. Wiggins, “Tidal – pattern language for the
live coding of music,” in Proceedings of the 7th Sound and
Music Computing Conference. 2010.

[16] I. Zannos and M. Carle, “Metric interweaving in networked
dance and music performance,” in Proceedings of the 15th
Sound and Music Computing Conference, pp. 524–529. 2018.

http://forumnet.ircam.fr/product/mubu-en/
https://embodiedlivecoding.github.io/nime2018-workshop/workshop-paper.html
https://embodiedlivecoding.github.io/nime2018-workshop/workshop-paper.html

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 8: GUI for Formschema I of Stockhausen Solo 19.

	1 Background
	1.1 Bridging Live Coding and Gestural Interaction
	1.2 Live Coding Frameworks in SuperCollider
	1.2.1 Types of Live Coding Frameworks
	1.2.2 sc-hacks Objectives and Approach

	2 Approach
	2.1 Players and Player Environments
	2.1.1 Named placeholders: -def classes vs. Player class
	2.1.2 Separate parameter namespaces: ProxySpace vs. Nevent
	2.1.3 Modifying event generating processes on the fly
	2.1.4 Interconnecting audio signals

	2.2 Binary operators
	2.2.1 +> : Play source in player
	2.2.2 *> : Advanced operations on player argument
	2.2.3 <+ : Set or map parameter
	2.2.4 *<+ : One-to-many audio i/o interconnections

	2.3 Fundamental Classes

	3 Applications
	3.1 Telematic Dance
	3.2 Coding Electroacoustic Music Performances

	4 Conclusions and Future work
	5 References

