Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

GPU-ACCELERATED MODAL PROCESSORS AND DIGITAL WAVEGUIDES

Travis Skare

CCRMA
Stanford University, USA
travissk@ccrma.stanford.edu

ABSTRACT

Digital waveguides and highly-resonant filters are potential funda-
mental building blocks of physical models and modal processors.
What might a sound designer accomplish with a massive collection
of these objects?

When the building blocks are independent, the overall system
becomes highly parallel. We investigate the feasibility of using a
modern Graphics Processing Unit (GPU) to run collections of waveg-
uides and filters, toward constructing realtime collections of room
simulations or instruments made up of many banded waveguides.

These two subproblems offer different challenges and bottle-
necks in GPU acceleration: one is compute-bound while the other
has memory optimization challenges.

We find that modern GPUs can run these algorithms at audio
rates in a straightforward fashion—that is, sample-by-sample without
needing to implement transforms that allow computation of subse-
quent time samples concurrently. While a fully-realized instrument
or effect based on these building blocks requires additional process-
ing and will have more data dependencies that reduce parallelism, we
find that consumer-GPU-accelerated audio enables a scale of real-
time models which would be intractable on contemporary consumer-
CPUs.

1. INTRODUCTION

Potential applications for a large number of modal filters or digital
waveguides include:

e A large collection of coupled acoustic spaces, for example an
opera house with listening booths that may be seen as res-
onators, or the interior architecture of ancient Chavinf1]].

e A virtual orchestra where we have many players, each using
an instrument made up of several digital waveguides.

e A virtual reality simulation where a server may track room-
and position-dependent modal reverberators for a number of
participants on low-power client devices.

e A drum set made up of a couple dozen individual instruments,
each using many modal filters.

While the first three ideas are hypotheticals enabled by having
access to massively parallel filtering/waveguide systems, the fourth
exists as a real-world proof of concept to synthesize a dozen modal
cymbal models at realtime rates using a GPU. Active work is toward
adding realtime controls for a performer.

1.1. Building Blocks: Modal Synthesis and Digital Waveguides

Modal synthesis involves determining the natural resonant modes of
a vibrating object, and using the appropriate frequencies, amplitudes,
and decay rates to build a system that simulates the original sound.

Jonathan Abel

CCRMA
Stanford University, USA
subsectionlabel@ccrma.stanford.edu

A filter bank of high-Q filters is often used for such sound syn-
thesis, and is also the backbone of modal reverberators[2]]. The more
modes we can compute at realtime audio rates, the higher the fidelity
of the sound, and the more sources or rooms we may model.

Digital waveguides|3] are efficient for simulation of traveling
waves, and with scattering junctions and nonlinearities added, a wide
range of physically-accurate bowed strings, brass, etc. may be sim-
ulated with robust realtime performance controls. Here, we are in-
terested in working toward many virtual performers each playing an
independent instrument (orchestra), or one performer given control
over simultaneous but mostly independent “clusters” of waveguide-
powered instruments, such as a virtual drum set with a large number
of pieces.

Digital Waveguides may be implemented efficiently in the 1-
dimensional case via a bidirectional delay line representing two trav-
eling waves, plus filters to account for dispersion loss. These are
the basic building blocks we seek to accelerate, noting that for more
complex physical models we will add scattering junctions, additional
filtering, and nonlinear elements incurring additional computation
cost. In some cases, such as piano string modeling[4], some terms
may be commuted, or combined with an impulse response, to add
complexity to the overall model without scaling the overall steady-
state computational cost.

1.2. GPU Acceleration for Audio Algorithms

For years, graphics processing units (GPUs) have supported both
high-level realtime graphics APIs as well as lower-level, general-
purpose computational APIs. GPU acceleration of audio synthe-
sis and audio effect algorithms has been shown to yield substantial
speedups on certain algorithms. GPUs advance in performance each
generation in terms of parallel core count and base core speed, so
we expect some previously intractable problems to become tractable
over time.

Among papers in the literature:

Savioja et. al.[5] give an overview of potential audio tasks that
may be accelerated via GPGPU programming at audio rate and rea-
sonable buffer sizes for realtime performance. Sinusoid-based addi-
tive synthesis obtained 250x+ speedup over CPU implementations,
FFTs running on a GPU were able to be eight times as long as those
running on a CPU-based implementations, and FIR filters were able
to be 130 times as long as their CPU counterparts. In [5] and [6]], the
authors showed it was possible to synthesize 1.9 million sinusoids in
realtime, a 1300x speedup over a serial lookup table computation on
one CPU. This was on a GPU that is six generations behind ours and
three major GeForce architecture revisions behind our car(ﬂ And
we note that our graphics card is itself now a generation and ma-
jor architecture advance behind the times. This work results in a

IFermi (GTX 480, 2010) — Kepler — Maxwell — Pascal (GTX 1080Ti,
2017); RTX cards released in 2018 use the Turing architecture.

https://ccrma.stanford.edu
travissk@ccrma.stanford.edu
https://ccrma.stanford.edu
abel@ccrma.stanford.edu

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

realtime sound canvas with more “paint” than previously available
(how might an artist use 1.9 million partials in additive synthesis?).
The million sinusoids example also demonstrates that maximum per-
formance requires tuning and knowledge of the specific underlying
hardware.

Trebien et. al.[7] use modal synthesis to produce realistic sounds
for realtime collisions between objects of different materials. Not-
ing that IIR filters do not traditionally perform well on GPUs, due to
dependence on prior state not mapping well to the parallel nature of
GPUgs, they introduce a transform to change this into a linear convo-
lution operator and to unlock time-axis parallelism.

Belloch et. al. [§] accelerate IIR filters on the GPU directly by
using the Parallel IIR representation. They achieve 1256 concurrent
256th-order IIR filters at audio rates and sub-millisecond latency at
a 44.1kHz sampling rate.

Subsequently, Belloch covers GPU-accelerated massively paral-
lel filtering in [9], and Belloch et. al.[10] leverage GPU accelera-
tion to implement Wave Field synthesis on a 96-speaker array, with
nearly ten thousand fractional-delay room filters with thousands of
taps. The maximum number of simulated sound sources is com-
puted for different realtime buffer sizes and space partitions; with a
256-sample buffer (5.8ms at 44.1kHz), between 18 and 198 real-time
sources could be placed in the field.

Bilbao and Webb[[11]] present a GPU-accelerated model of tim-
pani, synthesizing sound at 44.1kHz in a 3D computational space
within and outside the drum. The GPU approach uses a matrix-free
implementation to obtain a 30x+ speedup over a MATLAB CPU-,
sparse-matrix-based prototype, and a greater-than-7.5x speedup over

single-threaded C code baseline. The largest (and most computationally-

expensive) drum update equation is optimized to 2.04 milliseconds
per sample, where the bottleneck is a linear system update for the
drum membrane.

Our area of study utilizes recursive filters and unfortunately op-
timizations of the million-sinusoinds and Parallell IIR filter works
do not apply directly; we would like to be able to adjust parame-
ters arbitrarily in realtime and at sample rate, which would require
rerunning transformation code too often.

Still, our filter bank is expected to be highly parallel in terms of
independence between the filters. We may have coupling between
modes, but so long as it’s limited, we can implement this in a way
that is compatible with GPU programming ideas. We also do not
need to implement arbitrary IIR filters as in Belloch et. al., but will
be able to use special-purpose damped oscillation filters that only
require a first-order complex update equation (see Section [2)).

If GPUs have advanced enough in terms of increased clock rate,
increased floating-point resources, and lower memory latency in the
last few generations, we aim to compute filter and physical model
updates sample-by-sample in realtime.

1.3. GPU Programming

Next, we present a brief overview of GPU programming, and note
advantages and challenges versus programming for a general-purpose
processor.

Various toolkits exist to develop GPU programs: two of the
biggest are NVIDIA’s CUDA for use with their graphics cards, and
APIs implementing OpenCL, a more general heterogeneous compu-
tational framework. For the following investigation we use CUDA.
If readers have any modern NVIDIA card, they may download the
software developer kit at developer.nvidia.com,

When starting to port an algorithm to the GPU, we must con-
sider if it has parallelism to leverage. NVIDIA coined the term “sin-
gle instruction, multiple thread” (SIMT) as a variation on the “single
instruction, multiple data” (SIMD) of vector processors and mod-
ern mainstream processors. If our work is a series of several differ-
ent and dependent computations, we may not be able to achieve a
speedup. If we can structure it as applying identical operations to
many points, it is a good candidate for acceleration.

The core work unit in CUDA is a group of 32 threads, called a
warp. Each thread in a warp may have its own values for local vari-
ables, but all threads in a warp will always run the same instruction
simultaneously.

A warp is executed on a Streaming Multiprocessor (SM). Dif-
ferent graphics cards have different numbers of SMs; a low-power
embedded device may have two while our graphics card used for the
trials below has 28.

A trivial example task would be to take N integer inputs and
double them.

There are two main steps involved in this task. First, we write a
kernel, the code that will run on the GPU. This will accept an array
of inputs; each thread will index into the array, find the element it is
to double, multiply it by 2, and store it in an output array. Second, we
write host (CPU) code that calls a CUDA function to send an input
array to the GPU, execute the kernel, wait for the kernel to complete,
and finally copy the output values back to the CPU, for example so
we can save them to disk.

If we have 32 inputs to double, CUDA will execute our kernel
code on one warp of 32 threads. All 32 threads in that warp execute
in lockstep and run the same instructions, but obtain a different value
of the array to double and a different output location to store the
result. If we have only 15 inputs to double, this is not a problem.
We will still run on one warp, and the 17 threads without any work
to do effectively get a break (they technically are issued instructions
but do not write to memory or compete for resources). If we have
33 inputs to double, we outgrow one warp. Threads will be grouped
in one warp of 32 threads and a second warp of one solitary thread.
More than one warp can run at a time, so it is very likely we will run
in the same time as it took to run the 32 and 15 input cases.

A CUDA-enabled graphics card has some number of Stream-
ing Multiprocessors (SMs). The product specifications for individ-
ual graphics card models and a capabilities table such as provided in
the CUDA Programming Guide lets authors know how many threads
may be in flight per SM, and how many may actually get run each
cycle.

For example, our graphics card may have up to 64 warps as-
signed to each SM (— 64warps * 32threads/warp = 2048threads),
though only 4 warps (128 threads) may be scheduled on each single
clock cycle.

The programming guide lists other bottlenecks and numbers to
consider. One piece of information very relevant to us is the number
of simultaneous arithmetic operations available.

The graphics card we use is a consumer card meant for gaming.
Some other cards (the NVIDIA TITAN for example) are targeted
more for enterprise and scientific computing uses, albeit at a signifi-
cantly higher price point.

We note the issue rate of floating-point operations from the pro-
gramming guide:

This means that if we require 64-bit precision, our consumer
card is more likely to be bottlenecked by this figure than the enter-
prise card in the lineup.

On the other hand, we note that our card has higher per-clock

https://developer.nvidia.com

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

Table 1: Throughput of FP instructions (Results per Clock per SM)

Consumer | Enterprise
16-bit mult+add 2 128
32-bit mult+add 128 64
64-bit mult+add 4 32

32-bit floating-point throughput. Assuming that is sufficient pre-
cision for a problem, this means our card may execute 128 32-bit
multiply-adds per SM * 28 SMs = 3584 multiply-adds per clock.
For reference, the card’s core clock runs at 1.3-1.5GHz.

Thus far we’ve considered parallelism and availability of arith-
metic units; we must also keep the memory hierarchy in mind.

Each SM has some number of registers. These are very fast. The
compiler will attempt to use them for thread-local variables. On our
card, there are 64,000 32-bit registers per SM.

Each thread block (user-defined organizational unit of threads,
comprised of one or more warps) has some fast “shared” memory.
This is 64KB per SM for our setup. We’ll return to this later as an
optimization.

All threads may access a card-wide pool of read-only constant
memory.

All threads may also access a pool of global memory—11GB on
our card. However, this is described as having roughly 100x the
latency of shared memory or registers.

If a thread’s local data will not fit in registers, the compiler may
reduce parallelism or spill to “local memory.” This technically lives
in the slow global device memory pool, but is backed by a cache.

1.4. Development Approach

We take an iterative development approach, getting a basic algorithm
working and then proceeding to tune it in stages. The CUDA toolkit
contains IDE plugins and debugging tools, making it straightforward
to analyze bottlenecks as we encounter them. The compiler will also
be helping us along the way.

To set expectations, we know there will be overhead involved in
transferring data between CPU and GPU, overheads in starting and
stopping our kernel, and overhead introduced by the host operating
system. We try to mitigate some of these, but some are unavoidable.

It is also important to note the significant effort that would be
involved in moving from this proof of concept to a commercial DAW
plugin. A hypothetical DAW is competing for CPU resources, will
be using the GPU to render its GUI (our kernels can run alongside
that with no issue, but there’s still potential resource competition),
and will force our choice of buffer size and latency.

1.5. Test Setup

The test setup consists of:

e GPU: An NVIDIA GeForce GTX 1080Ti, which is a consumer-

grade graphics card, though a relatively high-level one.

e CPU: An Intel i5 3570K running at stock speed. We note
this CPU is six generations old and a mid-level chip even in
its generation, and newer CPUs may include newer vector in-
structions including AVX-512. However it is unlikely to bot-
tleneck us, as it is used primarily for memory transfer and
GPU kernel launches.

e RAM: CPU has 16GB, GPU has 11GB; neither will bottle-
neck us in these synthetic benchmarks.

e Storage: consumer SATA SSDs that will not be a bottleneck,
especially since our tests should reside completely in RAM.

e OS and software: Development was cross-platform; kernels
were written on Ubuntu Linux with Microsoft’s open-source
VSCode as a text editor and compiled using the CUDA Toolkit.
During the memory optimization phase of the project, NVIDIA
Nsight Visual Studio Edition on Windows was used for its
“Next-Gen CUDA Debugger,” though it is noted that the Lin-
ux/Mac Eclipse edition also contains an Eclipse-based pro-
filer.

e Programs were compiled as 64-bit in case we use more than
4GB of RAM, possible with high buffer sizes and high num-
bers of parallel waveguides.

We discuss development of two algorithms: high-Q filters suit-
able for use in modal processors, and a simplified form of digital
waveguides, running independently without scattering junctions and
only a gain multiplier in the feedback loop. These two systems were
developed simultaneously and do not depend on each other; we begin
with the modal filter code since it is simpler, can essentially ignore
the GPU memory hierarchy (everything besides output data fits in
registers), and we estimate will be bottlenecked exclusively by the
floating-point throughput of the graphics card, which makes it the
easier of the two to optimize.

2. MASSIVE MODAL FILTER BANK

As described above, a modal filter bank used for synthesis, effects or
reverberation consists of N resonant filters. We make the assumption
that all the filters are uniform in construction and vary in parameters;
a GPU can of course run multiple styles of filters in parallel, either
through conditional execution or simultaneous kernel execution.

In practice, rapidly changing the coefficients on e.g. Direct-
Form II filters may result in audible artifacts. In [[12] Max Mathews
and Julius Smith proposed a filter that is very-high-Q, numerically
stable, and artifact-free, based on properties of complex multiplica-
tion.

This is suitable for modal synthesis and reverberators such as in
[2]; the recursive update equation we need to implement is:

Y (1) = ymw(t) + €m0y (¢~ 1) M
where:

z() is an input or excitation signal.

wrm, 18 mode frequency m.

Ym 1s a per-mode complex input amplitude gain.

Q. 18 a per-mode dampening factor.

This is straightforward to implement; the state we store for each
mode is limited to the prior output y,, (t—1), the parameters tm, Ym,
and wn,, even if only for intermediate computation. For simplicity
we keep them all; noting that while complex values use two 32-bit
registers each (four when using 64-bit precision), we likely have 255
registers per thread and have room to spare.

We benchmark three approaches:

When letting these resonating filters run as undamped oscilla-
tors, we are able to compute and reuse the complex exponential
value, and only conditionally add the input term; with these sim-
plifications we will require two floating-point multiplies per cycle.
We create a benchmark to determine the number of such oscillators

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

we can run in parallel in realtime. We run two variations of this
benchmark at different buffer sizes. A third benchmark simulates a
pesrformance that modulates all the filters on every sample: we re-
compute the exponential term each time it is used, and look at the
performance impact.

We move to benchmark those three approaches. In more detail:

Free-Run is the optimal case where the oscillators only need to
update based on a complex multiplication of y(¢ — 1) with a static
value of the complex exponential. A buffer size of 2,000 samples
is likely larger than we’d want for realtime performance (45ms at
44.1kHz), but allows us to reduce kernel-switch overhead.

Small Buffer is identical to Free-Run, but with a buffer of 256
samples (5.8ms at 44.1kHz).

Continuous Modulation is our third approach, simulating gain
parameters and frequencies changing continuously, requiring recom-
puting the complex exponential term with each sample update, in ad-
dition to performing the 2-multiply complex update of the filter state.
This case uses the same 256-sample buffer as Small Buffer.

We measure the amount of time it takes to render ten seconds
of 44.1kHz audio for N phasor filters in parallel. This means that
benchmark runtimes over 10 seconds fall behind realtime perfor-
mance, while values under 10 might be feasible. For each trial, the
median of three runs was used; in practice we did not see large out-
liers in these tests.

Tabulated results are in Table[2} bold entries took less than ten

seconds to compute and thus are candidates for realtime performance.

In practice, we might want to avoid values under but close to ten sec-
onds, due to system variance and unmeasured overhead of a DAW,
OSC server, controller processing, etc. The same data is available as
aplotin Figurem with a horizontal line representing realtime limits.
In all graphs in this paper, lines between sample counts are present
only to show trends, and we do not expect results for intermediate
values of IV to fall precisely on that line.

Table 2: Time to run N filters for 10 seconds of Audio

N Filters | Free-run | Small Buffer | Continuous Mod.
458752 1.48 2.95 3.97
917504 2.63 4.18 5.54
1835008 4.85 7.17 8.49

3670016 9.23 11.39 13.21

Some observations:

As these filters are completely independent, we achieve high uti-
lization on the GPU and are only blocked on availability of floating-
point units. All data is stored in registers and we avoid memory
accesses, especially global memory accesses.

It is worth reiterating that this is benchmarking building blocks.
We synthesize audio and copy it back to the host RAM, but addi-
tional logic is needed on the CPU to modulate parameters based
on realtime user input or performance data and most likely to post-
process the output with effects.

Using a smaller buffer incurs more cost, which can be 50% and
even higher, percentage-wise, for low N. At very high N the effect
is lower; we bottleneck on floating point unit availability in the large-
buffer version, but have lower kernel launch overhead.

As a final observation on Table|Z|’s data, the continuously-modulated

version does not suffer as large a performance penalty as expected
since it looks like we had some idle 32-bit floating-point units - they
are not occupied every cycle. It also allows us to eliminate a condi-
tional check since we always run that logic.

Time to filter 10s of Audio

Execution Time (s)
o oo
L]

4 - Trial
contmod
2 smallbuf
freerun
0
152 50k ooB ol®
¥58712%q17 183° 3670

Filter count N

Figure 1: Time to run N filters for ten seconds of samples under
different trials.

Moving forward, we benchmark the use of double-precision arith-
metic. We made an alternate 64-bit kernel - basically swapping
cuDoubleComplex in for the default cuComplex, which is by
default t ypedefed to be single-precision.

With a 256-sample buffer and continuously-changing parame-
ters, and N=458,752 filters, it takes 19.49 seconds to render 10 sec-
onds of audio. Our corresponding single-precision trial only took
3.97 seconds, so we note a 4.9x slowdown. As noted earlier, each
SM on our GPU may only issue four 64-bit floating point multiply-
adds versus 128 32-bit adds. As we did not achieve 100% utilization
of the floating point units in prior benchmarks, we don’t necessarily
suffer a 32x (128/4) slowdown, but it is clear we are being bottle-
necked by double-precision FPU availability with this configuration.

As we might expect, scaling down to 114,688 filters lowers re-
source contention enough to run within our realtime constraints (7.04
seconds to synthesize 10 seconds of audio). If we need the extra pre-
cision, that is likely still more than enough high-Q filters to enable
some interesting instruments and effects, such as creating a virtual
drum set with several thousand filters available to each instrument.

3. MASSIVE WAVEGUIDE “ORCHESTRA”

Next, we code up a kernel that performs the computations for a sim-
ple 1-D Digital Waveguide. This follows the description of the struc-
ture from Section @ each thread owns a bidirectional delay line
made up of continuous memory on its thread stack. This is used as a
circular buffer, with an index value serving as a read/write head, and
a multiplicative factor on feedback introduces dispersion loss. Note
that for most waveguide-based physical models, additional code will
be needed for scattering junctions, nonlinearities, etc., reducing our
maximum throughput and complicating our kernel code, but parallel
waveguides may be benchmarked as a starting point, to suggest an
upper bound for performance.

As a baseline, we start with uniform waveguides of delay-length
M=5000 samples in totaﬂ and process audio in 2000-sample chunks

2lengths in this benchmark represent the total length of the delay in the
system; if building a waveguide from a bidirectional delay line, each delay

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

with each launch of the GPU kernel.
Because a buffer size of 2000 at 44.1kHz would be 45 milliseconds— 10?2

Time to Compute 10 Seconds of DWG Synthesis (log-log)

longer than we’d like for interactive applications—we performed the
same trial at 256 samples (5.8ms).

Then, because we expect to run out of thread registers and spill
to expensive “local” memory (as above, really in the global pool) we
run a second variant of waveguides of length 10 samples and a buffer
of 2000 samples—arguably too much of a simplification, but this may
be useful to establish a loose upper bound on performance.

In each trial, we compute the amount of time it takes to repeat-
edly run the kernel on the GPU and copy some data back out to the
host.

The data copy is non-negligible overhead; assuming 1.8M waveg-
uides and buffer of length 2000, we generate 13GB of audio data
each kernel execution. As such, we first sum all the samples in each
warp to reduce the overhead by a factor of 32 - still leaving us with a
substantial amount of sound data to transfer across the PCI Express
bus.

As in the high-Q filter benchmarks, we build N independent
objects in parallel and measure the time it takes to synthesize ten
seconds of sound at 44.1kHz.

Results are in Table[3] N is a multiple of 32 to ensure all warps
are occupied. Bold entries take less than ten seconds to compute and
thus ran faster-than realtime. A plot of the data is in Figure 2}

Table 3: Time to generate 10s of Audio, Uniform Waveguides

N DWGs | Baseline | Small Buffer | Short Waveguide

3584 0.249 0.544 0.11
14336 0.522 0.811 0.272
57344 1.44 1.75 0.95
114688 2.79 3.09 1.83
229376 5.5 5.74 3.68
458752 10.85 11.07 7.28
917504 21.14 20.24 14.59

1835008 | 42.611 49.72 29.152

.
w10l —
— -
w
£ f,..-/
'_ " -
g ll:l O /
=] »
§ .--P__,_-P--F-.
u:-j a2 Trial
10 Baseline
SmallBuffer
ShortWG
1072
10! 10° 10°

Digital Waveguide count N

Figure 2: Time to run N waveguides for ten seconds of samples under
different trials.

These preliminary benchmarks suggest a rough upper bound, so
in our iterative development approach we return to coding, refin-
ing our kernel and un-relaxing some assumptions. Currently, all the
waveguides have the same delay line length; this is unrealistic for
real-world applications, so we next move to have waveguides play
one of 1000 different pitches, by having each parallel digital waveg-
uide own a delay line of different length. We use our baseline setup,
and allocate the same blocks of memory as before, but have waveg-
uide n be of length 128 4+ 5n mod 5000. This means that all waveg-
uides inside a warp will have different delay line lengths, and warps
compute different values overall.

Results are in Table 4]

Table 4: Time to generate 10s of Audio, “Baseline” uses same-length

We note some trends:

As expected, computing more waveguides requires more time.
Scaling is sub-linear while growing at small N as we utilize more
of the GPU in the parallel section of the benchmark (“for free”), but
we still incur a cost for memory transfer of the outputs off the card,
which itself scales linearly with N. The parallel sound synthesis
portion of the program becomes linear with N as resources are ex-
hausted; beyond this point we essentially are cycling through groups
of warps serially.

Decreasing the buffer size from processing 45ms to 6ms of audio
per kernel execution did not seem to affect the feasible /N as much as
anticipated. There is a notable 2x difference at small N but for both,
the 458,000 waveguides trial was not feasible while the 230,000
waveguide trial used approximately 55% of the available time slice.

A variation of the trial using a shorter waveguide showed that
through the range of our trial values of NN, scaling is partially de-
pendent on memory usage. As noted above, this is an experiment
performed to validate that, as we might expect, longer-length delay
lines may incur more computational cost. Of course, the delay line
lengths used in practice will be defined by our physical model and
sampling rate.

would have length M /2

waveguides,

“Differing” experiment uses heterogeneous waveg-

uides. Slowdown Factor is the multiplicative performance penalty.

N DWGs | Baseline(s) | Differ.Lengths(s) | Slowdown Factor
3584 0.249 2.0 8.03x
14336 0.522 5.03 9.63x
57344 1.44 19.72 13.69x

114688 2.79 39.41 14.12x
229376 5.5 78.41 14.26x
458752 10.85 156.08 14.38x

This is not ideal; we see a slowdown factor of 14x in our highly-
parallel cases and went from supporting computation of 450 thou-
sand simultaneous commuted waveguides to only 28 thousand. What
changed? Two initial ideas come to mind:

Increased branch divergence: Some advice when writing GPU
kernels is to avoid branch divergence where a portion of the threads
in a warp take one path of an if () statement but others take the
else (). This is because GPU threads do not have independent
branching logic: the SIMT approach means that all threads exe-
cute each instruction in lockstep. In the case of an 1 f () statement,
threads evaluate the conditional and vote; if they are not unanimous,
then both branches are executed in serial and threads ignore execu-

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

tion during the branch they did not take.
Looking at our code, the piece of our code that uses branching is
trying to determine whether to loop in a delay line’s circular buffer:

if (bufferIndex >= waveguidelLength) ({
bufferIndex = 0;
}

The overhead of running both branches is minimal: we incur
an extra instruction of setting a register to zero more often (1 cycle)
and the else() branch is a no-op. In addition, GPUs have support for
predicated instructions for short branches, which means this case is
compiled to the non-branching code:

cond = bufferIndex >= waveguideLength
cond? bufferIndex = 0

This may be validated by looking at generated PTX pseudoassem-
bly code, or using profiling tools to annotate branch divergence for
each line of our source code after a test run.

The second thought of why we see slowdown when introducing
heterogeneous delay line lengths is memory access patterns.

Our block of memory for waveguide state was defined to be
of size WARPSIZE+NWAVEGUIDES by BUFFERSIZE rows. This
means the N waveguides write to memory locations 0../N — 1 on the
first sample, N..2N — 1 on the second sample, etc.

Global memory access in CUDA is slow, but reads and writes
may be coalesced; that is, if all threads in a warp are accessing
data in the same aligned 128-byte block, only one to four line reads
will need to occur (this is card-dependent). Newer cards have better
caches, compiler optimizations, and runtime logic for global mem-
ory placement, but this is still worth considering.

In our case, consider we have 32 waveguides in a warp; these are
of lengths 5000..5031. During the first “trip” through the waveg-
uide’s circular buffer (first 5000 samples), memory is aligned as all
waveguides index to the same offsets. Over the next several cycles
through the waveguide, some waveguides will cycle earlier than oth-
ers and eventually we will reach a state where we require simultane-
ous memory reads to 32 different lines, so slowdown will result.

Such memory accesses are cached, but with high numbers of
waveguides we could easily evict old entries quickly. We open the
CUDA Analysis tools, profile memory access, and find that this is
indeed the case; Figure[3]shows lots of global memory accesses with
only 2% hitting the L1 cache:

0.00 Reg/s 0008/s
k& Texture L

0.00 Reg/s 0.00 B/s 365.40 B/s

System Memory

81.85 MReg/s 29.37 GB/s 59.08 GB/s

Local

0.00 Reg/s Global 0.00 B/s
Atomics

60.10 GB/s

2
]
&
]
]
g
H
a

000 Req/s

Shared
Atomics

Shared
Memory

0.00 Reg/s 0.00 B/s

Shared

Figure 3: CUDA memory profiler results. L1 cache hit rate is 2.4%

To work past this slowdown, we propose two ideas:

3.0.1. Synchronize on Cycle Point

We could determine the longest waveguide in a block and ensure all
waveguides’ circular buffers loop at the same moment. For example,
if we have guides of length 250 and 255, the former avoids writing
to memory until our indexing counter loops back to index 1 of the
array. The tradeoff is that we need to run more overall cycles in order
to completely fill the output buffer from the shorter waveguid

In a degenerate case, what if we have waveguides of length 5000
and 100? Only 2% of cycles are spent actually generating audio for
the shorter waveguide with a naive approach.

We could sort all waveguides by length globally, so that similarly-
sized waveguides are in the same warp, to minimize the number of
extra iterations—however this makes it much slower to later couple
specific waveguides together, which we aim to do in a project that
leverages this acceleration.

We could consider a middle ground where we have multiple el-
igible cycle points. Perhaps every 32 or 64 calculated samples, we
could reset and unblock waveguides that are currently idle. This
introduces a tradeoff between number of simultaneous memory ac-
cesses and number of cycles to compute at the end. On a positive
note, in the case of coupling a busy memory controller with the “un-
derpowered” 64-bit Floating Point unit on consumer cards would
hide some of the drawback of each.

In the end we did not pursue this approach in depth; a second
approach was more promising and produces more readable code:

3.0.2. Shared memory

Shared memory is a type of memory that belongs to a thread block
and has much lower latency than global memory, but is only readable
by threads within the block that owns it. This sounds great for our
current use case and bottleneck. With our card’s hardware, we have
96KB of shared memory available to each thread block. This means
that we could choose, for example, two warps per block and have
1.5KB of RAM per thread, or 384 32-bit samples per thread.

We may wish to have longer waveguides than 384 samples, so
we propose two workarounds:

e Lower utilization: Simply split the 1.5KB up among fewer
threads, and use for example 24 out of 32 threads in a warp.
While our overall utilization will be lower, the faster memory
might save us enough time overall to run multiple copies of
our work serially to increase N globally.

e Mixed-size waveguide groups: We could split the available
shared memory such that, for example, the two shortest-length
waveguides in a warp each donate half their buffer to the
longest waveguide.

While the second approach may still seem problematic from a
memory access point of view, the rules for shared memory access
optimization are different than those for global memory access opti-
mization. Shared memory on our GPU’s architecture is grouped into
32 banks, and as long as two threads do not access the same bank
at the same time (a bank conflict), we obtain full-speed access. On
our card, access is actually done in two successive stages, each ob-
taining results for a half-warp, so the “donation” approach should be
safe from slowdown as long as we can arrange memory accesses in
time to have no bank conflicts. With simple donation schemes this is
straightforward.

3we also note writes to that output buffer, previously perfectly aligned,

are now unaligned themselves.

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

As a middle ground, we can sacrifice some compute utilization
for larger buffer donations. Consider having each warp provide a
developer a predefined “care package” of: (a) One “Extra Large”
digital waveguide that occupies 4 banks of shared memory (length
configurable, up to 1536 samples of delay), (b) Two “Large” waveg-
uides owning 2 banks each (up to 768 samples each), and (c) 26
normal waveguides (up to 384 samples each).

This still lets us compute 28 waveguides per warp vs. the 32
we had before (87.5% effective utilization) but allows for lower fre-
quency extension. We note that with such approaches we are becom-
ing opinionated concerning the basic system building blocks; when
we do this certain applications are enabled but we may block other
applications.

We adjust our kernel to use shared memory. Due to the resource
configuration of the graphics card and the dimensions of problem,
we would use more shared memory than is available in each SM, so
we must move from using 64 threads (2 warps) per block down to 32
threads (1 warp), at which point we are under the shared-memory-
per-SM limit and our kernel can be scheduled. This serves as a re-
minder that GPU hardware is not as abstracted as we may be used
to when coding for a CPU. In this particular case though, the “nvcc”
compiler helpfully caught this at compile-time since it was an over-
sized static allocation, making for an easy fix.

We also include a quick performance gain of pinning memory on
the host, accomplished by simply swapping malloc with the API
call cudaMallocHost.

Results are in Table |§l As before, bolded entries are feasibly
realtime. A plot of the same data is in Figure[d]

Table 5: Time to generate 10 seconds of Audio, “Baseline” uses
same-length waveguides, “Differing” experiments use heteroge-
neous waveguides with either global or shared memory.

Execution Time (s)

N DWGs | Baseline | differing: global mem... | ...shared mem
3584 0.249 2.0 0.58
14336 0.522 5.03 0.96
57344 1.44 19.72 1.82

114688 2.79 39.41 3.50
229376 5.5 78.41 6.79
458752 10.85 156.08 12.59

To summarize: using shared memory allows us to make higher-
waveguide counts tractable again. We can still run over a hundred
thousand independently-sized waveguides with half of our cycles to
spare for extending the algorithm.

At this point we have enough waveguides that we can spend
some time thinking of creative applications for them. Those appli-
cations will certainly make them computationally more expensive
by adding coupling, nonlinearities, modifiable tap points, fractional-
length delays, etc.

4. AREAS FOR DEVELOPMENT

We stop here, but note there may still be room acceleration. For ex-
ample, relatively new GPUs including ours have the ability overlap
kernel executions with host/device memory transfers. If we were to
double-buffer on the host and device, we can work on one array while
the other transfers, and vice versa. This would help us especially at
small NV or if we wanted to copy hundreds of thousands of individ-
ual audio streams back to the host (skipping our current merge step
where we sum them per-warp).

Time to Compute 10 Seconds of DWG Synthesis (log-log)

102
1
: ____.-—d"'-/
L}
n .“f‘
10+ ‘_‘___..-""-‘--F‘_d
-_'_-__'___.——"'-.
Trial
10-1 Baseline-Uniform
DiffGlobalMem
DiffSharedMem
102
A %
10 10

Digital Waveguide count N

Figure 4: Time to run N heterogeneous waveguides for ten seconds
of samples under different trials.

We have been discussing the general-purpose case of supplying
waveguides of preconfigured lengths. With a pre-specified configu-
ration, we could write tooling to efficiently group waveguide com-
putations into a warp for maximum resource utilization.

In the modal filter bank, we note that we do not implement
phase-correct input re-excitation which is a nice feature supported
by these filters: we have logic to track zero-crossings but do not im-
plement parameter updates from the host in a fashion that a “real”
system would use. This is a simple and low-cost feature. Further-
more, it is likely that either CPU or GPU should interpolate parame-
ters, which is work that is not being accounted for.

The high performance of these oscillators bodes well if we were
to implement a massive collection of digital waveguide oscillators—
another case requiring only a few variables and limited multiplies
per cycle. It may be worth looking at algorithms that traditionally
did well on VLSI architectures for use here, as the concept of many
parallel independent instances of a module executing concurrently
but varying on input data is shared between the two architectures.

5. CONCLUSIONS

We showed modern consumer GPUs may run high-Q phasor filters
and 1D digital waveguides without needing to leverage parallelism
across time. In particular, we showed that it is feasible to build a bank
of several hundred thousand 1D waveguides, a hundred thousand 64-
bit phasor filters with stable per-sample adjustments, or a few million
phasor filters at 32-bit precision, all at 44.1kHz.

Reflecting on the the overall optimization development and de-
bugging strategy used here: care must be taken to have the right
number of warps grouped together into grids and blocks. Memory
accesses should go to the fastest RAM possible, and we need to pay
attention to memory alignment. While CPU code does benefit from
similar optimizations, GPU algorithms rapidly fall in performance
when parameters stray from the ideal range.

One other note around generalizing this code for end users: dur-
ing development we consulted the capabilities of our particular graph-
ics card several times, to see how many registers we have or to see the

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

various ways we can slice shared memory. While these parameters
may be queried from the card at runtime and for the most part newer
and more powerful GPUs contain a superset of old resources, this
is not a guarantee, and for example if we tried to run our compiled
waveguide binary on a GTX 480 from several generations back, it
would fail to run because we request too much shared memory.

Still, optimization of these algorithms can be seen as an interest-
ing puzzle; profiling tools make it easy to see where bottlenecks live
(if not how to work around them), and it’s fun to transpose an array
or adjust memory layout and unlock a 10x speedup.

From a sound designer’s point of view, being able to use so many
of these building blocks at audio rates may allow for higher-fidelity
physical models and modal effects, using commodity hardware that
often sits idle while working with audio software.

6. ACKNOWLEDGMENTS

Special thanks to conference organizers, and to reviewers for help-
ful suggestions in improving background and presentation. Thanks
to cited authors for providing foundational background for this work:
demonstrating feasibility of parallel audio-rate algorithms on the GPU
and describing an efficient, numerically stable high-Q filter.

7. REFERENCES

[1] Regina E Collecchia, Miriam A Kolar, and Jonathan S Abel,
“A computational acoustic model of the coupled interior ar-
chitecture of ancient chavin,” in Audio Engineering Society
Convention 133. Audio Engineering Society, 2012.

[2] Jonathan S. Abel, Sean Coffin, and Kyle Spratt, “A modal
architecture for artificial reverberation with application to room
acoustics modeling,” in Audio Engineering Society Convention
137, Oct 2014.

[3] Julius O. Smith III, “Physical modeling using digital waveg-
uides,” Computer music journal, vol. 16, no. 4, pp. 74-91,
1992.

[4] Julius O Smith III and Scott A Van Duyne, “Commuted piano
synthesis.,” in ICMC, 1995.

[5] Lauri Savioja, Vesa Vilimiki, and Julius O Smith, “Audio sig-
nal processing using graphics processing units,” Journal of the
Audio Engineering Society, vol. 59, no. 1/2, pp. 3-19, 2011.

[6] Lauri Savioja, Vesa Vilimiki, and Julius O. Smith III, “Real-
time additive synthesis with one million sinusoids using a gpu,”
128th Audio Engineering Society Convention 2010, vol. 1, 05
2010.

[7] Fernando Trebien and Manuel Oliveira, “Realistic real-
time sound re-synthesis and processing for interactive virtual
worlds,” The Visual Computer, vol. 25, pp. 469-477, 05 2009.

[8] Jose Belloch, Balazs Bank, Lauri Savioja, Alberto Gonzalez,
and Vesa Vilimiki, “Multi-channel iir filtering of audio sig-
nals using a gpu,” in ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, 05
2014, pp. 6692-6696.

[9] Belloch Rodriguez and José Antonio, Performance Improve-
ment of Multichannel Audio by Graphics Processing Units,
Ph.D. thesis, 2014.

[10] Jose A Belloch, Alberto Gonzalez, Enrique S Quintana-Orti,
Miguel Ferrer, and Vesa Vilimiki, “Gpu-based dynamic wave
field synthesis using fractional delay filters and room compen-
sation,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, no. 2, pp. 435-447, 2017.

[11] Stefan Bilbao and Craig J Webb, “Physical modeling of tim-
pani drums in 3d on gpgpus,” Journal of the Audio Engineering
Society, vol. 61, no. 10, pp. 737-748, 2013.

[12] Max Mathews and Julius O. Smith III, “Methods for synthesiz-
ing very high q parametrically well behaved two pole filters,”
in Proceedings of the Stockholm Musical Acoustics Conference
(SMAC 2003)(Stockholm), Royal Swedish Academy of Music
(August 2003), 2003.

[13] NVIDIA Corporation, “NVIDIA CUDA toolkit documenta-
tion,”|https://docs.nvidia.com/cuda/, [Online].

https://docs.nvidia.com/cuda/

	1 Introduction
	1.1 Building Blocks: Modal Synthesis and Digital Waveguides
	1.2 GPU Acceleration for Audio Algorithms
	1.3 GPU Programming
	1.4 Development Approach
	1.5 Test Setup

	2 Massive Modal Filter Bank
	3 Massive Waveguide ``Orchestra''
	3.0.1 Synchronize on Cycle Point
	3.0.2 Shared memory

	4 Areas for development
	5 Conclusions
	6 Acknowledgments
	7 References

