
Proceedings of the

Linux Audio Conference 2019
March 23rd – 26th, 2019

Center for Computer Research in
Music and Acoustics (CCRMA)

Stanford University, USA

“In Ping(uins) we trust”

Published by
CCRMA, Stanford University, California, US
March 2019
All copyrights remain with the authors
http://lac.linuxaudio.org/2019
ISBN 978-0-359-46387-9

Credits
Layout: Frank Neumann and Romain Michon
Typesetting: LATEX and pdfLaTeX
Logo Design: The Linuxaudio.org logo and its variations copyright Thorsten Wilms c©2006,
imported into "LAC 2014" logo by Robin Gareus

Thanks to:
Martin Monperrus for his webpage "Creating proceedings from PDF files"

ii

Partners and Sponsors

Linuxaudio.org

iii

iv

Foreword

Welcome everyone to LAC 2019 at CCRMA!

For the second time in its seventeen year history, the Linux Audio Conference (LAC)
is hosted in the United Stated of America by the Center for Computer Research in Mu-
sic and Acoustics (CCRMA) at Stanford University. With its informal workshop-like at-
mosphere, LAC is a blend of scientific and technical papers, tutorials, sound installations,
and concerts centered on the free GNU/Linux operating system and open-source free soft-
ware for audio, multimedia, and musical applications. LAC is a unique platform during
which members of this community gather to exchange ideas, draft new projects, and see
old friends.

In these times of increasing political tensions and of rising extremism throughout the
world, we believe that emphasizing and promoting the universality of this type of event
is of the utmost importance. The Linux audio community exists worldwide; we believe it
should remain a priority to diversify LAC’s geographical location from year to year for the
benefit of those who can’t afford to travel to the other side of the world.

This year, a large portion of presenters and performers is coming from the Americas
and Asia. LAC-19 features six paper sessions, five concerts, four workshops, one keynote, as
well as various posters, demos, and side events happening in various locations on Stanford
University campus.

We wish you a pleasant stay at Stanford and we hope that you will enjoy the conference!

Romain Michon (LAC-19 Co-Chair)
CCRMA, Stanford University (USA) & GRAME-CNCM, Lyon (France)

v

vi

Conference Organization Core Team

• Romain Michon – Co-Chair & Organizer

• Fernando Lopez-Lezcano – Co-Chair & Organizer

• Constantin Basica – Music Chair & Organizer

• Elliot Canfield-Dafilou – Organizer

• Carlos Sanchez – CCRMA System Administrator & Organizer

• Matthew Wright – CCRMA Technical Director & Organizer

• Nette Worthey – CCRMA Administrator

• Chris Chafe – CCRMA Director

• Bruno Ruviaro – Organizer

Volunteers

• Alex Chechile

• David Goedicke

• Benjamin J. Josie

• Kyle O. Laviana

• Vidya Rangasayee

• Travis Skare

• Xingxing Yang

Paper Chair/Administration and Proceedings

• Frank Neumann

Stream Team

• David Kerr

• Carlos Sanchez

vii

Keynote Speaker

• Fernando Lopez-Lezcano

Also Thanks to

• Session Chairs:

– Chris Chafe

– Albert Gräf

– Elliot Kermit Canfield-Dafilou

– Fernando Lopez-Lezcano

– Yann Orlarey

– Julius O. Smith

• Santa Clara University Laptop Orchestra (SCLOrk)

viii

Review Committee

Joachim Heintz University for Music Drama and Media Hanover, Germany
IOhannes Zmölnig IEM, University of Music and Performing Arts (KUG), Graz, Austria
Elliot Canfield-Dafilou CCRMA, Stanford University, United States
Robin Gareus Germany
Martin Rumori Institute of Electronic Music and Acoustics, Graz, Austria
Orchisama Das CCRMA, Stanford University, United States
Henrik von Coler Technische Universität Berlin, Germany
Mark Rau CCRMA, Stanford University, United States
Stéphane Letz GRAME-CNCM, France
Romain Michon GRAME-CNCM, France & CCRMA - Stanford University, USA
Jörn Nettingsmeier Netherlands
David Runge Native Instruments, Germany
Fons Adriaensen Huawei Research, Germany
Harry van Haaren OpenAV, Ireland
Steven Yi United States

ix

x

Table of Contents
Papers

• Creating a sonified Spacecraft Game using Happybrackets and Stellarium 1
Angelo Fraietta, Ollie Bown

• Browser-based Sonification 9
Chris Chafe

• Sequoia: A Library for Generative Musical Sequencers 17
Chris Chronopoulos

• A JACK Sound Server Backend to synchronize to an IEEE1722 AVTP
Mediaclock Stream 21
Christoph Kuhr, Alexander Carôt

• tpf-tools - a multi-instance JackTrip clone 29
Roman Haefeli, Johannes Schütt

• A Cross-Platform Development Toolchain for JIT-compilation in
Multimedia Software 37
Jean-Michaël Celerier

• Bringing the GRAIL to the CCRMA Stage 43
Fernando Lopez-Lezcano, Christopher Jette

• Rendering of Heterogeneous Spatial Audio Scenes 51
Nicolas Bouillot, Michał Seta, Émile Ouellet-Delorme, Zack Settel,
Emmanuel Durand

• A JACK-based Application for Spectro-Spatial Additive Synthesis 57
Henrik von Coler

• GPU-Accelerated Modal Processors and Digital Waveguides 63
Travis Skare, Jonathan Abel

• CPU consumption for AM/FM audio effects 71
Antonio Jose Homsi Goulart, Marcelo Queiroz, Joseph Timoney, Victor Lazzarini

• Formalizing Mass-Interaction Physical Modeling in Faust 75
James Leonard and Jérôme Villeneuve, Romain Michon, Yann Orlarey
and Stéphane Letz

• Are Praat’s default settings optimal for Infant Cry Analysis? 83
Giulio Gabrieli, Leck Wan Qing, Andrea Bizzego, Gianluca Esposito

• Isochronous Control + Audio Streams for Acoustic Interfaces 89
Max Neupert, Clemens Wegener

xi

• Game|lan:Co-Designing and Co-Creating an Orchestra of Digital Musical
Instruments within the Fab Lab Network 95
Alexandros Kontogeorgakopoulos, Olivia Kotsifa

• Finding Shimi’s voice: fostering human-robot communication with music
and a NVIDIA Jetson TX2 101
Richard Savery, Ryan Rose, Gil Weinberg

• A Scalable Haptic Floor dedicated to large Immersive Spaces 107
Nicolas Bouillot, Michał Seta

• midizap: Controlling Multimedia Applications with MIDI 113
Albert Gräf

• sc-hacks: A Live Coding Framework for Gestural Performance and
Electroacoustic Music 121
Iannis Zannos

Posters

• Bipscript: A Simple Scripting Language For Interactive Music 129
John Hammen

• Switching "Le SCRIME" over to Linux as a complete novice 133
Thibauld Keller, Jean-Michaël Celerier

• SoundPrism: A Real-Time Sound Analysis Server and Dashboard 135
Michael Simpson

xii

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

CREATING A SONIFIED SPACECRAFT GAME USING HAPPYBRACKETS AND
STELLARIUM

Angelo Fraietta

UNSW Art and Design
University of New South Wales, Australia

a.fraietta@unsw.edu.au

Ollie Bown

UNSW Art and Design
University of New South Wales, Australia

o.bown@unsw.edu.au

ABSTRACT

This paper presents the development of a virtual spacecraft simula-
tor game, where the goal for the player is to navigate their way to
various planetary or stellar objects in the sky with a sonified poi.
The project utilises various open source hardware and software plat-
forms including Stellarium, Raspberry Pi, HappyBrackets and the
Azul Zulu Java Virtual Machine. The resulting research could be
used as a springboard for developing an interactive science game
to facilitate the understanding of the cosmos for children. We will
describe the challenges related to hardware, software and network
integration and the strategies we employed to overcome them.

1. INTRODUCTION

HappyBrackets is an open source Java based programming environ-
ment for creative coding of multimedia systems using Internet of
Things (IoT) technologies [1]. Although HappyBrackets has focused
primarily on audio digital signal processing—including synthesis,
sampling, granular sample playback, and a suite of basic effects–we
created a virtual spacecraft game that added the functionality of con-
trolling a planetarium display through the use of WiFi enabled Rasp-
berry Pis. The player manoeuvres the spacecraft by manipulating a
sonic poi1, which is usually played in the manner shown in Figure 1.
The poi contains an inertial measurement unit (IMU), consisting of
an accelerometer and gyroscope; and a single button. The goal of the

Figure 1: The conventional way of playing a sonic poi.

game is for a player to choose an astronomical object, for example a
planet or star, and to fly towards that object. This enables the player
to view other objects, including planets, moons, stars and galaxies in

1"Poi spinning is a performance art, related to juggling, where weights on
the ends of short chains are swung to make interesting patterns." [2, p. 173]

the field of view. For example, Figure 2 shows how the player might
view Saturn from Earth, while Figure 3 shows how the player may
view Saturn from their spacecraft. The sonic poi generates sound
that is indicative of the player’s field of view. Additionally, the poi
provides audible feedback when the player zooms in or out.

Figure 2: Saturn viewed from the ground from Stellarium.

Figure 3: A closer view of Saturn from Stellarium.

The University of New South Wales required a display for their
open day to showcase some of the work conducted in the Interactive
Media Lab. The opportunity to develop an environment whereby vis-
itors could engage with the technology we were developing would
not only facilitate attracting possible future students, it was also a
way to develop and test the integration of various research compo-
nents we were conducting. Many managers and business seek to en-
gage new customers through gamification [3]—in this case, prospec-
tive customers were potential students. Furthermore, research indi-
cates that visualisation and interpretation of software behaviour de-

1

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

veloped as part of a game is more memorable, which facilitates locat-
ing errors or developing methods for improvement [4]. Developing
a game, therefore, would not only engage the visitors, it would pro-
vide us with a more memorable way of seeing how our system was
behaving.

The technology to develop the game required two different ver-
sions of Raspberry Pi, installation of planetarium software onto one
of the Pis, and the creation of a Java API to join the different sys-
tems. This paper details the strategies and techniques to integrate the
different technologies and describes some of the workarounds for
unresolved issues. We also discuss the goals, rules and rewards used
to define the game and the methods we used to entice prospective
players. Finally, we lists areas where the research can be extended.

2. BACKGROUND TO RESEARCH

The research was inspired by a previous project developed by one of
the authors that correlated what a viewer saw in the night sky through
binoculars with data obtained from on-line astronomical data cata-
logues [5]. One installation, which was conducted in conjunction
with the Newcastle Astronomical Society on one of their field view-
ing nights, was particularly successful [6]. More than twenty mem-
bers of the public were enticed into viewing the night sky through
high powered binoculars while sound that was based on data from
the stars they were viewing was playing through loudspeakers on the
field.

Another set of performances was conducted with an improvis-
ing ensemble that featured various astronomical photos displayed as
a slide show [7]. The stellar data was mapped as MIDI and success-
fully functioned as inspirational impetus for the performers, but was
unsuccessful from an astronomical point of view. First, the ability
for viewers to look through the equipment was directly dependant
upon the weather. One performance, for example, had a night sky
complete with thick black cloud, heavy rain and lightning. More-
over, when the weather was favourable for viewing, the audience
were often content to just watch the performers rather than venture
out of their chairs to view through the binoculars [5]. The audience
feedback from the was that although they really liked the slide show,
many were unaware that the binoculars were even there for view-
ing. Instead of providing a slide show at the next performance, an
improvisation using Stellarium from a laptop computer was used on
the screen. The audience’s response was extremely favourable, in-
spiring the idea of using Stellarium as a visual stimulus instead of
binoculars.

2.1. Raspberry Pi

The Raspberry Pi was originally developed in 2011 [8] for educa-
tion by the Raspberry Pi Foundation, a UK based educational charity
[9][10]. The Raspberry PI has a very large user base and a signifi-
cant number of plug in sensors available for it [11], and supports a
128GB SD card, which can be used to store more than 200 hours of
high-quality audio. The Raspberry Pi foundation officially supports a
derivative of the Linux distribution Debian known as Raspbian [12].
Raspbian’s inclusion of compilers, support for multiple coding lan-
guages, and the ability to run multiple programs provides the flexi-
bility that enables a system to expand as an interactive platform as
newer technologies become available. The game project used two
different versions of Raspberry Pi and Raspbian. The sonic poi re-
quired a small form factor, low power consumption but did not re-
quire a GUI, and consequently, Pi Zero running Raspbian Stretch

Lite was selected. The device used to display the graphics required
significantly more power but did not have size restrictions, so a Rasp-
berry Pi B+ running the desktop version of Stretch was selected for
this.

2.2. HappyBrackets

HappyBrackets commenced as "A Java-Based remote live coding
system for controlling multiple Raspberry Pi units" [13] where a
master controller computer sent pre-compiled Java classes to selected
Raspberry Pi devices on a network. Unlike the Arduino sketch,
which is effectively a single program [14], the HappyBrackets com-
position is not a standalone executable program. The HappyBrackets
core has a thread that listens for incoming bytecode classes, and after
receiving the class, executes the new class’s functionality through a
Java interface. This allows for multiple concurrent compositions that
can be easily created or updated during composition or the creative
coding performance [1]. This research was extended with the de-
velopment of the Distributed Interactive Audio Device (DIAD) [15],
which contained an IMU consisting of an accelerometer, gyroscope
and compass. The devices were handled by the audience and incor-
porated into the environment. The DIADS not only responded to
user manipulation, they also responded to one another. Furthermore,
DIADS were configured to automatically connect to the wireless net-
work, and once a DIAD came into range of the network, became a
part of the DIAD multiplicity. The main focus of this development
was the implementation of a reusable platform that allowed creators
to easily develop interactive audio and easily deploy it to other de-
vices. Although HappyBrackets runs on many embedded platforms,
the main research has been with the Raspberry Pi, primarily due to
the availability and low cost of the devices. HappyBrackets is li-
censed under the Apache License 2.02 and is available through Git
Hub3.

A prebuilt disk image—which contains the Java Virtual Machine
(JVM), the I2C drivers to enable access to the IMU, and libraries to
access the GPIO—enables users to flash an SD card and start us-
ing HappyBrackets without ever having to connect their device to
the Internet. The licence for the Oracle JVM, however, appeared to
prohibit embedding the Oracle JVM into a prebuilt image and was
therefore legally problematic. We found that the AZUL Zulu JVM
was available under the GNU GPLv2 licence4, enabling an embed-
ded distribution within an image. Medromi et al. conducted a study
that compared the two JVMs [16]. Their tests revealed that Zulu
created more threads and classes than Oracle, indicating that Zulu
probably used more memory, making it more susceptible to garbage
collection issues. Furthermore, their tests showed that Zulu also used
a greater percentage of CPU, indicating greater power consumption.
The report, however, did not detail the difference in performance
speed between the two JVMs. Our own initial tests did not show
any difference between the two JVMs and there was no noticeable
performance degradation, however, this is an area we still need to
research. It is possible to change the default JVM used in the Rasp-
berry Pi from the terminal, which would make switching between
JVMs when performing comparative tests relatively easy.

2 www.apache.org/licenses/ [accessed November 2018]
3 github.com/orsjb/HappyBrackets [accessed November 2018]
4www.gnu.org/licenses/old-licenses/gpl-2.0.txt [accessed November

2018]

2

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

2.3. Stellarium

The advancement of computing power over the last two decades
has made the availability of planetarium software available on both
desktop computers and mobile devices commonplace. Moreover,
many of these software packages—including RedShift5, SkySafari6,
StarMap7, The SkyX8, and Stellarium9—have become valuable tools
for astronomers. They facilitate the identification of objects and in
the planning of viewing and astro-photography sessions by enabling
sky simulation for any particular location, date and time [17].

Stellarium is an open source software project distributed under
the GNU General Public Licence with the source code available
through Git Hub10 . Stellarium functions as a virtual planetarium;
calculating positions of the Sun, moon, stars and planets based on
the time and location defined by the user. Moreover, the viewing
location does not even need to be on Earth. For example, Figure 4
displays Stellarium rendering Jupiter viewed from its moon Io.

Figure 4: A simulation of Jupiter viewed from Io.

Stellarium is used by both amateur and professional astronomers,
and is used by the European Organisation for Astronomical Research
in the Southern Hemisphere to facilitate distribution and sharing of
visual data among scientists [18]. Stellarium has a very high quality
graphical display, supporting spherical mirror projection that can be
used with a dome [19]. Stellarium is used in many schools and mu-
seums because it is both scientifically accurate and visually engaging
[18]. Moreover, it is suitable for demonstrating basic through to ad-
vanced astronomy concepts [18]. Stellarium has a built in library of
600 000 stars, with the ability to add an additional 210 million [19].
Moreover, Stellarium can display constellations from several differ-
ent cultures and has labels translated to more than 40 languages,
making Stellarium both culturally aware and inclusive [18].

Although it is quite straightforward to control Stellarium using
a keyboard and mouse, there are many plugins that allow third party
integration with the software. The plugin we were particularly in-
terested in to control Stellarium was the Remote Control, which en-
abled control of Stellarium through HTTP [21]. Stellarium also con-
tains a powerful scripting engine that enables one to program and
run complete astronomy shows. The scripts, written in JavaScript,

5www.redshift-live.com [accessed November 2018]
6www.southernstars.com [accessed November 2018]
7www.star-map.fr [accessed November 2018]
8www.bisque.com [accessed November 2018]
9stellarium.org [accessed November 2018]

10 github.com/Stellarium/stellarium [accessed November 2018]

control Stellarium through a series of objects that represent the Stel-
larium application components [20].

3. RELATED WORK

Video games rose from obscurity in the 1970s, into a video arcade
industry grossing $8 billion dollars in 1982 [22, p. 88]. The video
game moved from the arcade into the home with Nintendo and Atari
game consoles [22, 23]. Iconography games like Space Invaders,
Defender, Spaceward HO! and Star Wars were often replaced with
interactive games that became more realistic [23]. Wolf suggests
that there are more than forty different genres of video games [23],
however, we were only particularly interested in the "Training Sim-
ulation" genre.

One study showed that video game expertise developed over
long-term playing had a beneficial effect on the spatial skills in the
player, supporting the hypothesis that "video expertise could func-
tion as informal education for the development of skill in manipu-
lating two-dimensional representations of three dimensional space"
[22, p. 93]. The aerospace industry has employed training simulators
for many years, with the advancement in virtual reality environments
leading to the availability of a new technology known as "serious
gaming" [24, p. 655]. This technology exploits popular high-quality
computer games, making it available via Software Development Kits
(SDKs) to developers of "serious"[sic] applications such as defence,
surgery, education and aerospace [24, p. 686].

One particularly interesting training simulation project was a
prototype environment for training astronauts in a simulated zero
gravity environment for the purpose of controlling and handling ob-
jects [25]. Rönkkö et al. noted that astronauts discovered using a
laptop in a zero gravity environment was completely different to us-
ing it on Earth, and that the whole concept of a laptop computer in a
zero gravity environment was questionable [25, p. 183].

There have been various implementations of third party integra-
tion with Stellarium. Although it is possible to remotely control a
telescope using Stellarium as the master controller [26], some re-
searchers have developed projects whereby Stellarium becomes the
slave. Tuveri et al. developed two planetarium control systems
for driving Stellarium on a Laptop computer [27]. They extended
the Stellarium code in order to send it application messages before
the Remote Control plugin was available in the standard Stellarium
distribution. One interaction implementation was through a touch
screen, while the other was through a Kinect gesture controller [27].

The Remote Control Stellarium plugin was developed by "Flo-
rian Schaukowitsch in the 2015 campaign of the ESA Summer of
Code in Space programme" [20, p. 110], and was used for a vi-
sual art installation in the MAMUZ museum for pre-history [21].
The installation, STONEHENGE. A Hidden Landscape, consisted
of a single computer driving five projections onto a 15x4m curved
screen.The presentation was automated with a Raspberry Pi that trig-
gered a script via an HTTP request every twenty-five minutes via a
cron job. This Remote Control plugin is now a standard part of the
Stellarium installation. This use of both scripting and HTTP control
was the mechanism we employed in our game.

4. DEFINING THE GAMIFIED EXPERIENCE

One of the intentions of creating the gamified environment was to en-
gage visitors. In the gamified experience, four parties are involved:
players, designers, spectators, and observers [28]. The key to a de-

3

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

veloping successful gamified experience is to identify who the par-
ties are and how to engage them for the purpose of creating a positive
and memorable experience [3], each with different levels of involve-
ment or immersion [28]. Players were the visitors who physically
controlled the virtual spacecraft, and in a sense, were the competi-
tors and highly immersed in the experience. Spectators were people
who do not directly compete in the game, but instead, influenced the
game indirectly by encouraging the player and were also highly im-
mersed in the experience. Observers were other visitors in the space
that were passively involved and had no direct impact on the game.
They were, however, mildly involved and often moved to become
players or spectators [28].

Research indicates that the three main factors in developing an
enjoyable game were challenge, fantasy and curiosity [29]. We pro-
vided challenge in that we set a goal that had increasing levels of
difficulty. As the user was closer to the planet, the spacecraft be-
came more difficult to control.

We utilised fantasy in that we implement two modes of play:
terrestrial and spaceship. Terrestrial mode allowed the player to use
gravity in a familiar way, provided wide fields of view that showed
large amounts of sky and provided course control. Spaceship mode
showed less fields of view, displaying significantly less sky and pro-
vided finer control; however, the player was not allowed to use grav-
ity in their control. We enabled the player to zoom in and out by per-
forming a quick twist action of the ball around the string. If the gyro-
scope pitch value exceeded the set threshold, the field of view would
change, simulating a zoom in or out. When the user changed their
field of view to less than 30 degrees, the play mode went from ter-
restrial to spaceship. We provided an audible feedback that sounded
like a zipper when the level of zoom was changed.

The only controls available at the time on the poi were accelerom-
eter and gyroscope 11, while the only feedback was audio generated
by the poi and the Stellarium display. In the same way that a laptop
could not be used conventionally in a zero gravity environment [25],
a player would be unlikely to control the game successfully using
the poi by spinning it around their body [2]. Figure 5 shows the poi
with three axes of accelerometer and gyroscope on the left and right
respectively.

Figure 5: Sonic Poi accelerometer and gyroscope input.

In terrestrial mode, we wanted to simulate a viewer on the ground
lifting and turning their head to view the sky as one would on Earth,
which is essentially increasing the altitude and rotating the azimuth.
The player "lifts their head" by raising the ball of the poi in an arc,
using the point where the player holds the rope as the centre, and
measuring Y axis acceleration through the IMU in the poi. Rotating
the viewer’s head was simulated by detecting the pitch value of the

11The button control was added to the poi later.

gyroscope, as shown on the right side of Figure 5. Gyroscope val-
ues only change while the object is rotating, whereas gravitational
accelerometer values are maintained when the object is stationary.

In the spaceship mode, we wanted to simulate the player nav-
igating through space in a zero-gravity environment. The yaw and
the pitch were used as input, whereby the user had to roll the ball
in their hands to move the display. This was completely foreign to
users at first because there was no haptic feedback, nor any sense
of grounding for the user or the control. In a sense, it was similar
to balancing on a ball in space because you could not fall off—you
would just float in an unintentional direction. Furthermore, it was
not easy to detect which axis was which because the poi was a ball
shape. Furthermore, rotating one axis would affect the cognition of
the other axis. Consider a player in Figure 5 rotating the ball for-
ward around the X axis with the poi producing a positive yaw. If
the player then turned the poi 180 degrees around the string, rotat-
ing the ball forward again would now produce a negative yaw, which
would mean the screen would start moving in the opposite direction
to what they experience a moment earlier. The result was that con-
trolling the display required constant mental adjustment, which we
suggested might simulate to some degree the sense of strangeness an
astronaut may feel controlling objects in outer space [25, p. 183].

In order to run an attractive and engaging display that would trig-
ger the visitors’ curiosity when they entered the room, we ran Stel-
larium scripts that functioned as standalone astronomy shows. We
invited visitors to manipulate the poi and watch the display move
while the script was running. When we saw they were interested
and enjoyed the novelty of interacting with the display through the
poi, we offered them the opportunity to start from Earth and navi-
gate to one of the planets in our solar system. As they zoomed in
closer to Saturn, they became quite excited when they saw the rings
and realised that they could also see Saturn’s moons. For those who
were particularly enthusiastic, we suggested finding Jupiter next, in-
forming them that they would also be able to see the four Galilean
moons that night at home with a standard pair of binoculars. We also
asked them to imagine that rolling the ball to control their movement
might be as strange as moving about in a zero gravity environment.
Although a few of the players gave up after a few minutes, the ma-
jority of players continued for more than ten minutes, had a lot of
fun, and exhibited a sense of achievement in being able to navigate
into outer space.

5. DEVELOPMENT

The system was originally developed as a tool for evaluating the per-
formance, behaviour and suitability of networked control of Stellar-
ium as part of a potential interactive audio visual artwork. We in-
tended to calculate the azimuth and altitude position in space calcu-
lated from the rotation and manipulation of poi. These values would
be used as input to Stellarium on another device, sent via the net-
work, which would then display the sky based on those values. Ad-
ditionally, we sent commands to change the field of view on Stel-
larium, which effectively acted as a zoom function. The poi also
played audio as a series of ten uniformly distributed pseudorandom
sine waves between 500 and 550Hz, giving a sense of cosmic back-
ground microwave noise.

float freq = hb.rng.nextFloat() * 50 + 500;
Envelope envelope = new Envelope(1);
WaveModule soundGenerator = new WaveModule();

4

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

soundGenerator.setFequency(freq);
soundGenerator.setGain(envelope);
soundGenerator.connectTo(masterGain);
return envelope;

A metronome iterates though each of the envelopes, adding segments
that cause each frequency to momentarily pop out of the background
as a beep.

hb.createClock(5000).addClockTickListener((
offset, this_clock) -> {

Envelope e = envelopes.get(envelopIndex++ %
TOTAL_OSCILLATORS);

final float LOUD_VOL = 20;
final float LOUD_SLOPE = 20;
final float LOUD_DURATION = 200;

e.addSegment(LOUD_VOL, LOUD_SLOPE);
e.addSegment(LOUD_VOL, LOUD_DURATION);
e.addSegment(1, LOUD_SLOPE);
});

As the user zooms in, the metronome becomes faster, increasing
the beep rate, generating a sense of sonic tension.

5.0.1. Starting Stellarium

The first challenge was starting Stellarium on the Pi from within
HappyBrackets. HappyBrackets has a simple facility to execute shell
commands or create processes through both the Java Runtime exec
and the ProcessBuilder [30]. We attempted a script to run Stellar-
ium from a process command, which ran successfully when executed
from a terminal; however, we could not get HappyBrackets to run
the script after each fresh reboot of the device—the program was un-
able to access the display. Interestingly, If we killed the JVM and the
started HappyBrackets again from a terminal, then Stellarium started
from within HappyBrackets with no problem. The problem was that
the HappyBrackets installation script had configured the Raspberry
Pi to automatically start the Java application when the device first
boots by executing a script in /etc/local.rc as defined in the Raspberry
Pi documentation12. In order to run GUI programs from Java, the
Java program needs to be started when the desktop starts, which was
effected by moving the script command to /.config/lxsession/LXDE-
pi/autostart13. The HappyBrackets installation scripts were conse-
quently modified to detect whether a desktop version was used, and
added the HappyBrackets start-up script command accordingly.

5.0.2. Controlling Stellarium

Examples of controlling Stellarium through the Remote Control API
were provided on the plugin developer page14, which made use of
the cURL [sic]15 command line utility16 and executed via an SSH
terminal connection to the Pi. Although we did not intend to use curl
in our actual program because Java has its own networking interface,
curl was extremely useful for examining and diagnosing through the

12www.raspberrypi.org/documentation/linux/usage/rc-local.md [accessed
November 2018]

13www.raspberrypi.org/forums/viewtopic.php?t=139224 [accessed
November 2018]

14stellarium.org/doc/head/remoteControlApi.html
15curl.haxx.se
16cURL should not be confused with the curl programming language.

ec.haxx.se/curl-name.html [accessed November 2018].

terminal. Querying the state of Stellarium was performed by issu-
ing a curl GET command. For example, executing the following
command in the SSH terminal retrieves the current view direction of
Stellarium as a JSON encoded string.

curl -G http://localhost:8090/api/main/view
{"altAz":"[0.954175, 9.54175e-06,

0.299249]","j2000":"[0.240925, 0.147495,
-0.959271]","jNow":"[0.241334, 0.148053,
-0.959082]"}

Setting the position of Stellarium is executed with the curl POST
command, with the parameters added as JSON parameters. Execut-
ing the following command would set the display to horizontal by
setting the altitude to zero.

curl -d ’alt=0’ http://localhost:8090/api
/main/view

Having tested the functionality using curl through the terminal, we
implemented calls using the standard Java URL connections [31].
We sent control message from the poi via UDP to the slave using
HappyBrackets and then immediately sent the HTTP message on the
slave to Stellarium. We found that although the message arrived from
the poi to the slave in less than a few milliseconds, the time to execute
the post message on localhost, be actioned by Stellarium, and then
return typically took between 80 and 120 milliseconds. This pro-
duced accumulative latency when the player continually moved the
poi. The accelerometer and gyroscope typically update every 10ms,
so constantly rotating the device for two seconds would generate
approximately 200 messages. These values would become queued
inside the slave and sequentially executed, which would result in an
accumulating latency over a twenty second period. A method was re-
quired that would immediately send the last received position change
when the last message was complete, but would discard previous
values that were not yet actioned. We accomplished this through
an independent thread for executing the post command. This thread
would be effectively dormant while waiting for an event. When a
message arrives on a different thread, the event is triggered, at which
point the thread wakes and sends the message. We effected this
through the use of Java synchronisation objects. The functionality
that sends the post messages to Stellarium executes in an indefinite
loop, laying dormant through the altAzSynchroniser.wait
() call.

new Thread(() -> {
while (!exitThread) {

synchronized (altAzSynchroniser){
try {

altAzSynchroniser.wait();
} catch (InterruptedException e)

{
e.printStackTrace();

}
}
sendAltAz(currentAz, currentAlt);

}
}).start();

The thread will wait indefinitely until it receives a signal from
variable altAzSynchroniser. When a message to change the
altitude arrives from the poi, the class variable currentAlt is set
and the altAzSynchroniser object is notified, which in turn

5

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

causes the thread shown above to wake and then call sendAltAz
with the new azimuth and altitude to the localhost.

public void changeAltitude(double
control_val) {

synchronized (altAzSynchroniser){
currentAlt = control_val / 2 * Math.PI;
altAzSynchroniser.notify(); }

}

We found that modifying the azimuth and altitude directly often
produced a jittery display due to the 100ms latency coupled with
discarding of values that were not actioned while waiting for the
sendPostMessage call to return. We reduced this problem sig-
nificantly by sending arrow key messages and moved the display left
and right instead of sending an azimuth. This produced a smooth
display rotation when rotating the ball. It was not possible to use
this for the altitude in the terrestrial mode because we were using the
accelerometer value to determine the height. In the spaceship mode,
however, this proved very effective as we were able to just send up,
down, left and right messages based on gyroscope action.

6. FUTURE WORK

There were several issues that we discovered through running the
game. The first problem was that the Raspberry Pi would often crash
when running the display after a certain period of intense manipula-
tion, however, we were able to run it for several days if we did not de-
mand too many rapid changes from Stellarium. We substituted the Pi
with a Mac Mini in order to determine where the problems were. We
found that we were able to reproduce an error in Stellarium on the
Raspberry Pi when running the script double_stars.ssc that comes
with Stellarium, however, the Mac ran with no errors. Running the
kernel journal showed errors indicating an inability to allocate mem-
ory within the GPU17. The VC4 OpenGL driver required to run Stel-
larium is still experimental, and it is probably that this is where the
error lies. Research and development in this area is still required to
make a stable Raspberry Pi installation of Stellarium.

We found that when the player started rotating the ball fast, the
zoom would activate, requiring them to stay within certain rotation
rates. We modified the game so changing zoom required the player
to hold the button down when performing a zoom action.

Messages are sometimes lost over UDP, which became evident
when a zoom message was sometimes not delivered to the slave.
We have performed some tests comparing different routers and dif-
ferent Raspberry Pis for packet loss. Additionally, we tested code
in both Java and C++. We discovered that as packet intervals ex-
ceeded 10ms, the percentage of packet loss increased. Interestingly,
we found that there was less packet loss using Java than C++ using
the standard compilers distributed with Raspbian. Furthermore, the
quality of router had a significant impact. Some routers, although
supporting multicasting, stopped sending multicast messages to de-
vices after about ten minutes. We intend to perform more tests re-
garding the packet loss, however, the real concern is that broadcast-
ing and multicastling of OSC over UDP is not satisfactory [33].

We found that the Just In Time (JIT) compiler took time to con-
vert the downloaded Java byte code into machine code [34], produc-
ing a brief stuttering effect when executed for the first time. The
problem became exacerbated when using the Pi Zero with ten os-
cillators running simultaneously due to the limited power of the Pi

17github.com/Stellarium/stellarium/issues/550 [accessed November 2018]

Zero. Once the JIT compiler had converted the code, subsequent
code changes were not affected. Although only an issue when the
program starts, we need to examine strategies to overcome this.

7. CONCLUSIONS

During our research we were able to integrate various open source
programs to create a system where we could develop and evaluate
Stellarium as a controllable display element, create inter process
and device communication using the HappyBrackets Java environ-
ment, and to experiment with the use of the sonic poi as a per-
formance tool. We used this system to create a gamified environ-
ment where visitors were engaged with our technology, providing
them with a positive and memorable experience. We capitalised on
this opportunity to observe and evaluate how our system was behav-
ing, which was more memorable to us by virtue of it being part of
a game that was played repeatedly. We leveraged the quality the
Stellarium display coupled with a wireless control device to create
a game that was challenging, fun, engaging and educational. More-
over, the technical goal was to be able to control Stellarium during
a performance with HappyBrackets, with an example available at
https://youtu.be/NhXRdd-MNoo

The research obtained from developing this game can be used
as a starting point for the development of an interactive educational
installation. Furthermore, we found a way to expose issues with
OpenGL driver on the Raspberry Pi, Java JIT, and UDP packet loss
and performance using both Java and C++.

8. ACKNOWLEDGEMENTS

A special thanks to Ben Cooper who designed and built the Sonic
Poi. Many thanks to the members of the Newcastle Astronomical
Society in their support and encouragement for this project. I would
like to acknowledge the support of Georg Zotti and Alexander Wolf
from the Stellarium development team for their advice and guidance
in using Stellarium.

9. REFERENCES

[1] Sam Ferguson and Oliver Bown, “Creative coding for the
Raspberry Pi using the HappyBrackets platform,” in Proceed-
ings of the 2017 ACM SIGCHI Conference on Creativity and
Cognition. ACM, 2017, pp. 551–553.

[2] Eleanor Farrington, “Parametric equations at the circus: Tro-
choids and poi flowers,” The College Mathematics Journal,
vol. 46, no. 3, pp. 173–177, 2015.

[3] Karen Robson, Kirk Plangger, Jan H Kietzmann, Ian Mc-
Carthy, and Leyland Pitt, “Game on: Engaging customers and
employees through gamification,” Business horizons, vol. 59,
no. 1, pp. 29–36, 2016.

[4] Nergiz Ercil Cagiltay, “Teaching software engineering by
means of computer-game development: Challenges and oppor-
tunities,” British Journal of Educational Technology, vol. 38,
no. 3, pp. 405–415, 2007.

[5] Angelo Fraietta, “Musical composition with naked eye and
binocular astronomy,” in Australasian Computer Music Con-
ference 2014. Victorian College of the Arts, 2014, p. 47.

6

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[6] Angelo Fraietta, “Echoes from the fourth day - a segue through
the southern night sky for FM synthesiser and binoculars,”
2014, Performed in Brickworks Park in collaboration with the
Newcastle Astronomical Society.

[7] Colin Bright, “spa-c–e,” 2013, Performed live at Colbourne
Ave Glebe, Sydney, Australia May 23rd 2013 by The Colin
Bright Syzygy Band and Angelo Fraietta.

[8] Simon Monk, Raspberry Pi cookbook: Software and hardware
problems and solutions, " O’Reilly Media, Inc.", 2016.

[9] Samuel Aaron, Alan F Blackwell, and Pamela Burnard, “The
development of Sonic Pi and its use in educational partner-
ships: Co-creating pedagogies for learning computer program-
ming,” Journal of Music, Technology & Education, vol. 9, no.
1, pp. 75–94, 2016.

[10] Matt Richardson and Shawn Wallace, Getting started with
Raspberry Pi, " O’Reilly Media, Inc.", 2012.

[11] Ivica Ico Bukvic, “Pd-l2ork Raspberry Pi toolkit as a compre-
hensive Arduino alternative in k-12 and production scenarios.,”
in NIME, 2014, pp. 163–166.

[12] Maik Schmidt, Raspberry Pi: A Quick-Start Guide, Pragmatic
Bookshelf, 2014.

[13] Oliver Bown, Miriama Young, and Samuel Johnson, “A Java-
based remote live coding system for controlling multiple Rasp-
berry Pi units,” in ICMC, 2013.

[14] Yusuf Abdullahi Badamasi, “The working principle of an Ar-
duino,” September 2014, pp. 1–4, IEEE.

[15] Oliver Bown, Lian Loke, Sam Ferguson, and Dagmar Rein-
hardt, “Distributed interactive audio devices: Creative strate-
gies and audience responses to novel musical interaction sce-
narios,” in International Symposium on Electronic Art. ISEA,
2015.

[16] Hicham Medromi, Laila Moussaid, and FAL Laila, “Analysis
of the allocation of classes, threads and cpu used in embedded
systems for Java applications,” Procedia computer science, vol.
134, pp. 334–339, 2018.

[17] Joseph Ashley, “Computers and computer programs,” in As-
trophotography on the Go, pp. 151–161. Springer, 2015.

[18] K Berglund, “Using free, open source Stellarium software for
iya2009,” in Preparing for the 2009 International Year of As-
tronomy: A Hands-On Symposium, 2008, vol. 400, p. 483.

[19] Matthew Mc Cool, “Touring the cosmos through your com-
puter: a guide to free desktop planetarium software,” CAPjour-
nal,(7), pp. 21–23, 2009.

[20] Georg Zotti and Alexander Wolf, “Stellarium 0.18.0 user
guide,” 2018.

[21] Georg Zotti, Florian Schaukowitsch, and Michael Wimmer,
“The skyscape planetarium,” 2017.

[22] Patricia M Greenfield, Craig Brannon, and David Lohr,
“Two-dimensional representation of movement through three-
dimensional space: The role of video game expertise,” Journal
of applied developmental psychology, vol. 15, no. 1, pp. 87–
103, 1994.

[23] Mark JP Wolf, “Genre and the video game,” The medium of
the video game, pp. 113–134, 2001.

[24] Robert J Stone, Peter B Panfilov, and Valentin E Shukshunov,
“Evolution of aerospace simulation: From immersive virtual
reality to serious games,” in Recent Advances in Space Tech-
nologies (RAST), 2011 5th International Conference on. IEEE,
2011, pp. 655–662.

[25] Jukka Rönkkö, Jussi Markkanen, Raimo Launonen, Marinella
Ferrino, Enrico Gaia, Valter Basso, Harshada Patel, Mirabelle
D’Cruz, and Seppo Laukkanen, “Multimodal astronaut virtual
training prototype,” International Journal of Human-Computer
Studies, vol. 64, no. 3, pp. 182–191, 2006.

[26] Jitong Chen, Lingquan Meng, Xiaonan Wang, and Chenhui
Wang, “An integrated system for astronomical telescope based
on Stellarium,” in Advanced Computer Control (ICACC), 2011
3rd International Conference on. IEEE, 2011, pp. 431–434.

[27] Elena Tuveri, Samuel A Iacolina, Fabio Sorrentino, L Davide
Spano, and Riccardo Scateni, “Controlling a planetarium soft-
ware with a kinect or in a multi-touch table: a comparison,” in
Proceedings of the Biannual Conference of the Italian Chapter
of SIGCHI. ACM, 2013, p. 6.

[28] Karen Robson, Kirk Plangger, Jan H Kietzmann, Ian Mc-
Carthy, and Leyland Pitt, “Is it all a game? Understanding
the principles of gamification,” Business Horizons, vol. 58, no.
4, pp. 411–420, 2015.

[29] Thomas W Malone, “Heuristics for designing enjoyable user
interfaces: Lessons from computer games,” in Proceedings of
the 1982 conference on Human factors in computing systems.
ACM, 1982, pp. 63–68.

[30] JW van der Veen, R de Beer, and D van Ormondt, “Utilizing
Java concurrent programming, multi-processing and the Java
native interface,” Running Native Code in Separate Paral-
lel Processes,” Report on behalf of the Marie-Curie Research
Training Network FAST, 2012.

[31] Cay S Horstmann and Gary Cornell, Core Java 2: Volume I,
Fundamentals, Pearson Education, 2002.

[32] Matthew Wright, Adrian Freed, et al., “Open SoundControl: A
new protocol for communicating with sound synthesizers.,” in
ICMC, 1997.

[33] Angelo Fraietta, “Open sound control: Constraints and limita-
tions.,” in NIME, 2008, pp. 19–23.

[34] Anderson Faustino Da Silva and Vitor Santos Costa, “An ex-
perimental evaluation of Java JIT technology.,” J. UCS, vol.
11, no. 7, pp. 1291–1309, 2005.

7

8

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

BROWSER-BASED SONIFICATION

Chris Chafe

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University, USA

cc@ccrma.stanford.edu

ABSTRACT

TimeWorkers is a programming framework for coding sonification
projects in JavaScript using the Web Audio API. It is being used for
sonification workshops with scientists, doctors, and others to facil-
itate ease of use and cross-platform deployment. Only a browser
and text editor are needed. Using Free and Open-source Software
(FOSS) the system can run standalone since No Internet is Required
for Development (NIRD). Workshop participants rapidly master prin-
ciples of sonification through examples and are encouraged to bring
their own datasets. All mapping code is contained in a project’s
.html landing page. A single generator function iterates over the
project’s data series and provides a fine-grained interface to time-
varying sound parameters. This loop and its internals are patterned
after similar constructions in the Chuck language used by the author
in earlier sonification tutorials.

1. INTRODUCTION

Sonification shares much with other kinds of computer music mak-
ing including the wide range of programming tools which can be
used. Sonification also shares in the kinds of decisions found in pho-
tography and soundscape recording. Gathering, selecting, framing
and contrast enhancement are a part of working with material from
the (outside of music) outside world. On the other hand, another
key part of creating a sonfication, mapping, has affinities with al-
gorithmic composition. TimeWorkers is a browser-based software
framework described in this paper which, while not limited to sonifi-
cation, provides in it’s initial rollout functional support for decisions
specific to such work.

Specialized programming languages have evolved and continue
to evolve which are custom-designed to express musical relation-
ships, especially timing and concurrency. I’ve used several over the
course of composing computer music with succeeding generations
of hardware platforms, for example, Pla[1], MIDILisp[2], Common
Music[3] and Chuck[4], all of which are examples of computer mu-
sic languages with ways of programmatically expressing organiza-
tion of sound in time.

TimeWorkers is written in JavaScript and provides a readily avail-
able computation environment for my sonification workshops. To
give a glimpse of what will be explained later in detail, the name
comes from its use of the Web Worker API[5] for composing musical
layers or voices which unfold in time. The software uses browsers’
existing means for sound generation, in this case the built-in com-
puter music capabilities of the Web Audio API[6]. The added func-
tionality provided by TimeWorkers provides ways to compose higher-
level aspects of musical timing and texture.

Stepping back for a moment, it’s worth reflecting on how com-
puters and music have been mingling their intimate secrets for over
50 years. These two worlds evolve in tandem and where they in-
tersect they spawn practices that are entirely novel. One of these is

sonification, the practice of turning raw data into sounds and sonic
streams to discover new relationships within the dataset by listening
with a musical ear. This is similar to exploring data visualization
with strategies made for the eye to reveal new insights from data
using graphs or animations. A key advantage with sonification is
sound’s ability to present trends and details simultaneously at multi-
ple time scales, allowing us to absorb and integrate this information
the same way we listen to music.

Kramer, et al.’s prescient Sonification Report [7] (2010) merits
quoting here at length and will be revisited in the conclusion sec-
tion. The paper identified “three major issues in the tool develop-
ment area that must be tackled to create appropriate synthesis tools
developed for use by interdisciplinary sonification researchers.” The
TimeWorkers framework addresses some (but not all) of the follow-
ing points.

“Portability: Sonification scale places demands on audio hard-
ware, on signal processing and sound synthesis software, and on
computer operating systems. These demands may be more stringent
than the requirements for consumer multimedia. Researchers deal-
ing with problems that go beyond the limits of one system should be
able to easily move their sonification data and tools onto a more pow-
erful system. Thus, tools must be consistent, reliable, and portable
across various computer platforms. Similarly, tools should be capa-
ble of moving flexibly between real- time and nonreal-time sound
production.”

“Flexibility: We need to develop synthesis controls that are spe-
cific and sophisticated enough to shape sounds in ways that take ad-
vantage of new findings from perceptual research on complex sounds
and multimodal displays and that suit the data being sonified. In ad-
dition to flexibility of synthesis techniques, simple controls for alter-
ing the data-to-sound mappings or other aspects of the sonification
design are also necessary. However, there should be simple ‘default’
methods of sonification that allow novices to sonify their data quick
and easily.”

“Integrability: Tools are needed that afford easy connections to
visualization programs, spreadsheets, laboratory equipment, and so
forth. Combined with the need for portability, this requirement sug-
gests that we need a standardized software layer that is integrated
with data input, sound synthesis, and mapping software and that fa-
cilitates the evaluation of displays from perceptual and human fac-
tors standpoints.”

2. USING THE FRAMEWORK

Meant to be very hands-on, my 2-hour workshops ask the partici-
pants to bring their own laptop and headphones. I first take them
through a simple example which has a been an early “etude” assign-
ment in my course, “Computer Music Fundamentals ”[8], taught at
Stanford’s CCRMA. The goal is to get students to start working with
their own datasets as soon as possible and get them exploring a range

9

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

of sonifications through experimentation.
A dataset to play with can be scouted out by searching the web

and copied or exported from a spreadsheet or other format. For
starters, it’s simply a single column of numbers in plain text. The
range of values doesn’t matter because it will be automatically rescaled
when read by the framework’s file input layer. In my own develop-
ment work, examples and code repository are all linux-based and
other operating systems work equally well.

2.1. Basic Sonfication How-to

2.1.1. What you’ll need

The browser can be a recent version of Firefox, Chromium, Chrome,
or Edge. A simple text editor like Gedit is all that’s required for
developing the code and preparing an ASCII data file.

2.1.2. Testing the demo

Open the demo URL https://ccrma.stanford.edu/~cc/
sonify to see a page that looks like Figure 1. There’s a default
time series “tides.dat” that can be played by clicking on the demo
icon (the small globe is a button).

Figure 1: An example page with options for playing a default time
series or dragging in a data file.

Alternatively, a data file can be dragged from the desktop onto
the page to sound it with the same preset sonification parameters.

The demo was created by Chris Hartley, a biologist who par-
ticipated in the first workshop (in 2016) at the University of British
Columbia. In it, “You can hear the rising and then falling chirp-
chirp-chirp of the major high tides, which get highest at the new
and full moons, and then the slightly lower trill of two roughly equal
high tides per day, which occurs during the quarter moons.” Hart-
ley’s sonfication plays a year’s worth of tidal data at a fast rate using
a sine tone.

After starting the demo or after loading a data file the stop and
play buttons on the web page become activated, Figure 2.

2.1.3. Modifying the demo

To practice modifying the demo, a good first goal is to make the rate
of running through the data much slower. To accomplish this, we’ll
make a local copy of the demo, test it and then edit it.

Go to its repository https://cm-gitlab.stanford.edu/
cc/sonify and download a snapshot. The downloaded .zip file

Figure 2: Stop and play buttons become activated after starting the
demo or dragging in a data file.

will have a long name that depends on the version. Extract the con-
tents of the .zip file and open its index.html file in a browser (use
Firefox because it will allow the demo to run as a local file without
manual intervention).

This will allow you to test the local copy of the landing page in
a browser and make sure it’s working identically to the version on
the workshop’s web server. If it’s all good, then the local copy of the
landing page can be opened in a text editor. Search for the line

let dur = 0.005
and assign a new value, for example:

function* sonify(data) {
let dur = 0.05

// duration between data points in seconds

Save the modification in the text editor and then refresh the browser
page to load the changed file. The example can then be played as be-
fore but the rate will now be 10x slower.

Further modifications are quickly explored with the same work
flow of edit-save-refresh-play. For example, in the mapping function

map(v)
where, for a given value of v, sound parameters are determined for
pitch and loudness (respectively, kn in MIDI key number units and
db in a decibel range from −100 to 0). These in turn are used to
calculate values which will be applied to the sine tone’s frequency
(Hz) and amplitude (range 0.0 to 1.0):

function map(v) {
let kn = 60 + v * 40
let f = mtof(kn)
let db = -30 + v * 10
let a = dbtolin(db)
return {pit: f, amp: a}

}

map(v) returns pitch frequency and loudness amplitude in an
object created by an object initializer. Its argument, v, is expected
to lie in the range 0.0 to 1.0. In a hidden step which happens when
the data is loaded, the data series has been automatically normalized
to this range. map(v) is set so that the lowest data value will be
sounded at Middle-C (MIDI key number 60) and the highest will be
3 Octaves and a Major Third above. Intermediate values will be lin-
early interpolated across key number values (using fractional quanti-
ties, in other words, not quantized to integer key numbers). Code for

10

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

the utility functions mtof and dbtolin, respectively for conver-
sion from MIDI key number to frequency in Hz and dB loudness to
amplitude, have been borrowed from Hongchan Choi’s Web Audio
API Extension (WAAX) project [9].

The sonify generator function sets a new target pitch when pro-
cessing each new data value and starts a glissando (a smooth fre-
quency ramp) to reach the target pitch in the length of time specified
by the data update period, dur. The ramp is a linear function which
updates the sine tone’s frequency each audio sample. Amplitude is
smoothly modulated in the same way.

The complete sonify generator function for this example is listed
below and includes a definition of the sound source along with a
mechanism for applying updates to its parameters. The new func-
tion Sin(timeWorker) instantiates a SinOsc and several meth-
ods which start the oscillator, apply parameter updates to it and stop
it. After instantiation as a local object s, it is initiated with the first
values from the mapping function and a gain of 0. Ramps are set
in motion and the process pauses until they reach their targets with
yield dur after which the loop continues and cyclically churns
through each data point until all have been “performed.” The last
few lines ramp the oscillator to 0 and then stop and finish.

function* sonify(data) {
let dur = 0.005
let datum = data.next()
function map(v) {
let kn = 60 + v * 40
let f = mtof(kn)
let db = -30 + v * 10
let a = dbtolin(db)
return {pit: f, amp: a}

}
function Sin(timeWorker) {
let s = new SinOsc(timeWorker)
s.start()
this.setPit = function(freq) { s.freq(

freq) }
this.setAmp = function(gain) { s.gain(

gain) }
this.rampPit = function(freq,dur) { s.

freqTarget(freq,dur) }
this.rampAmp = function(gain,dur) { s.

gainTarget(gain,dur) }
this.stop = function() { s.stop() }
this.ramps = function (f,a,d) {

this.rampPit(f,d)
this.rampAmp(a,d)

}
}
let sin = new Sin(this)
if (withFFT) postMessage("makeFFT()")
let params = map(datum.value)
sin.setPit(params.pit)
sin.setAmp(0)
while (!datum.done) {
sin.ramps(params.pit, params.amp, dur)
yield dur
if (withSliderDisplay) postMessage("

move1D("+datum.value+")")
if (withChart) postMessage("move2D()")
datum = data.next()

params = map(datum.value)
}
sin.rampAmp(0,0.1)
yield 0.1
sin.stop()
postMessage("finish()")

}

Workshop discussions are mostly focused on customizing the
above code and demonstrating extensions described later in this re-
port. What follows in the next section is a discussion of the Time-
Workers framework “under the hood.” This can be skipped if one’s
main interest is in customizing sonifications rather than digging into
the underlying system.

3. PROGRAMMING STRUCTURE AND SUPPORTING
FUNCTIONS

The framework has no dependencies. It is a lightweight project
which is Free Open-source Software (FOSS) and has the additional
feature of No Internet Required for Development (NIRD). Work-
shops and individual work are equally possible online and offline, for
example, during field work with no connectivity. A project’s .html
landing page loads a single associated script file, engine.js, which
contains all supporting functions. Files and modules are shown schemat-
ically in Figure 3.

Figure 3: Structure and modules.

The project landing page sets up web-related configurations, spec-
ifies the user interface (UI), loads the script file, engine.js, and is
where the sonification is “composed.” Various “hardwired” globals
need to be declared which will be communicated to the script file, in-
cluding a default value for dataFileName. Likwise, the script file
expects a “hardwired” generator function with the name sonify
(which should be defined using JavaScript’s function* syntax [10]).

11

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Table 1: project files

web landing page supporting script
index.html engine.js

Table 2: index.html elements

<head> <body> <script>
<meta> specifies metadata configures UI elements sets global and local variables

(optional) <script> loads any auxiliary script files (options to hide or expose) loads engine.js
e.g., graphing library e.g., drag and drop must define function* sonify(data)

Table 3: engine.js tasks, classes (and optional functionality)

set locals polish UI specify web worker(s) set up spork mechanism define DSP ugens
audio context check browser capabilities WorkerThread TimeIterator e.g., SinOsc
data source get UI elements uses inline definitions play / stop e.g., FM

timing cushion set UI element states (add graphing capability) nextEventAt uses setValueAtTime,
worker arrays (add drag and drop) (connect real-time UI elements) uses async / await linearRampToValueAtTime

This function instantiates any unit generators (ugens) it will be us-
ing, for example with

new SinOsc(timeWorker)
as shown above, and specifies data-to-sound parameter mappings
which unfold through time.

For brevity’s sake the script file, engine.js, is not reproduced here
but can be found in js/ subdirectory of the project repository[11].
This script provides the TimeWorkers structure through its class def-
initions, functions and own variable settings. Any special tokens
which are referenced by the sonify generator function, e.g. SinOsc
will be resolved against what is defined or declared in the global
scope after engine.js has been loaded.

The script file contains several parts. Setting local variables, pol-
ishing the UI and a system for “performing” sonifications composed
with the sonify generator function.

A WorkerThread interface sets up and runs this time-sensitive
apparatus in separate threads. The TimeIterator class provides a
mechanism which waits between events in the sonify generator’s
loop and compensates for timing jitter. It uses the performance
.now() clock to compare real time with expected logical time. Fi-
nally, the ugen part of the script file defines any synthesis or DSP
patches which are used.

var context

is declared to hold the window.AudioContext which gets instantiated
at sound start and closed at sound stop,

var workerThreads = []

is the array containing the pool of WorkerThread instances and

var uwta = []

is a multi-dimensional array (whose name is shorthand for “ugen-
WorkerThreadsArrays”) that contains the set of all ugens in all Work-
erThreads.

A programming pattern often used in sonification in the Chuck
language [4] has two aspects. The first is the spork function which
calls a given function in a parallel, separate thread with its own
logical timebase. (A child process spawned by a sporked function
can also spork its own child processes.) The second construct is a

means for looping over data, in Chuck this is usually a while loop
where event time advances each iteration. The loop executes in its
own thread. The present framework supports both features using its
WorkerThread and TimeIterator constructs.

When makeWorkerThread (Table 1) creates a new instance,
the spawned JavaScript Worker [12] is of a special inline type (as op-
posed to the more common type which is usually created by loading
a dedicated script file).

var blob = new Blob([script])
var worker = new Worker(URL.createObjectURL(

blob))

The script passed into the new Blob sets up a mechanism for dynamic
object definition. It calls addEventListener on the new worker
and sets how the worker will handle incoming messages. By telling
it to handle them with an eval (in the global scope), the worker’s
set of variables and functions is literally “grown” by posting message
strings to be evaluated which contain the desired definitions and set-
tings. One of these, for example, is the sonify function defined back
in the landing page. Dynamically defining timeWorkers in this way
allows the sonify function to also spork processes which will become
its own new child workers each of which runs in a separate thread.

The spork function itself instantiates a time-sensitive data iter-
ator with makeTimeIterator. A TimeIterator will pause a gen-
erator for a given duration with its method nextEventAt()which
is an async function utilizing JavaScript’s async / await ([13]) paus-
ing functionality. When sporked, a sonify generator’s loop is started
with nextEventAt("start") that executes its first cycle. A
subsequent yield in the sonification loop will set the amount of
time to pause on the next call to nextEventAt (which calls itself
recursively) and the loop continues.

In the definition below, fstar is the sonify generator defined in
the landing page and args contains a data iterator with the provided
data series (which has had its range normalized).

function spork(fstar, ...args) {
let ti = makeTimeIterator()
ti.sporkScript = fstar.apply(ti, args)
ti.nextEventAt("start")

}

12

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

To reiterate, calling spork with both a sonify generator and a
TimeIterator containing the data as shown

spork(sonify,data)

will create a pattern comparable to a Chuck-based sonification which
consists of essentially the same parts: spork a new thread which sets
up a sound source and mapping strategy, and then loops through a
conditioned data series, pausing after each data point.

In Chuck, pausing is written using the syntax

dur => now;

whereas the TimeWorkers equivalent uses

yield dur

A yield in the sonify generator loop invokes a JavaScript Promise
in the TimeIterator object whose setTimeout is set to the duration
to await.

3.1. SinOsc ugen example

Custom ugens comprise patch definitions made with the Web Audio
API’s audio nodes. The makeSinOsc example shown here instanti-
ates an oscillator with gain control using the API’s createOscillator()
and createGain() methods[6].

function makeSinOsc()
{

let o = context.createOscillator()
let g = context.createGain()
o.type = "sine"
o.frequency.value = 440
g.gain.value = 0.1
o.connect(g)
g.connect(context.destination)
g.connect(dac)
return { osc:o, gain:g }

}

The object gets instantiated in a wrapper called SinOsc which
when instantiated itself with new also includes methods to alter its
parameters, for example, by changing its frequency with the follow-
ing custom freq() method:

freq: function (hz) {
let n = this.dsp
postMessage(ugens+"["+n+"].osc.

frequency.setValueAtTime("+hz+",
"+(myThread.now+cushion)+")")

}

this.dsp refers to the ugen itself which is held in the main
thread’s array ugens[]. The message posted to the main thread
looks up the osc field of the ugen and changes its frequency using
the Web Audio API’s setValueAtTime (which corresponds to
the worker thread’s “now” plus a constant offset). A full ugen def-
inition comprises instantaneous setters for all parameters, as well
as custom time-varying envelopes, for example made with the Web
Audio API’s linearRampToValueAtTime. Note that the patch
code also includes a connection from the patch’s summing point to a
global summing point called dac.

Different sound sources can be made available by expanding the
library of ugens defined in engine.js. Each would comprise a “make
the patch” portion and a wrapper (with the ugen name) which in-
cludes the set of parameter altering methods.

3.2. FM patch

For example, a simple two-oscillator FM patch could look like the
following:

function makeFM()
{
let mod = context.createOscillator()
let modGain = context.createGain()
mod.type = "sine"
mod.connect(modGain)
let car = context.createOscillator()
let g = context.createGain()
car.type = "sine"
modGain.connect(car.frequency)
car.connect(g)
g.connect(context.destination)
g.connect(dac)
let cFreq = 2200
let index = 33
let mRatio = .1
modGain.gain.value = cFreq * index
mod.frequency.value = cFreq * mRatio
car.frequency.value = cFreq
g.gain.value = 0.1
return { osc:car, gain:g, mod:mod, modGain:

modGain }
}

All ugens need to be accessible in the timeWorker thread in
which the sonify loop is running. A last step, then, in ugen creation
is to add the ugen wrapper, for example FM, to the list of functions
which gets dynamically installed inline when a new WorkerThread
is instantiated.

4. EXTENSIONS

Changing the sound source, sounding multiple time series and adding
graphing capabilities are extensions which complement the basic ex-
ample described above 2.

4.1. Voicing

Changing to a more interesting sound source is possible in the sonify
generator itself. This approach relies on combinations of ugens de-
fined in the engine.js script. Where the basic example uses a single
SinOsc ugen as its instrument, the example here demonstrates ad-
ditive synthesis built by summing multiple sines which are harmon-
ically tuned. The new instrument Harmonics is defined directy
within the sonify generator.

function Harmonics(nSins,timeWorker) {
this.sins = new Array
for (let i = 0; i < nSins; i++) this.sins.

push(new SinOsc(timeWorker))
this.sins.forEach(function(x) { x.start()

})
function fi(f,i) { return f*(i+1) }
function ai(a,i) { let h = (i+1); let odd =

(h%2) ? a : a*0.1; return odd/h }
this.setPitch = function(freq) { this.sins.

forEach(function(x,i) {x.freq(fi(freq,
i))}) }

13

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

this.setGains = function(gain) { this.sins.
forEach(function(x,i) {x.gain(ai(gain,
i))}) }

this.freqTarget = function(freq,dur) { this
.sins.forEach(function(x,i) {x.
freqTarget(fi(freq,i),dur) }) }

this.gainTarget = function(gain,dur) { this
.sins.forEach(function(x,i) {x.
gainTarget(ai(gain,i),dur) }) }

this.stop = function() { this.sins.forEach(
function(x) {x.stop()}) }

this.ramps = function (f,a,d) {
this.freqTarget(f,d)
this.gainTarget(a,d)

}
}

One of these instruments is then instantiated in the sonfication loop,
for example, with

let vox = new Harmonics(8,this)

to create an harmonic series of 8 SinOscs. Given a pitch frequency f
function fi(f,i) sets their tunings. Amplitude relationships
in function ai(a,i) create a clarinet-like structure favoring
odd harmonics. A convenience function ramps is provided which
applies frequency and amplitude updates to the entire additive syn-
thesis patch.

The following set of extensions are turned on or off with flags in
the index.html file. By default, the withDemo flag is set. Only one
option is allowed at a time, so remember to set

withDemo = 0

before exploring these others.

4.2. Polyphony from multiple data series

Multiple time series are interesting to sonify at the same time, for
example, to hear correlations by ear. Data can be input from two or
more separate data files as in this example which combines monthly
USA gross domestic product (GDP) from 1969 to 2016 and global
CO2 level for the same period. The curves shown in Figure 4 have
been normalized to the same range.

Figure 4: GDP and CO2.

The example landing page, index.html, has a provision for hear-
ing these two playing together, as two independent musical voices.
Change the state of withDemo and this flag for this to take effect:

withTwoFiles = 1

Two data files will now be specified and will spawn two Time-
Worker threads both using the single sonify generator as defined. In

this example, one can hear details like the 2008 financial downturn
and the seasonal flux in global CO2. Overall, the two quantities fol-
low a coincident rising trend.

4.3. Animated Chart

Similar to the interest in multi-modal data presentation described in
[14], sonification in the present framework can be combined with
graphing. Chart.js is a FOSS project for interactive plotting in the
browser and is integrated into the project by loading a single script
file (which can be locally sourced for creating a NIRD environment).

Again, the example landing page, index.html, has a provision for
demonstrating this extension by changing withDemo and this flag:

withChart = 1

Figure 5: Simultaneous sound and graph of Arctic Sea Ice Minimum
per year.

Playing the sonification in Figure 5 animates the black dot on
the curve. Syncronized sound and animation is accomplished with
postMessage("moveGraph()") inside the loop in the sonify
generator. Each successive call advances the black dot to the next
data point in an array of 2D data points that was input from a multi-
column data file (columns are year and value).

4.4. Real-time FFT display

Likewise, change withDemo and the following flag in the example
landing page, index.html, and the sonification’s audio output will be
displayed as a time-varying spectrum.

withFFT = 1

An FFT analyzer computes the spectrum of the global summing
point dac in real time.

5. CONCLUSIONS

A 40+ year tradition has evolved a well-known pattern for sequenc-
ing scores and real-time synthesis in languages like Pla[1], Com-
mon Music[3], Chuck[4] and others. The sonify generator’s loop is
a descendant written in JavaScript. Running in the browser, it al-
lows flexible programming using the full power of the language and
can be rapidly experimented with on any browser-equipped system.

14

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Table 4: TimeWorkers framework in terms of goals suggested by Sonification Report [7]

attribute goal now soon never
Portability consistent x
Portability reliable x
Portability portable across various computer platforms x
Portability moving between real-time and non-real-time sound production x
Flexibility simple controls for altering the data-to-sound mappings x
Flexibility simple “default” methods of sonification that allow novices to sonify their data quick and easily x

Integrability easy connections to visualization x
Integrability easy connections to visualization programs, spreadsheets, laboratory equipment ?
Integrability standardized software layer ?

Sonifications created using the framwork run equally well on mobile
and other smaller systems.

Pla’s voices are analogous to sonify generator loops because they
constitute groups of time-ordered events which can themselves be
voices (recall that spork-ed child threads can spork their own chil-
dren). Other pertinent features of Pla also have bearing on the present
framework (these are distilled a 1983 description): “Higher levels of
musical control are implemented as voices and sections ...” “...notes
that somehow belong together are grouped under the rubric of a
voice.” “Arbitrarily large groups of voices can be organized into a
section, which then becomes nearly equivalent to a voice.” “Another
kind of grouping is based on voices... voices can create other voices
to any level of nesting.”

Common Music’s similar features involve multiple types: “Thread
– A collection that represents sequential aggregation. A single time-
line of events is produced by processing substructure in sequential,
depth-first order.” “Merge – A collection that represents parallel ag-
gregation, or multiple timelines. A single timeline of events is pro-
ducted by processing substructure in a scheduling queue.” “Algo-
rithm – A collection that represents programmatic description. In-
stead of maintaining explicit substructure, a single timeline of events
is produced by calling a user-specified program to create new events.”

The TimeWorkers framework described here offers a way to con-
struct the above relationships in browser-based platforms and offers
solutions for some, but not all of the goals cited in Sonification Re-
port [7]. Table 4 lists the boxes it checks off.

In the future, faster-than-sound soundfile writing will be directly
supported though for now, file output is only by browser sound cap-
ture plug-ins (which run in real time). Faster-than-sound is a highly-
desirable feature and is something that’s been supported in both Com-
mon Music and Chuck. Regarding the former, “Realization in Com-
mon Music can occur in one of two possible modes: run time and
real time. In run-time mode, realized events receive their proper
’performance time stamp,’ but the performance clock runs as fast
as possible. In real-time mode, realized events are stamped at their
appropriate real-world clock time.” For the latter, Chuck’s “silent
mode” is the equivalent.

The recently standardized AudioWorklet [15]1 will be integrated
into the framework in the coming months. Of particular interest is
another recently proposed enhancement to Web Audio to support
multi-channel output.

Also for the future, direct real-time sonification from live sensor
data can be contemplated. This important feature opens up appli-

1 As of this writing, only the Chromium browser family supports Au-
dioWorklet. It is expected soon in Firefox at which point the integration work
will commence.

cations such as bio-feedback [16] or other kinds of feedback such
as providing real-time “cracking” sounds to operators of fracking
pumps (where presently feedback is provided after the fact and one
can imagine the problems resulting from the over-stimulation of shale
gas wells). It has become vital in medical applications, even making
inroads on traditional treatment practices in cases where listening
to data provides equal or better sensitivity and specificity compared
to visual means. The brain stethoscope, for example, allows rapid
detection of non-convulsive seizures by non-specialists. [17]

Interest in sonification is burgeoning as sensors and data collec-
tions become an increasingly ubiquitous part of daily life. Employ-
ing well-known sound generation techniques from computer music,
sonification can play a role in the work of domain experts and stu-
dents in sciences and arts, as well as for general communication.

6. REFERENCES

[1] Bill Schottstaedt, “Pla: A composer’s idea of a language,”
Computer Music Journal, vol. 7, no. 1, pp. 11–20, 1983.

[2] David Wessel, Pierre Lavoie, Lee Boynton, and Yann Orlarey,
“Midi-lisp: A lisp-based programming environment for midi
on the macintosh,” in Audio Engineering Society Conference:
5th International Conference: Music and Digital Technology,
May 1987 (accessed February 2, 2019), http://www.aes.org/e-
lib/browse.cfm?elib=4659.

[3] Heinrich Taube, “An introduction to common music,” Com-
puter Music Journal, vol. 21, no. 1, pp. 29–34, 1997.

[4] Ge Wang, Perry R. Cook, and Spencer Salazar, “Chuck: A
strongly timed computer music language,” Computer Music
Journal, vol. 39, no. 4, pp. 10–29, 2015.

[5] Moz://a MDN web docs, Using Web Workers, 2019 (accessed
February 6, 2019), https://developer.mozilla.
org/en-US/docs/Web/API/Web_Workers_API/
Using_web_workers.

[6] Moz://a MDN web docs, Web Audio API, 2018 (accessed
December 16, 2018), https://developer.mozilla.
org/en-US/docs/Web/API/Web_Audio_API.

[7] Bruce Walker Terri Bonebright Perry Cook Kramer, C.
and John H. Flowers, Sonification Report: Status of the
Field and Research Agenda, 2018 (accessed December
16, 2018), http://digitalcommons.unl.edu/
psychfacpub?utm_source=digitalcommons.
unl.edu%2Fpsychfacpub%2F444&utm_medium=
PDF&utm_campaign=PDFCoverPages.

15

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[8] Chris Chafe, Music 220A, 2019 (accessed February 6, 2019),
https://ccrma.stanford.edu/courses/220a/.

[9] Honchan Choi, Web Audio API eXtension, 2019 (accessed Jan-
uary 28, 2019), http://hoch.github.io/WAAX/.

[10] Moz://a MDN web docs, Iterators and genera-
tors, 2018 (accessed December 16, 2018), https:
//developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Iterators_and_Generators.

[11] Chris Chafe, project software repository, 2018 (accessed De-
cember 16, 2018), https://cm-gitlab.stanford.
edu/cc/sonify.

[12] Moz://a MDN web docs, Worklet, 2018 (accessed Decem-
ber 16, 2018), https://developer.mozilla.org/
en-US/docs/Web/API/Worklet.

[13] Moz://a MDN web docs, async function, 2018 (accessed
December 16, 2018), https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/
Statements/async_function.

[14] Tianchu (Alex); Tomlinson Brianna; Walker Bruce N. Kondak,
Zachary; Liang, “Web sonification sandbox - an easy-to-use
web application for sonifying data and equations,” Proceedings
of 3rd Web Audio Conference, 2017.

[15] Hongchan Choi, Audio Worklet Design Pattern,
2018 (accessed December 16, 2018), https:
//developers.google.com/web/updates/2018/
06/audio-worklet-design-pattern.

[16] Jan-Torsten Milde Baumann, Christian and Johanna Friederike
Baarlink, Body Movement Sonification using the Web Au-
dio API, 2018 (accessed December 16, 2018), https:
//webaudioconf.com/demos-and-posters/
body-movement-sonification-using-the-web-audio-api/.

[17] Josef Parvizi, Kapil Gururangan, Babak Razavi, and Chris
Chafe, “Detecting silent seizures by their sound,” Epilepsia,
vol. 59, no. 4, pp. 877–884, 2018.

16

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

SEQUOIA: A LIBRARY FOR GENERATIVE MUSICAL SEQUENCERS

Chris Chronopoulos

Independent Developer
Cambridge, MA

chronopoulos.chris@gmail.com

ABSTRACT
Sequoia is a new software library for musical sequencing, with gen-
erative capabilities and sample-accurate timing. The architecture
supports a variety of techniques, including polymetric sequencing,
clock division, probability, and other parameters which can be ma-
nipulated in real time – or even sequenced themselves. The core
library is written in C and supports JACK MIDI; Python bindings
are also available.

1. MOTIVATION

In recent years, the electronic music community has shown a grow-
ing interest in the use of standalone hardware units, both for studio
production and live performance [1]. Among their many appeals,
these devices have the advantage of being modular - drum machines,
synthesizers, samplers, sequencers, mixers, and effects units can be
connected and re-connected in myriad ways to accomodate a variety
of workflows. Each component serves a unique role and interfaces
with other components through well-defined interfaces: line-level
audio, and control signals typically in the form of MIDI or CV (con-
trol voltage).

The Linux audio ecosystem is well-poised to emulate this paradigm
in software; audio routing libraries like JACK, and control signal
protocols like MIDI and Open Sound Control (OSC) provide a frame-
work for connecting standalone applications into software “rigs” suit-
able for composition and performance alike. Indeed, such modular-
ity is central to the Unix philosophy: programs should “do one thing
and do it well” [2]. True to form, numerous drum machines (e.g.
hydrogen, drumkv1), synthesizers (zynaddsubfx, amsynth, dexed),
samplers (shuriken, qsampler, petri-foo, sooperlooper), mixers (jack-
mixer, non-mixer), and effects (calf-plugins, guitarix) are available
from popular Linux repositories. Additional utilities exist for manag-
ing audio/MIDI connections (qjackctl, catia/claudia/carla) and sav-
ing/restoring sessions (lash/ladish/nsm/aj-snapshot).

Sequencers, however, are comparatively absent from this ecosys-
tem. Perhaps the best-established example is seq24 [3], which, albeit
stable and relatively comprehensive, has not been significantly up-
dated since 2010, and suffers from usability issues which hinder on-
the-fly composition. Various sequencers exist within larger DAW ap-
plications like Ardour [4], LMMS [5], Qtractor [6], Rosegarden [7],
and Muse [8], but these don’t fit into the modular paradigm described
here. Furthermore, the predominant interface for these software se-
quencers is the piano roll, which is well suited for editing live data
captured from a MIDI controller, but less appropriate for the quick
manipulation of drum patterns and arpeggios typical of dance music.
For this task, a traditional step sequencer is desired.

But step sequencers can be quite complex. They typically fea-
ture live sequence composition, real-time manipulation, and chain-
ing of sequences. More advanced examples include generative prop-
erties like probability, ratcheting, and meta-sequencing, in addition

to step-wise parameters like microtiming and control variable modu-
lation. With such a wide variety of features, it can be challenging to
design applications which cover all the bases – but this is primarily
a problem of interface design. The essentials of modern sequencing
– timing, synchronization, live manipulation, etc. – can be separated
from the problem of application design, and distilled into a general-
purpose library, as in the “model-view-controller” paradigm [9] This
is the motivation for Sequoia.

Figure 1: A Sequoia session is connected to two different client appli-
cations using JACK. Here ZynAddSubFX (zyn-fusion) and drumkv1
are being used to create a simple beat. Carla is used to manage
audio and MIDI connections.

2. DESIGN

The architecture of Sequoia is based on four object classes: session,
sequence, trigger, and port.

A sequence is a discrete series of events which steps in time
with a metronome. In this sense, Sequoia is a “step sequencer”, but
events are not required to be evenly spaced in time (see Section 4.1).
The length of a sequence is the number of steps that the sequence
contains. There is no limit (aside from memory) to the length of a
sequence, but once specified (via instantiation), it is fixed. This is
less of a constraint than it may seem, however, as sequences can be
chained together and “meta-sequenced” dynamically 5.3. Sequences
have several dynamic parameters: the mute state, transpose, clock
division, playhead position, playhead direction, and loop boundaries
can all be modified live during playback.

Triggers (or “trigs” for short) are the event objects which may
populate the steps of a sequence. They store information depending
on their type; the current trigger types are:

• Null: (an empty trig)

• Note: note value, velocity, length

17

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

• CC: number, value

Each trigger also carries a channel number, a probability and a mi-
crotime. Microtime is a floating-point value in the range [−0.5, 0.5),
where the units are in steps. Thus a trigger can be placed half a step
before or after its nomimal timing, allowing for irregular rhythms,
“humanization”, and swing.

Sequences run within a Sequoia session, which controls the tempo
and transport (start/stop/pause) state applied to all contained sequences.
A session can have a number of ports for communicating with other
applications – including other Sequoia sessions. The ports can be
input (“inports”) or output (“outports”), have descriptive names, and
can be assigned to sequences individually, or on a many-to-one ba-
sis. For example, we may have 4 sequences (kick, snare, closed hat,
open hat) feeding into a single outport called “drums”, while another
melodic sequence feeds into an outport called “synth” – all sequenc-
ing in time within the same session.

3. API

Sequoia is implemented as a C library in the “object-oriented” style:
data structures are presented as custom types with associated meth-
ods for instantiation and mutation. All library functions and data
types are prefixed with sq_*. The full API is documented on the
associated GitHub wiki; here we present a simple example which
constructs and plays a 2-note sequence:

#include "sequoia.h"

#define STEP_RES 256

int main(void) {

sq_session_t sesh;
sq_session_init(&sesh, "My Session",

STEP_RES);

sq_sequence_t seq;
sq_sequence_init(&seq, 16, STEP_RES);

jack_port_t *port;
port = sq_session_create_outport(&sesh,

"My Port");
sq_sequence_set_outport(&seq, port);

sq_trigger_t trig;
sq_trigger_init(&trig);

sq_trigger_set_note(&trig, 60, 100, 4);
sq_sequence_set_trig(&seq, 0, &trig);
sq_trigger_set_note(&trig, 67, 100, 4);
sq_sequence_set_trig(&seq, 8, &trig);

sq_session_add_sequence(&sesh, &seq);
sq_session_set_bpm(&sesh, 120);
sq_session_start(&sesh);

return 0;

}

Here, STEP_RES is the step resolution, in ticks per step. This needs
to be the same for all sequences in the session – attempting to add
a sequence with incompatible step resolution will result in an error.
We create an outport for the session called “My Port” and set the
sequence to output events through it. We then create a placeholder
trigger object trig and use it to populate the sequence. Finally, we
add the sequence to the session, set the BPM, and start sequencing.

3.1. Python Bindings

The main C library is augmented with Python bindings which obey
a direct mapping between classes and methods. In Python, the ex-
ample above could be written as:

import sequoia as sq

STEP_RES = 256

sesh = sq.session("My Session", STEP_RES)
seq = sq.sequence(16, STEP_RES)
port = sesh.create_outport("My Port")
seq.set_outport(port)

trig = sq.trig()

trig.set_note(60, 100, 4)
seq.set_trig(0, trig)
trig.set_note(67, 100, 4)
seq.set_trig(8, trig)

sesh.add_sequence(seq)
sesh.set_bpm(120)
sesh.start()

4. IMPLEMENTATION

A Sequoia session registers as a JACK external client whose name
is the session name (specified during instantiation). Input and output
ports are created as JACK MIDI ports (also named) which are served
by the JACK processing callback. The API is compiled into a shared
library plus header files, and can be installed e.g. in /usr/local/ for
dynamic linking across multiple applications.

4.1. Timing

Timing is managed by the JACK processing thread as it executes
within the context of the Sequoia session. The session keeps track
of the frame count as it works to fill the JACK buffer with time-
stamped MIDI events. Events are managed by the sequences which
handle time as a grid of microticks – intervals of time much shorter
than the step length which enable the microtiming functionality of
the sequencer. In the code example in Section 3, the mictrotiming
resolution is set to 256 ticks per step. In theory, this resolution can
be set much higher, though in practice, it will be limited by CPU
performance. The number of frames per tick (fpt) is:

fpt = 15 ∗ sr
tps ∗ bpm

(1)

where sr is the sample rate, tps is the step resolution (ticks per step),
and bpm is the tempo in beats per minute. At 48 kHz with 256
ticks-per-step, there are 23 frames-per-tick at 120 BPM. At 4096

18

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 2: Diagram visualizing the 3-tiered timing scheme used by Sequoia. At the highest level there are steps: 4 steps per beat (in the sense
of “beats per minute”), and one trig per step. Going down one level, each step is composed of several “microticks” which comprise the grid
for microtiming events. Here, only 8 microticks per step are shown for clarity, but a typical sequence may have 256 (or more) ticks per step.
Finally, there is the frame counter, which sweeps between the microticks until it reaches a tick boundary, at which point a trigger may be fired.

ticks-per-step, this becomes 1 frame-per-tick, which is the theoretical
maximum resolution for this tempo and sample rate.

4.2. Trig-to-Microtick Translation

Although the fundamental timing grid is managed at microtick reso-
lution, this implementation detail is hidden from the user by the trig
interface. The user manages the sequence data by setting its trigs
(one for each step); these trigs are then placed on the microgrid ac-
cording to their microtiming. The formula is:

tick index = (step + µtime) ∗ tps (2)

At this tick index, we place a pointer to the trig, which allows us to
look up both the trig parameters (e.g. probability, length) and the
sequence parameters (e.g. mute, transpose) at trig time, to ensure
that we send the correct MIDI event at the correct time.

4.3. Note-Off

While note-on and control change events are recorded in the micro-
grid at composition time (i.e. when the user calls
sq_sequence_set_trig()), note-off events are managed dif-
ferently. To see why, consider what would happen if a C note of
length 4 steps was recorded in the microgrid as a C-note-on plus a
C-note-off 4 steps later. Now imagine if the sequence transpose pa-
rameter were changed in the middle of that note. The note-off would
be delivered for the wrong note value, and the synthesizer down-
stream would be left with a hanging note. The same applies for play-
head manipulation, or any number of the other sequence parameters
which support live control.

The solution is to implement for each sequence a separate ring
buffer, specifically for note-offs, which is always running forward.
The length of this buffer is the maximum note length, which is also
the length of the sequence. The buffer gets populated with a note-
off (at the appropriate delay) whenever a note-on fires. When the
note-off is reached by the advancing buffer pointer, it is fired, and
then removed from the buffer. When a sequence (or the session) is
stopped, we can optionally call a “clean” command, which sweeps
through the off-buffer as quickly as possibly, delivering all remaining
note-offs.

4.4. Lock-Free Parameter Control

In a running Sequoia session, the JACK thread needs immediate ac-
cess to data that other threads (e.g. the UI thread) can manipulate
during playback. In a non-realtime application, this would be ac-
complished with mutex locks [10], but in realtime audio, this is un-
acceptable – the audio callback must never execute code that could
block for an indeterminate amount of time [11]. In lieu of mutex
locks, we synchronize data between threads via lock-free message
queues. For this, we use jack_ringbuffer_t as offered by the
JACK API. We then implement a simple messaging protocol that al-
lows for the UI thread to “set” or “get” critical data when the audio
thread enters the processing callback. This allows both threads to
access the data while avoiding any race conditions.

Message queuing offers a clean solution when the audio thread
is running, but it can present problems when the system is in a dor-
mant state. In this situation, for example, a queueing “getter” method
would block indefinitely, waiting for the processing callback to serve
the request. As another example, a user will commonly populate a
sequence with trigs before adding it to a running session. If the se-
quence length is longer than the message queue, this would overflow
the buffer and cause an error.

Ideally, the getters and setters would access data directly when
operating on a dormant structure, and use message queues when the
sequencer is running. In Sequoia, this branching behavior is handled
automatically – the data access methods are polymorphic according
to the running state of the system.

5. GENERATIVE TECHNIQUES

In addition to serving as a streamlined API for general-purpose, time-
critical sequencing with real-time control, Sequoia has been designed
from the ground-up with generative music techniques in mind. Here,
we describe just a few of these possibilities which Sequoia enables.

5.1. Polymeter

Since there’s no concept of a global step counter in Sequoia (only the
per-tick frame counter managed by the session), sequences are free
to run in and out of phase with each other, according to the least-
common-multiple of their lengths. For example, a 16-step sequence
played against a 15-step sequence will evolve through 240 steps of
variation before syncing back up and repeating itself.

19

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

5.2. Probability

Trig parameters include probability, a floating-point value in the
range [0, 1] which determines what fraction of the time a trig actually
fires. This applies to both note-type and CC-type triggers.

Figure 3: Meta-sequencing. A Carla patch showing a slow mod-
ulation sequence controlling the transpose parameter of a melody
sequence, which is driving the synthv1 synthesizer.

5.3. Meta-sequencing

Meta-sequencing, simply put, is “sequences sequencing sequences”.
Any of the sequence parameters – playhead, loop start, loop stop,
playback mode, transpose, mute state, clock divide – can be con-
trolled live from Sequoia’s MIDI-in ports. The way MIDI events
map to parameter controls is determined by a mapping defined by
the user upon sequence creation.

Combined with the concepts described above, this technique can
be very powerful – a single, monophonic sequence can be manipu-
lated by another (perhaps employing polymeter, probability, or clock
division) to generate a much longer, stochastically evolving sequence
(see Figure 3). Sequences can even be looped back into themselves
to give surprising results (Figure 4) – although care must be taken in
this case to avoid runaway conditions.

Figure 4: Auto-sequencing. A melody sequence is fed back into itself
(notice the looped-back red line from synth to input on the melody
client), and the result is used to drive synthv1. Depending on the
melody and the input mapping, this situation can “run away” to infi-
nite pitch. If it doesn’t, the results can be a surprising transformation
of the original melody.

5.4. Algorithmic Control

Obviously, the facility of inports and controller mappings allows for
external clients (e.g. Python scripts, Pure Data patches, Geiger coun-
ters with USB connections...) to control sequence parameters in any
way one might wish, thus allowing a huge variety of algorithmic
methods to modulate the sequencer.

6. STATUS

Sequoia is currently in active development. The core library (libse-
quoia) is in a viable state, and the source code is available on GitHub
under the GPL license (v3) [12]. We are also in the process of em-
bedding the library within Ziggurat, an existing GUI sequencer ap-
plication [13]. Future work will focus on developing bindings to
other languages, and improving documentation.

7. REFERENCES

[1] Connor Jones, A Live Performance Revolution is Taking Over
Electronic Music, 2016.

[2] Peter Salus, A Quarter Century of UNIX, Addison-Wesley,
1994.

[3] Wikipedia contributors, Seq24, 2019.

[4] Wikipedia contributors, Ardour (software), 2019.

[5] Wikipedia contributors, LMMS (software), 2019.

[6] Wikipedia contributors, Qtractor, 2019.

[7] Wikipedia contributors, Rosegarden, 2019.

[8] Wikipedia contributors, MusE, 2019.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, Design Patterns: Elements of Reusable Object-Oriented
Software, Pearson Education, 1994.

[10] Michael Kerrisk, The Linux Programming Interface, No Starch
Press, 2010.

[11] Ross Bencina, Real-time audio programming 101: time waits
for nothing, 2011.

[12] Chris Chronopoulos, https://github.com/chronopoulos/libsequoia,
2018.

[13] Chris Chronopoulos, https://github.com/chronopoulos/ziggurat,
2018.

20

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

A JACK SOUND SERVER BACKEND TO SYNCHRONIZE TO AN IEEE 1722 AVTP MEDIA
CLOCK STREAM

Christoph Kuhr

Anhalt University of Applied Sciences
Köthen, Germany

christoph.kuhr@hs-anhalt.de

Alexander Carôt

Anhalt University of Applied Sciences
Köthen, Germany

alexander.carot@hs-anhalt.de

ABSTRACT
This paper presents the evaluation of a media clocking scheme in
an AVB network segment. The JACK audio connection kit on each
AVB processing server is synchronized to an IEEE 1722 media clock
stream, as well as each UDP Soundjack receiver on each AVB proxy
server. Thus, the transmission of each packet of an audio stream
is bound to the transmission interval of the media clock stream and
each participant is able to recover the same media clock. In this
paper we present the evaluation of this media clocking scheme and
the JACK client synchronization with the AVB network segment at
hand.

1. INTRODUCTION

Soundjack [1] is a real-time communication software using peer to
peer connections, to connect up to five participants to each other.
This software was designed as a tool for musicians and was first
published in 2006 [2]. The interaction with live music over the pub-
lic Internet is very sensitive to latencies, both round trip as well as
one-way. Thus, this application is mainly concerned with the mini-
mization of latencies as well as jitter.

1.1. fast-music and Soundjack

In cooperation with the two companies GENUIN [3] and Symon-
ics [4], a rehearsal environment for conducted orchestras via the pub-
lic Internet is under development as the goal of the research project
fast-music. Up to 60 musicians and one conductor, who are ran-
domly distributed throughout Germany, shall be able to play together
live. The central node represents the multimedia signal processing
server network under investigation, which ideally will be located in
Frankfurt on the Main, since it is the largest Internet exchange node
in Germany it promises the smallest round trip latencies.

1.2. Concept for a Real-time Processing Server Network

The basic signal processing functionality of the server network con-
nects up to 60 UDP streams to each other and mixes them. A single
server could easily handle mixing this amount of concurrent UDP
streams with reasonably low latency, but for future research in the
application of immersive audio technologies in real-time, a single
server is not sufficient to handle the computational load of 60 indi-
vidual audio and video streams. Thus, a scalable infrastructure is
chosen to provide such signal processing capacities. The signal pro-
cessing provided by the Soundjack server network involves mixing
algorithms for audio and video streams. As an infrastructure for the
audio signal processing stage, the JACK [5] audio server is deployed.
JACK is a professional and open source audio server, that allows ap-
plications to share sample accurate audio data with each other. A

large number of signal processing applications and algorithms are
available for JACK. Details on the mixing application can be found
in [6].

Another benefit of such a scalable approach is the minimization
of service times of network packets, which is the time a packet re-
quires to travel on the wire until it is fully held in the input buffer
of the servers network interface. During the service time of a sin-
gle network packet, no concurrent packets can be processed, which
may introduce some hold time in the upstream buffer of each con-
current stream, adding to the overall round trip time. The reduction
is not significant. The test environment considered in this paper is
the Ethernet based campus network of the university.

A detailed description of the first design of the software architec-
ture and operating system configuration can be found in [7]. Recent
findings however, have revealed the first design to be flawed and not
fully capable of providing the required features. A new software ar-
chitecture is under development. The results presented in this paper
however, are not influenced by the rework of the software architec-
ture since the JACK server is running independently.

1.2.1. Audio Video Bridging - an Open Standard Solution

Audio Video Bridging / Time-Sensitive Networking (AVB/TSN) de-
scribes a set of IEEE 802.1 standards that operate on layer two of the
OSI model [8]. These standards enable computer networks to handle
audio and video streams in real-time. Operating only on OSI layer
two, AVB is not routable. It is defined for local network segments
only.

• IEEE 802.1AS [9]
Timing and Synchronization for Time-Sensitive Applications
in Bridged Local Area Networks (referred to as gPTP)

• IEEE 802.1Qat [10]
Virtual Bridged Local Area Networks - Amendment 14: Stream
Reservation Protocol (SRP)

• IEEE 802.1Qav [11]
Virtual Bridged Local Area Networks - Amendment 12: For-
warding and Queueing Enhancements for Time-Sensitive Streams
(FQTSS)

• IEEE 1722 [12]
IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive
Applications in Bridged Local Area Networks (referred to as
ATVP)

• IEEE 1722.1 [13]
IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive
Applications in Bridged Local Area Networks (referred to as
AVDECC)

21

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

The AVB standards are extensions for generic Ethernet networks
providing precise synchronization, resource reservation and band-
width shaping. Lower latencies and jitter, the avoidance of packet
bursts and bandwidth shortage are addressed, providing real-time re-
sponsiveness to a computer network. These properties are used to
ensure a constant streaming with low latency and jitter inside the
Soundjack server network. Thus, the Soundjack client streams can
be processed inside the server network, without interfering with each
other.

AVB networks require special hardware for timestamping Eth-
ernet frames with separate transmission queues for each traffic class,
i.e. AVB traffic with Stream Reservation (SR) classes A/B and generic
Ethernet traffic. The IEEE 802.1-2014 [14] standard defines the two
stream reservation (SR) classes A and B. Both classes are used in an
SRP domain to differentiate audio and video traffic from other Eth-
ernet traffic. For SR class A, SRP reserves resources on all switch
ports along the path from talker to listener to maintain a transmission
interval of 125 µs (250 µs for SR class B). The implications of the
transmission interval are discussed in section 2.

1.2.2. Network Synchronization with gPTP

The precise synchronization of different devices spread throughout
a local area network requires a specialized protocol, i.e. PTP, which
involves several steps. Each time a gPTP capable device appears on
the network segment, a negotiation for the grand master role is trig-
gered. The best master clock algorithm (BMCA) compares the clock
information in announce messages, that are broadcasted by each PTP
capable device on the same clock domain. A clock domain is a part
of a network segment that is synchronized to the chosen grand master
clock, it is separated by devices or Ethernet bridge ports that are not
gPTP capable (gPTP is a special profile [9] for PTP [15]). Each gPTP
capable Ethernet bridge port has a mode of its own, either master or
slave. The Ethernet port of the AVB device running the grand mas-
ter clock is in master mode and is the root of the hierarchical clock
distribution. The bridge port of the AVB switch it is connected to, is
in slave mode. It receives clocking information rather then sending
it. Since the switch receives its gPTP clock from this bridge port
in slave mode, all its other bridge ports are in master mode. They
distribute the clock information of the grandmaster clock to the next
hop or AVB device.

After this election process, the clock domain needs to be syn-
chronized. This is achieved in two steps: Syntonization, and Offset
and Delay Measurement. In the first step “SYNC” messages are send
from the master to the slave port followed by a “Follow_Up” mes-
sage, which includes a timestamp taken close to the media (physical
layer) of the sender. Both messages are used to adjust the frequency
of the slave to the master clock. The second step involves “Pde-
lay_Req” and “Pdelay_Resp” messages and measures the absolute
time offset between the master clock and slaves local clock. The
slave port adjusts its local clock to match the master clock. After this
procedure each network device is synchronized to the grandmaster
clock, matching its phase and frequency. For the exact mechanisms
and calculations see [9] and [16].

1.2.3. Control Messages and SO_TIMESTAMPING

The CMSG macros are used by the operating system to create and
access control messages, which are also called ancillary data, that
are not provided by the generic payload of a raw Ethernet socket.

This additional control information includes among other things the
receiving interface, optional header fields, extended error description
or a set of file descriptors. Ancillary data is sent with sendmsg(),
received with recvmsg() and is stored as a list of struct cmsghdr
structures with data appended to it. The use case at hand is to
receive the hardware timestamp of the arrival of each AVTP packet.

The userspace interfaces to receive timestamped network packets are
the following [17]:

• SO_TIMESTAMP:
Generate timestamp with microseconds resolution for each
incoming packet using the system time.

• SO_TIMESTAMPNS:
Generate timestamp with nanoseconds resolution for each in-
coming packet using the system time.

• SO_TIMESTAMPING:
Generate timestamp with nanoseconds resolution for each in-
coming packet using the network hardware.

The SO_TIMESTAMPING interface has to be configured on the raw
Ethernet socket with setsockopt() and the appropriate flags have
to be chosen from the following:

1. Determine how timestamps are generated with
SOF_TIMESTAMPING_TX/RX:

• SOF_TIMESTAMPING_TX_HARDWARE:
Hardware transmission timestamp.

• SOF_TIMESTAMPING_TX_SOFTWARE:
Fallback in case of failure of
SOF_TIMESTAMPING_TX_HARDWARE.

• SOF_TIMESTAMPING_RX_HARDWARE:
Original, unmodified reception timestamp, generated by
the hardware.

• SOF_TIMESTAMPING_RX_SOFTWARE:
Fallback in case of failure of
SOF_TIMESTAMPING_RX_HARDWARE.

2. Determine how timestamps are reported in the control mes-
sages with SOF_TIMESTAMPING_RAW/SYS:

• SOF_TIMESTAMPING_RAW_HARDWARE:
Return raw hardware timestamp.

• SOF_TIMESTAMPING_SYS_HARDWARE:
Return hardware timestamp converted to the system time.
The correlation between the transformed hardware times-
tamps and the system time is as good as possible, but
not perfect. Requires support by the network device
and will be empty without that support.

• SOF_TIMESTAMPING_SOFTWARE:
Return software timestamp.

In addition to the setsockopt(), it is necessary to initialize the
device driver to do hardware timestamping with an ioctl()-call
to SIOCSHWTSTAMP. The ioctl() has to be called with the ar-
gument:

22

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

struct hwtstamp_config {
int flags;
int tx_type;
int rx_filter;

};

Possible values for hwtstamp_config->tx_type are:

• HWTSTAMP_TX_OFF:
Deactivate hardware timestamping for outgoing packets.

• HWTSTAMP_TX_ON:
Activate hardware timestamping for outgoing packets is turned
on. The sender decides which packets are to be time stamped.

Possible values for hwtstamp_config->rx_filter are:
• HWTSTAMP_FILTER_NONE:

Deactivate timestamping for incoming packet.
• HWTSTAMP_FILTER_ALL:

Activate timestamping for any incoming packet.
• HWTSTAMP_FILTER_SOME:

Activate timestamping all requested packets plus some more.
• HWTSTAMP_FILTER_PTP_V1_L4_EVENT:

PTP v1, UDP, any other event packet.

1.2.4. Hardware Configuration

Two server types with real-time capabilities are designed for the
Soundjack server network, an AVB proxy server and an AVB pro-
cessing server. Both server types are running on a x86_64 architec-
ture with eight physical cores and are equipped with an Intel I210
network interface card [18]. A open source driver stack that is re-
quired to compile the kernel module (igb_avb.ko) with AVB sup-
port is available at Github [19]. The gPTP daemon, which is used in
this setup, is also provided by this repository. All AVB servers of
both types are registered for a media clock stream, which is supplied
by an XMOS development board manufactured by Atterotech [20].

Figure 1: Packet rate of the IEEE 1722 AVTP media clock stream
originating from the XMOS talker. The MRP client of the
JACK media clock backend has established the
connection to the XMOS talker after 12 seconds. The
figure is enhanced and clipped at 60 seconds to show the
anomalies (packet rates of 7 and 9 packets per
millisecond) between around 30 and 50 seconds.

2. IEEE 1722 AVTP MEDIA CLOCK SYNCHRONIZATION
CONCEPT FOR THE JACK AUDIO CONNECTION KIT

The signal processing concept is designed for a completely digital
signal chain, i.e. neither analog-digital (ADC) and nor digital-analog
converters (DAC) are present. Without the local clock of an ADC
the processing server would have no media clock source to synchro-
nize to. Consequently, it is not possible to adjust the local clock
to match the gPTP grandmaster clock. With a media clock stream
as clock source, no additional hardware besides the network inter-
face is required. The media clock stream maintains a constant media
clock originating from a gPTP derived word clock of the ADC on the
XMOS development board. The ADC of the XMOS development
board is running at a sampling rate of 48 kHz and is configured as an
AVB talker. It automatically acknowledges any connection request
of a listener, without the use of IEEE 1722.1 ACMP. The different
clock source concepts are explained in [16] in detail.

2.1. Packet Rate and Padded AVTP Packets

The transmission interval of 125 µs, that is defined by the SR Class
A, has the same constant transmission interval for higher sampling
rates as well. Instead of sending packets in a shorter interval, the
amount of samples per packet is adjusted. For a sampling rate of
48 kHz six samples per audio channel are written to an AVTP packet
(12 and 24 samples for 96 kHz and 192 kHz respectively):

125 µs =
6 samples
48 kHz

⇒ 8 packets per millisecond (1)

This way the transmission interval can maintain the media clock of
the talker for the listener to recover. Figure 1 shows the packet rate
of 8 packets per millisecond of the media clock stream originating
from the XMOS development board. Figure 2 shows the probabil-
ity distributions of the transmitted AVTP packets of the media clock
stream, measured on the processing server with hardware packet ar-
rival timestamps. The calculated mean value of 124997 ns and stan-
dard deviation of 309.35 ns meet the defined transmission interval
for a SRP class A domain of 125 µs perfectly.

In section 3 we will evaluate the three JACK period sizes of 32,
64 and 128 samples. The remaining samples of a JACK period, that
occur since six (samples per AVTP packet) is not an integer divisor
of either 32, 64 nor 128, are calculated in equation (2):
⌈N samples per JACK period
6 samples per AVTP packet

⌉
= k packets per JACK period (2)

Samples AVTP Packets

32 d 32
6
e = d5 + 1

3
e = 6

64 d 64
6
e = d10 + 2

3
e = 11

128 d 128
6
e = d21 + 1

3
e = 22

Table 1: Samples and packets per JACK period

This means that for 32 samples per period every 6th AVTP packet
carries a fraction of the six samples, in this case 1/3 = 2 samples,
and the remaining four samples are padded with zeros - for 64 sam-
ples every 11th packet has four samples, the rest is padded with zeros
and for 128 samples every 22th packet has two samples and the rest
is padded with zeros.

23

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 2: Probability distribution function of the IEEE 1722 AVTP
media clock stream originating from the XMOS talker.
The measurement shows the network hardware receive
timestamps on the server side.

2.2. AVB Listener as JACK Media Clock Backend

The media clock listener is the same as in the AVB server implemen-
tation [7] and is integrated by a C++ wrapper that was inspired by
Netjack [21], i.e. only the Read() (and Write(), which is re-
quired for proper operation) member functions are used to advance
the JACK server according to the configured sample rate. As an ad-
ditional configuration, the JACK AVTP backend is required to run
a dummy stereo channel setup, because JACK clients could not be
activated otherwise.

int init_1722_driver(
IEEE 1722_avtp_driver_state_t *IEEE 1722mc,
const char* name,
char* stream_id,
char* destination_mac,
int sample_rate,
int period_size,
int num_periods

)

Called with the appropriate arguments, the initialization proce-
dure starts a MRP thread, which takes care of the resource reserva-
tions for the media clock listener. After the Listener has established
the path to the media clock talker and the JACK server has started,
the backends’ Read() member function calls the wrapped proce-
dure:

uint64_t media clock_listener_wait_recv_ts(
FILE* filepointer,
IEEE 1722_avtp_driver_state_t **IEEE 1722mc,
struct sockaddr_in **si_other_avb,
struct pollfd **avtp_transport_socket_fds,
int packet_num

)

This procedure is blocking until an AVTP media clock packet
arrives. The struct pollfd was used to keep blocking and non-

Figure 3: Different kernel and userspace layers involved in the
JACK media clock backend. The socket is filtered with a
Berkeley Packet Filter (BPF) for the correct destination
MAC address, Ethernet type and IEEE 1722 message type
of the media clock stream packets. The stream ID is
filtered after an AVTP packet is received in userspace.

blocking procedure signatures consistent, since the AVB server’s
main process also uses a media clock listener.
The raw Ethernet socket, that is used to receive the media clock
stream, has the socket option SO_TIMESTAMPING set to:

ts_flags |= SOF_TIMESTAMPING_RX_HARDWARE;
ts_flags |= SOF_TIMESTAMPING_SYS_HARDWARE;
ts_flags |= SOF_TIMESTAMPING_RAW_HARDWARE;

The network device driver is configured to timestamp any incoming
packet with a struct hwtstamp_config set to:

hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
hwconfig.tx_type = HWTSTAMP_TX_ON;

Experience has shown that HWTSTAMP_TX_ON has to be switched
on for the reception of the media clock stream packets, even though
the socket is not used for transmission, because the gPTP system
service is effected otherwise and loses its synchronization to the PTP
master.

Considering the following code listing, after the received packet
was copied to the userspace buffer struct msghdr msgwith the
recv_msg() system call, the ancillary data in struct msghdr
msg is accessed in line 8. Initially, the macro CMSG_FIRSTHDR
returns a pointer to the first field of the ancillary data and stores it
in struct cmsghdr *cmsg. As long as there is ancillary data
available, the while-loop in line 9 cycles over the ancillary data of
the received message. When a SO_TIMESTAMPING field is en-
countered, the pointers to the hardware timestamp and the hard-
ware timestamp converted to system time are stored. The packet
arrival time in nanoseconds is converted from struct timespec

24

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

to unsigned int 64 and stored in the variable
pkt_arrival_ts_ns in line 17.

The current transmission interval of the packet is calculated after
the while-loop in line 25, the timestamp last_pkt_ts_ns of the
last packet is subtracted from the timestamp pkt_arrival_ts_ns
of the current packet. In line 26 the current timestamp is stored for
the next packet as last timestamp.

The variable pkt_num is an argument of the procedure and sup-
plied by the driver backend indicating the current packet number in
the JACK period. When pkt_num matches the calculated packet
numbers from table 1, a zero padded packet is sent.

If the pkt_num counter reaches the 6th, 11th or 22nd iteration,
adj_pkt_ts_ns is calculated in line 30 to precisely adjust the
JACK period. The remaining (modulus) samples of the JACK period
divided by six samples per channel per AVTP packet, is divided by
the sample rate and then scaled to nanoseconds in unsigned int
64 representation. This calculation accounts for the padded AVTP
packets calculated in table 1. The procedure returns
adj_pkt_ts_ns to the backend driver, which can adjust the JACK
period accordingly.

1 struct msghdr msg;
2 struct cmsghdr *cmsg;
3 uint64_t current_tx_int_ns = 0;
4 uint64_t last_pkt_ts_ns = 0;
5 ----------------------8<-----------------------
6 recv_msg(..., &msg, ...)
7 ----------------------8<-----------------------
8 cmsg = CMSG_FIRSTHDR(&msg);
9 while(cmsg != NULL) {

10 if(cmsg->cmsg_level == SOL_SOCKET
11 && cmsg->cmsg_type == SO_TIMESTAMPING){
12 struct timespec *ts_dev, *ts_sys;
13 ts_sys = ((struct timespec *)
14 CMSG_DATA(cmsg))+1;
15 ts_dev = ts_sys + 1;
16

17 pkt_arrival_ts_ns = ts_dev->tv_sec
18 * 1000000000LL
19 + ts_dev->tv_nsec);
20 break;
21 }
22 cmsg = CMSG_NXTHDR(&msg,cmsg);
23 }
24

25 current_tx_int_ns = pkt_arrival_ts_ns
26 - last_pkt_ts_ns;
27 last_pkt_ts_ns = pkt_arrival_ts_ns;
28

29 if(pkt_num == (*IEEE 1722mc)->num_pkts -1){
30 adj_pkt_ts_ns = (uint64_t) (
31 (((*IEEE 1722mc)->psize % 6) /
32 (*IEEE 1722mc)->srate) *
33 1000000000LL);
34 }
35

36 return current_tx_int_ns - adj_pkt_ts_ns;

3. EVALUATION

The quality of the synchronization to the media clock stream may be
analyzed in terms of the variation between the points in time, when
a JACK client is triggered and when a media clock stream packet is
received. We basically observe, how many media clock stream pack-
ets are received between two successive calls of the JACK backend
to the client’s process callback function. The AVTP backend is based
on counting the media clock stream packets, thus it is implicitly syn-
chronized to the media clock stream source. The ALSA backend is
not implicitly synchronized to the media clock stream source, which
is the reason for the development of the AVTP backend. A synchro-
nization would also be possible, since the media clock source and
the servers are synchronized to the gPTP network clock. The me-
dia clock source of the XMOS development board drives its audio
codec with a phase locked loop that locks onto the gPTP network
clock. The local sample clock of an audio device connected to a
server would also require a phase locked loop that is fed into the au-
dio device or a continuing calculation and adjustment between the
network and the audio time.

The “simple_client.c” example from the JACK source tree has
been modified to make a system call to the system clock, which
is synchronized to gPTP, with CLOCK_REALTIME every time the
JACK process callback is triggered. The measured timestamps are
written in the JACK shutdown callback function to file. Simultane-
ously, the JACK AVTP backend writes the timestamps from the an-
cillary data to file, as soon as JACK is shut down. In order to be able
to compare the client activation times of the ALSA backend with
those of the AVTP backend, a common time source is required. In-
stead of a local audio time that is adjusted to gPTP, we use the media
clock stream as common time source. The JACK server is launched
twice for this reason, one instance running with the ALSA backend
and the measurement client, and a second instance running only with
the AVTP backend to measure the media clock stream. The server
was connected to a Focusrite Solo Gen2 USB audio interface [22],
when the ALSA backend was measured.

The measurements were conducted with 32, 64 and 128 sam-
ples per JACK period with a sample rate of 48 kHz over a dura-
tion of five minutes, producing between ≈ 105 and ≈ 5 · 105 client
activations, depending on the period size. Furthermore, the AVTP
backend was measured with two different configurations. In the first
configuration, the differences of the successive packet arrival times
are accumulated, as it was explained in subsection 2.2 (AVTP Ad-
just). In a second configuration, a constant difference of 125, 000
(nanoseconds) is added each time, a media clock stream packet ar-
rives (AVTP Const). No buffer over- or underrun occurred in any of
the JACK backend configurations. The results of the measurements
are shown in table 2.

4. DISCUSSION

Table 2 confirms the primary motivation for the development of the
JACK AVTP backend, the ALSA measurements for each sample pe-
riod shows a broad distribution of client activation times, which is
further emphasized by its average and standard deviation. The ex-
pected value is not met in any configuration and the deviation is sig-
nificantly higher than with AVTP. This results in a JACK client and
a backend, which are not synchronized to the media clock. The re-
quired media clock stream packets per JACK period from table 1 are
hardly met.

25

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Media Clock JACK Client Activation Count
Stream Packet 32 Samples 64 Samples 128 Samples
Count AVTP Adjust AVTP Const ALSA AVTP Adjust AVTP Const ALSA AVTP Adjust AVTP Const ALSA

1 14099 0 15012 0 5936 0 0 0 0
2 0 0 19 0 0 0 0 0 0
3 1 0 32242 0 0 0 0 0 0
4 3 1 119103 0 0 0 0 0 0
5 16353 15328 7022 0 0 0 0 0 0
6 437342 406581 266913 0 0 5437 0 0 0
7 16416 15392 34865 0 0 61360 0 0 0
8 4 1 18 0 0 17693 0 0 0
9 1 0 0 2 1 282 0 0 0

10 0 0 0 8757 3275 9 0 0 0
11 0 0 0 204408 211261 2210 0 0 0
12 0 1 0 8817 3337 95166 1 0 0
13 0 0 0 2 0 70530 0 0 9
14 0 0 0 1 0 1634 0 0 2332
15 0 0 0 0 0 0 0 0 36583
16 0 0 0 0 0 0 0 0 2562
17 0 0 0 0 0 0 0 0 7
18 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 2824 3901 0
22 0 0 0 0 0 0 104961 107485 88
23 0 0 0 0 0 0 2891 3969 10814
24 0 0 0 0 0 0 0 0 61739
25 0 0 0 0 0 0 0 0 10292
26 0 0 0 0 0 0 0 0 54
27 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0

Average 5.8 6.0 5.2 11.0 10.7 10.6 21.6 22.0 21.3
Standard 0.88 0.26 1.35 0.28 1.61 2.54 2.71 0.26 3.79Deviation

Table 2: JACK client activation count in respect to media clock stream

26

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Comparing the two AVTP backend configurations for each sam-
ple period size shows, except for some outliers that account for less
than 1% of the activation counts, that both configurations provide
a equivalent solution. The averages and standard deviations of all
sample period configurations imply a synchronized JACK client and
backend. The required media clock stream packets per JACK period
from table 1 are mostly met, with slight deviations.

5. CONCLUSIONS

Inherently, the ALSA backend for JACK adds some drift to the signal
processing chain inside the Soundjack server network. Therefore, an
experimental IEEE 1722 AVTP media clock backend for JACK was
developed to overcome this problem. We could show that our solu-
tion for this problem is working and provides the desired synchro-
nization and it is not necessary to adjust the duration of each JACK
period with nanosecond accuracy.

Since the AVTP backend only receives AVTP packets, it is the-
oretically possible to run the backend on any PTP enabled device,
even when no prioritized transmission queues are provided by the
hardware - Intel I217 for example.

6. FUTURE WORK

Future work will focus on testing the Soundjack server network setup
in the real world, the public Internet instead of the campus network,
therefore adopting IPv6, with evaluation of the changes to the net-
work tomography, has to be done.

Furthermore, the AVB processing server network shall in the fu-
ture be migrated to function as a completely AVB capable JACK
backend, not just for media clock synchronization.

It will also be of interest to achieve a synchronization between
client and server via the public Internet. Mechanisms best suited for
this feature are already under investigation.

Acknowledgment
fast-music is part of the fast-project cluster (fast actuators sensors &
transceivers), which is funded by the BMBF (Bundesministerium für
Bildung und Forschung).

7. REFERENCES

[1] (2019, Feb. 8) Soundjack - a realtime communication solution.
[Online]. Available: http://http://www.soundjack.eu

[2] A. Carôt, U. Krämer, and G. Schuller, “Network music perfor-
mance (nmp) in narrow band networks,” in in Proceedings of
the 120th AES convention, Paris, France. Audio Engineering
Society, May 20–23, 2006.

[3] (2019, Feb. 8) Genuin classics gbr, genuin recording group gbr.
04105 Leipzig, Germany. [Online]. Available: http://genuin.de

[4] (2019, Feb. 8) Symonics gmbh. 72144 Dusslingen, Germany.
[Online]. Available: http://symonics.de

[5] (2019, Feb. 8) Jack audio connection kit. [Online]. Available:
https://jackaudio.org

[6] C. Kuhr, T. Hofmann, and A. Carôt, “Use case: Integration of a
faust signal processing application in a livestream webservice,”
in Proceedings of the 1st International Faust Conference 2018.

Mainz, Germany: Johannes Gutenberg-Universität Mainz, Jul.
17–18, 2018.

[7] C. Kuhr and A. Carôt, “Software architecture for a multiple
avb listener and talker scenario,” in Proceedings of the Linux
Audio Conference 2018. Berlin, Germany: Linuxaudio.org,
Jun. 7–10, 2018.

[8] H. Zimmermann, “Osi reference model -the iso model of ar-
chitecture for open systems interconnection,” in IEEE Transac-
tions on Communications, Vol. 28, No. 4, Apr. 1980, pp. 425–
432.

[9] Timing and Synchronization for Time-Sensitive Applications in
Bridged Local Area Networks, IEEE Std. 802.1AS, Mar. 2011.

[10] Virtual Bridged Local Area Networks - Amendment 14: Stream
Reservation Protocol (SRP), IEEE Std. 802.1Qat-2010, Sep.
2010.

[11] Virtual Bridged Local Area Networks - Amendment 12:
Forwarding and Queuing Enhancements for Time-Sensitive
Streams, IEEE Std. 802.1Qav-2009, Jan. 2010.

[12] Layer 2 Transport Protocol for Time-Sensitive Applications in
Bridged Local Area Networks, IEEE Std. 1722, May 2011.

[13] Device Discovery, Connection Management, and Control Pro-
tocol for IEEE 1722 Based Devices, IEEE Std. 17 221, Aug.
2013.

[14] (Revision of IEEE Std 802.1Q-2011) - IEEE Standard for Lo-
cal and metropolitan area networks–Bridges and Bridged Net-
works, IEEE Std. Std 802.1Q-2014, Dec. 2014.

[15] Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems, IEEE Std. 1588-2008, Jul.
2008.

[16] H. Weibel and S. Heinzmann, “Media clock synchronization
based on ptp,” in Audio Engineering Society Conference:
44th International Conference: Audio Networking, Nov
2011. [Online]. Available: http://www.aes.org/e-lib/browse.
cfm?elib=16146

[17] (2019, Feb. 8) User space api for time stamping of incoming
and outgoing packets. [Online]. Available: https://www.kernel.
org/doc/Documentation/networking/timestamping.txt

[18] I. Corp. (2019, Feb. 8) Intel R© ethernet controller i210-at
product specifications. [Online]. Available: https://ark.intel.
com/products/64400/Intel-Ethernet-Controller-I210-AT?_ga=
1.64461743.1696258023.1478891344#tab-blade-1-0

[19] (2019, Feb. 8) Openavnu - an avnu sponsored repository for
time sensitive network (tsn and avb) technology. [Online].
Available: https://github.com/AVnu/OpenAvnu/

[20] (2019, Feb. 8) Xmos ltd. / attero tech inc. [Online]. Avail-
able: http://www.atterodesign.com/cobranet-oem-products/
xmos-avb-module/

[21] A. Carôt, T. Hohn, and C. Werner, “Netjack – remote music
collaboration with electronic sequencers on the internet,” in
Proceedings of the Linux Audio Conference 2009. Parma,
Italy: Institute of Telematics University, Deutsche Telekom AG
Laboratories, University of Lübeck, Germany, 16–19, 2009.

[22] (2019, Feb. 8) Focusrite audio engineering ltd. United
Kingdom. [Online]. Available: https://us.focusrite.com/
usb-audio-interfaces/scarlett-solo

27

28

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

TPF-TOOLS - A MULTI-INSTANCE JACKTRIP CLONE

Roman Haefeli

ICST (Institute For Computer Music And
Sound Technology)

Zurich University of the Arts, Switzerland
roman.haefeli@zhdk.ch

Johannes Schütt

ICST (Institute For Computer Music And
Sound Technology)

Zurich University of the Arts, Switzerland
johannes.schuett@zhdk.ch

Patrick Müller

ICST (Institute For Computer Music And
Sound Technology)

Zurich University of the Arts, Switzerland
patrick.mueller@zhdk.ch

ABSTRACT

Tpf-tools are used to establish bi-directional, low-latency, multichan-
nel audio transmission between two or more geographically distant
locations. The tool set consists of a server part (the tpf-server) and
a client part (the tpf-client) and is heavily inspired by the JackTrip
utility. It is based on the same protocol. It facilitates the handling
of many concurrent audio transmissions in setups with more than
two endpoints. Also, it eliminates the requirement of one endpoint
having a public IP address or port forwarding configuration.

1. INTRODUCTION

The JackTrip[1] utility has proven to be a very useful and versatile
tool for our research into the so-called telematic performance format
(tpf), staged (musical or other kinds) events that take place simulta-
neously at two or more geographically distant concert venues. For
these concerts, the stage is designed to blend physically present local
performers with their remote counterparts, represented by means of
low-latency video (UltraGrid 1) and audio (JackTrip) transmission.

1.1. The obstacles of current IP networks

We have successfully used the JackTrip utility in many of our telem-
atic concerts. The utility operates in two modes: client mode and
server mode. For an audio transmission to take place, one end runs it
in server mode listening for an inbound connection, while the other
end runs it as client, thus initiating the connection. This works well
so long as the client "sees" the IP address of the server. In today’s
Internet, most computers touched by human beings are assigned an
IP address from a local area network (LAN) which is protected by
a NAT router 2 . Public IP addresses are usually only assigned to
headless servers and – apparently – NAT routers, but not to devices
touched by humans. This topology divides the Internet in service
providers and consumers and reflects the predominant capitalist ide-
ology of today’s Internet [2, Chapter 5]. At the same time, it hin-
ders our efforts to perform telematic concerts. Running JackTrip in
server mode at a concert venue requires a computer that has either a
public IP assigned, or the proper port forwarding configured on the
local network router. At venues where the performers are not the
owners or administrators of the local network, this often bears huge
administrative overheads and dealing with IT staff who may be more
concerned about security than artistic achievements.

1Software for low-latency video transmission http://www.ultragrid.cz/
2NAT (network address translation) routers separate the LAN from the

Internet. This increases security, because local computers are invisible from
the Internet. It is also a way to deal with IPv4 address exhaustion, because
all devices of a local network share one public IP address for outbound con-
nections.

1.2. The complexity of many nodes

Another complexity we have encountered is the planning and set up
of JackTrip connections when, not two, but three or (for a test situa-
tion) four venues are participating in an event. Two endpoints require
one link. Three endpoints require three links, while four endpoints
require six links. The number of links grows quickly with the num-
ber of endpoints. Events with more than two nodes require meticu-
lous and careful planning.

1.3. Our motivation

We are looking for ways to streamline our processes and improve
our tools in order to be able to shift our focus away from technical
to more artistic aspects. JackTrip is the tool of our choice, because it
is multi-platform, open source, uses JACK 3 and thus integrates well
with existing professional audio software (e.g. Ardour). However,
we saw an opportunity in adding a higher layer on top of the strong
basis JackTrip gives us. In our efforts, we have developed a tool set
that addresses the obstacles we’ve been experiencing:

• None of the endpoints need a public IP address.

• The client manages the audio transmissions to many endpoints
and abstracts the complexity of such setups away, while pre-
senting a simple, yet comprehensive interface to the user.

In this paper we present our tool set consisting of the tpf-client 4

(the software that is running on each participating endpoint) and the
tpf-server 5 (the software that enables communication between the
clients and coordinates audio transmissions).

2. VARIOUS CONNECTION MODES

2.1. Client connects to server (standard mode)

The JackTrip utility is designed so that both ends are sending simi-
larly formatted UDP 6 packets. In server mode, it opens a listening
socket that awaits for incoming connections. As soon as a packet ar-
rives, it starts sending packets to the sender address of the incoming
packets. In client mode, it immediately starts sending packets. The
transmission is established as soon as both ends are up and running.
This only works when the IP address of the server is visible to the
client.

3Jack Audio Connection Kit, a sound server daemon for connecting audio
applications and sound cards. http://www.jackaudio.org/

4The tpf-client is available at https://gitlab.zhdk.ch/TPF/tpf-client.
5The tpf-server is available at https://gitlab.zhdk.ch/TPF/tpf-server.
6User Datagram Protocol, a connectionless protocol based on the Internet

Protocol that operates on the Transport Layer (Layer 4) of the OSI model.
Applications with a strong focus on low latency often use it for transport.

29

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

2.2. Two clients connect to each other

A transmission can also be established when running both endpoints
in client mode so long as both clients specify both bind port and peer
port. The peer port of the first client matches the bind port of the
second client, and vice versa.

An example of a JackTrip setup with both instances running as
client:

$ jacktrip -c 192.168.0.12 --bindport 2000
--peerport 3000

$ jacktrip -c 192.168.0.11 --bindport 3000
--peerport 2000

This requires both ends to have an IP address visible to the other
party. If one or both endpoints are hidden by a NAT-firewall, a con-
nection cannot be established. However, this setup shows that the
JackTrip design does not mandate one party to run as server.

2.3. Connection using a UDP proxy

The fact that a transmission can happen with two endpoints both
running in client mode is crucial for the next step: establishing a
transmission where none of the endpoints are assigned a public IP
address. Since we want both endpoints to run in client mode, we
need a third party that has assigned a public IP address and thus
is visible for both endpoints, even when they are behind a firewall.
This third party acts as proxy for both endpoints by relaying pack-
ets from client A to client B and vice versa. This technique passes
most types of firewalls easily because the client initiates the connec-
tion. It works transparently for both endpoints as they do not have
to know their respective peer’s IP address. They simply connect to
the UDP proxy. Since the JackTrip packet format is agnostic of the
underlying transport protocol, all connection specific details are part
of the UDP header and the payload does not contain any reference
to the client address or port number. This allows the UDP proxy to
relay incoming datagrams as is, without inspecting or changing the
payload.

3. SUBSCRIPTION-BASED UDP PROXY

The simplest variant of a UDP proxy knows exactly two endpoint
addresses and relays packets between them. However, this design
mandates that each parallel transmission uses an instance of the UDP
proxy, each listening on a dedicated port. The purpose of the sub-
scription-based UDP proxy is to allow many parallel transmissions
on the same port. To know which endpoints belong to a certain trans-
mission, the endpoints send a so called token that is unique per trans-
mission. If two clients send the same token, a transmission between
those endpoints is established. This design allows an arbitrary num-
ber of transmissions to run on the same port, and each transmission is
protected from intentional or unintentional interference by the token.
Because of the requirement to send a token, the subscription-based
UDP proxy does not work with the traditional JackTrip, at least not
out-of-the-box 7 . Also, both parties intending to participate in a
transmission must first agree on a common token through a separate
channel.

7JackTrip could be wrapped into a script that first sends the token using
the same bind port before it starts JackTrip

3.1. Implementation

The tpf-server presented here uses a Python 8 script as subscription-
based UDP proxy. It uses two dictionaries (dicts) that are empty
at start-up: a token dict and a link dict. The token dict stores the
token string and sender adress when a token message is received.
The token message is a UDP packet containting a string like

_TOKEN XXXX

where XXXX is the token string, an arbitrary string of arbitrary length.
If a token message is received, its token string is looked up in the to-
ken dict. If there is no entry found, an entry is added to the token
dict with the token string as key and the sender address as value. If
another token message is received carrying the same token string but
from a different sender address, two entries are made to the link dict.
The first entry uses the address from the token dict as key and the
sender address of the last token message as value. The second en-
try uses the same two addresses, but key and value are interchanged.
After creating the entries to the link dict, the respective entry in the
token dict is deleted, so that the same token may be used later by
another party.

src: dst:

12.54.7.7:30001 195.175.247.53:4460

Incoming UDP datagram

src: dst:

195.175.247.53:4460 98.65.4.4.30005

Outgoing UDP datagram

src: dst:

62.32.31.237:50102 121.211.107.157:43211

121.211.107.157:43211 62.32.31.237:50102

12.54.7.7:30001 98.65.4.4.30005

98.65.4.4.30005 12.54.7.7:30001

Link Dict

UDP proxy listening on 195.176.247.53:4460

Figure 1: Subscription-based UDP proxy.

Since the UDP protocol does not guarantee that packets reach
their destination, the client must keep sending token messages at a
low rate (i.e. one message per second). When the client receives a
packet for the first time, it stops sending token messages.

3.2. Considerations

Creating two entries per transmission into the link dict seems like a
waste of memory, but it allows for a very quick look-up to determine
the destination on an incoming packet. Keeping the latency low has
the highest priority in our use case.

Although Python, as an interpreted language, is not among the
fastest, it was the preferred choice for rapid prototyping and exper-
imenting. It turned out that the UDP proxy written in Python was
never the bottleneck in our performance tests and although it causes
some CPU load under load, it does not seem to add a significant la-
tency to the UDP transport. There has not yet been a pressing need
to rewrite the UDP proxy in a more performant way.

8Python is an interpreted programming language supporting many
paradigms. https://www.python.org/

30

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

4. THE TPF SERVER

The complexity of a setup increases quickly with the number of par-
ticipating endpoints, as we showed before. We wanted software to
manage the complex part of handling many parallel audio transmis-
sions. The engineer should not have to deal with many terminal win-
dows for running many JackTrip instances and know what IP address
and port number each of their peer uses. Simplifying the involved
processes was the main motivation for defining a protocol [3] and
writing a server software implementing that protocol. It is worth
noting that this part is orthogonal to the problem of audio transmis-
sion. The tpf-server is not involved in transmission of any audio data.
Rather, it enables clients to know about each other and to let them
initiate audio transmissions. The communication between server and
clients uses TCP and runs on different ports.

4.1. Based on netpd-server and OSC

In order to reduce development efforts, the design is based on exist-
ing software – the netpd-server 9 – that was extended to implement
the tpf-server presented here. The netpd-server is a relay for OSC
messages and was developed for the netpd [4] project, a framework
based on Pure Data (Pd) [5] that allows geographically remote clients
to do electronic music together in real-time by synchronizing instru-
ment states. The netpd framework uses OSC [6] for the communica-
tion, while OSC messages are encapsulated by SLIP [7] and trans-
ported by TCP. The OSC 1.1 specification [8] proposes SLIP to de-
limit OSC messages when transported by stream-oriented protocols
such as TCP. While many OSC applications use UDP for transport
for simplicity and speed, data integrity and correct order are crucial
for the netpd framework. Also, for the tpf-server, whose purpose is
to coordinate clients and allow them to share data, and which is not
involved in the audio transmission directly, reliability trumps speed.
TCP has a notion of connection, so for a server using TCP, there is
no ambiguity in knowing when a client joins or leaves. With UDP
it is much harder to clearly determine a client’s state (e.g. joined or
left).

4.2. netpd-server

The netpd-server defines rules about how incoming OSC messages
are forwarded to the connected clients. This allows clients to send
messages to specific peer clients, broadcast messages to all clients,
or send messages to the server itself. The netpd-server forwards OSC
messages according to the first element of the OSC path. The set of
supported values for this field is listed here:

field forwarding action
b message is broadcast to all connected clients
s message is intended for the server itself (not forwarded)

<int> message is forwarded to the client with ID <int>

Table 1: List of valid receivers

4.3. The tpf-server internals

The tpf-server loads the netpd-server as an abstraction [9]. It re-
serves the OSC name space /s/tpf, which means all received mes-

9The netpd-server is part of the netpd framework developed by Roman
Haefeli. The code is hosted at https://github.com/reduzent/netpd-server

sages whose OSC address starts with /s/tpf are handled by the
tpf-server. The protocol is built on top of the protocol of the netpd-
server. The exact protocol specification is part of the tpf-server pack-
age [3]. Since the protocol is based on OSC, it is agnostic of any
software framework or programming language. It could be imple-
mented in any language where libraries exist to deal with network
sockets and the OSC protocol. It was implemented in Pure Data,
because it uses parts already written in Pure Data. The tpf-server
keeps track of the connected clients and coordinates a few common
parameters that the endpoints must agree on before they are able to
establish an audio transmission. It manages a few data containers
and notifies clients about updates when data is changed. The tpf-
server sends current data to the clients upon their request, while it
is the duty of the clients to request data if they receive an update
notification from the server. The data containers include:

4.3.1. Client ID And Name

When a client connects, the tpf-server assigns it a unique client ID
(unique in the scope of the session). This ID, usually a small integer
number, is used to identify each client. The same ID is also used
to send an OSC message to a specific client by putting it into the
first field of the OSC path. After establishing the connection to the
server, the client registers a name (e.g. given name or location). It
allows clients to display the list of connected peers in a more human-
friendly way (see Client List).

4.3.2. Parameter List

The client with the smallest ID, usually the one that connects first to
the server, is given a special role: it has the authority to set or change
a set of parameters that all clients are mandated to use for the current
session – samplerate, blocksize, bit resolution. Those parameters are
distributed to all clients and the clients either adjust their settings or
report an error when a mismatch occurs. The parameter list is not a
hard-coded set. Instead, it is fully defined by the clients.

4.3.3. Client List

The tpf-server keeps a list of all connected clients with their ID,
name, IP address and role. Whenever a client connects or discon-
nects, the tpf-server broadcasts an update of this list to all clients. It
is therefore crucial that clients terminate their connection properly,
otherwise they keep appearing in the client list until the connection is
considered terminated. This period depends on the operating system.

4.3.4. Link List

In a full mesh network, each node is linked to every other node. If n
is the number of nodes, the number of links (l) is:

l =
n(n− 1)

2
(1)

The tpf-server assigns each pair of clients a link ID, so each link
ID associates two clients. The tpf-server sends each client its own
list of their peer’s client IDs along with the corresponding link ID.
Clients use the link ID to establish the audio transmission to a spe-
cific peer. Early versions used one server port per transmission and
tpf-client used the link ID as the port offset parameter for running
JackTrip. In the current version, the link ID is used to generate a
token string. Two clients using the same ID and thus the same token
string are linked by the subscription-based UDP proxy.

31

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

When every transmission was using its dedicated UDP port, it
seemed appropriate to let the server, as a central authority, assign
link IDs to avoid collisions, but also to ensure that only IDs cor-
responding to an active UDP proxy would be assigned. With the
subscription-based UDP proxy, this coordination task became moot,
as clients could also negotiate a token by peer-to-peer communica-
tion without involving the server. Future versions of the tpf-server
might remove the link list.

5. THE TPF-CLIENT

5.1. Written in Pure Data

The tpf-client is implemented in Pure Data, so it can be built on top
of an already existing framework. For communication to the server,
parts from the netpd client have been reused. Designed as a real-time
audio programming language, Pure Data has already covered many
aspects of dealing with low-latency audio. Furthermore, part of the
Pd "eco system" is a vivid community that has been contributing
many libraries extending the functionality of the software. Namely,
there are so-called externals for parsing and formatting OSC mes-
sages (osc) and for accessing network sockets (iemnet). Pure Data
has native JACK support built-in and runs on a variety of platforms.

5.2. Implementation

The purpose of the tpf-client is to manage audio transmissions to one
or many peers joining the same session. It is the implementation of
the client side of the tpf protocol. First drafts only implemented the
management aspects in order to get the necessary information for
starting the original JackTrip utility with the appropriate command-
line arguments, so the audio transmission part was left completely
to JackTrip. It was later decided to also re-implement the JackTrip
utility as an abstraction.

5.2.1. Rewrite of JackTrip as Pd abstraction

Implementing the audio transmission part in Pure Data has some ad-
vantages:

• The lack of a stable and feature-complete Pd external for run-
ning system commands makes it hard to consistently control
many JackTrip instances from Pd. JackTrip reimplemented as
a Pd abstraction is easier to control and interface with.

• An implementation of the JackTrip protocol in Pd allows to
extend it, if necessary. A small addition – the subscription by
sending a token message – to the JackTrip functionality was
necessary to support the subscription-based UDP proxy.

• Although able to create many JackTrip connections, the tpf-
client appears as one JACK client, which somewhat simplifies
the process of drawing connections in the connections dialog
of QjackCtl.

• Since the audio signals travel through Pd, some signal pro-
cessing could be applied. The current implementation doesn’t
apply any processing, though.

• Since the audio signals travel through Pd, signal level mon-
itoring can be used and graphically represented in the client
user interface.

• Signal path can be used to measure round-trip time of the au-
dio signal with built-in latency meter.

5.3. User interface

Figure 2: The tpf-client user interface.

The user interface displays a few configuration parameters that
are settable before the connection to the server is initiated:

• name

• hostname (or IP address) of the tpf-server

• blocksize (of the JackTrip packets)

• number of channels (outgoing)

• queue buffer size

The samplerate and bit resolution cannot be changed in the client.
The bit resolution is hard-coded to 16 bit. The samplerate is man-
dated by the JACK server and is inherited by Pd. After the connec-
tion is established, those configuration parameters become locked
and cannot be changed until the session ends.

The client registers its name and either uploads the audio pa-
rameters such as samplerate, blocksize, bit resolution to the server
or matches them against the mandated parameters, if another client
already has configured those parameters. If there is mismatch be-
tween configured and mandated parameters, the client either reports
an error (mismatch with samplerate, bit resolution) or silently ad-
justs the parameter (mismatch with blocksize). It is worth noting that
blocksize configured in the tpf-client is decoupled from the block-
size used by the JACK server. This allows clients to run JACK with
deviant blocksizes. After successfully having registered the name
and matched audio parameters, the connection button (top left) turns
blue to indicate that the client is ready for audio transmissions.

5.4. Managing transmissions

Peer clients are each listed in a separate row in the client interface.
Audio transmissions are not started automatically, but are initiated by
a user on either side by clicking the left-most button in the row. The
button on the respective row on the peer’s client starts flashing. Only
when confirmed by the other end by clicking on the flashing button
is the audio transmission started. The number of received channels
is represented by the number of squares turning from grey to black
in the respective row. Depending on the signal level of each chan-
nel, the square changes color from black (silence) to bright green
(full amplitude). The number in each square corresponds with port
number of the tpf-client in the QJackCtl connection dialog.

5.5. Transmission monitoring

During an audio transmission, three types of glitches are counted and
displayed in the respective row:

32

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

DROP number of dropped packets. Late packets that miss their
time frame to be played back are also considered dropped.

GLITCH number of audible audio glitches. Often, many packets
are dropped in a row, resulting in one audible glitch. Thus, the
number of audible artefacts is always smaller than the number
of dropped packets.

OOO number of packets received out of order. If an out-of-order
packet misses its time frame, it is dropped. Otherwise it is
played back in correct order.

All counters are reset to zero when the audio transmission is
restarted. Although those counters are not of much use during a real
concert (not much can be done about bad statistics), they might help
compare the quality of different network links, when testing setups
or internet providers.

5.6. Message and chat window

Beside the main window, tpf-client’s interface has a message win-
dow, where info, warning and error messages are displayed. There is
also a built-in chat in the chat window. A channel of communication
not involving audio is often desired.

5.7. Built-in latency measurement tool

To measure the overall round-trip time of the audio signal, both end-
points need to configure the audio path accordingly. The method is
robust enough to allow the signal to be played back by a speaker
and recorded with a microphone, even in a mildly noisy environ-
ment. The signal path of a full round-trip measurement is shown in
Figure 3 .

tpf-client

tpf-server

tpf-client ~~

Figure 3: Signal path of latency measurement.

5.8. Adding artificial latency

The tpf-client allows each audio transmission to add an artificial au-
dio delay. By adjusting the delay, it is possible to target a specific
total round-trip time. Reasons for latency adjustment include:

• The performance of a certain musical piece requires the per-
ceived latency to be aligned to the given tempo of the work.

• In a three-node setup, where one peer location is far more
remote than the other, the un-adjusted latencies differ signif-
icantly, so it might be desired to "harmonize" the perceived
latencies by artificially increasing the "distance" of the closer
peer.

5.9. Considerations

Certain aspects of writing software in Pd are difficult. Designing a
graphical user interface is relatively hard and the graphical represen-
tation is bound to pixel sizes and cannot be scaled dynamically (i.e.
by resizing the window). Also, it is not possible to create dynamic
interfaces that display different content depending on context. Due
to those limitations, it was decided to restrict some capabilities of
the client in order to provide a simple and consistent interface. The
number of channels per audio transmission is limited to 8. Also, the
maximum number of displayed peers and thus the number of con-
current audio transmissions is limited to 8. This limits the overall
number of connected client being able to interact with each other to
9. Those limitations are not imposed by the tpf-server or the pro-
tocol, and the client could be adapted if need be. They are abitrary
choices and during the past year of using the tpf-tools, those limits
never have been reached in real life.

Unlike the original JackTrip implementation, each party in a
setup using the tpf-tools can choose the number of channels to be
sent individually. This saves bandwidth and might improve qual-
ity. Also, the configured blocksize is not dependent on the blocksize
mandated by the JACK server. This can be an advantage, since the
value for the most optimal JACK configuration might differ between
clients.

6. EXPERIENCES AND DISCUSSIONS

We were interested to know how the usage of the tpf tools impacts
audio quality and overall latency. We performed tests to compare
the usage of the UDP proxy with a traditional JackTrip client-server
connection. We wanted to know whether the usage of the UDP proxy
has an influence on the number of dropped packets. In another test,
we examined the latency differences between using a UDP proxy
and a direct JackTrip connection. We also examined, whether the
tpf-client imposes a penalty to the quality of the audio transmission
compared to the original JackTrip.

6.1. Dropped packets imposed by UDP proxy

For counting glitches (which are a result of dropped packets), we sent
a 1kHz-sine-tone through JackTrip to a remote JackTrip instance,
that looped back the signal, and recorded the result for a predeterim-
ined period of time. We used the -z commandline option of Jack-
Trip, so that glitches were visually more easy to spot in the wave-
form. Then we counted the glitches by loading the recorded sound
file into a sound editor and examining the discontinuities in the wave-
form. We were not able to determine a significant difference between
a direct link and a link using the UDP proxy. At another instance,
that was totally unrelated to the test series, we experienced many
dropped packets. We later found out that the reason was a bug in the
driver of the virtual network interface of the virtual machine the UDP
proxy is running on. While the UDP proxy usually does not impact
the number of dropped packets negatively, there is a plethora of pos-
sibilities as to why the UDP proxy might behave badly, because it

33

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

depends on hardware, on the operating system and of the software
itself. These sources of error do not apply to a direct JackTrip link.

6.2. Latency imposed by UDP proxy

At the time of comparing the latency of a direct link to the UDP
proxy, the tpf-client had not been written. So a simple tool in Pd was
built to send a single UDP packet to a remote location, that sends
back the packet immediately. The tool measures the delay betwen
sending and receiving the packet. The average travel times turned out
to be identical for both, a direct link a link using the UDP proxy. This
behavior was consistent with different remote locations. This can be
eppxlained by the fact that both, the computer taking the samples and
the server running the UDP proxy, were located at the same campus.
By using tools like mtr or traceroute, we found out that the number of
hops between the computer taking samples and the remote computer
was the same for both link types. In a scenario where both endpoints
are located outside the campus hosting the UDP proxy, using the
UDP proxy adds additional latency. The amount depends on how far
the UDP proxy is away from the direct network path between both
endpoints.

6.3. Performance of the tpf-client

We also tried to examine the impact of using tpf-client compared
to the original JackTrip. It turns out that Pure Data adds one block
of additional latency, because the way it communicates with JACK
decouples its audio processing from the strict graph of the JACK
server. Many other JACK clients like JackTrip are tightly coupled
and do not add additional latency. When using a blocksize of 128 at
a samplerate of 48kHz, the penalty of using tpf-client is 2.6666 ms.
It increases with larger blocksizes or lower samplerates.

Because Pd interfaces the JACK server differently, it is possible
that Pure Data’s audio processing experiences audio drop-outs while
the JACK server does not. This means that the tpf-client introduces a
new source of possible buffer underruns. From our experience, this
theoretical penalty has not become manifest in more glitches when
using tpf-client, at least not when running tpf-client on a macOS
system. On Linux, Pure Data was found, in some situations, to be
the source of glitches when not running with realtime privileges. It
was usually simple to remedy the situation.

6.4. Shortcomings of the JackTrip protocol

While measuring the number of glitches with different combinations
of blocksize and number of channels, we found there was a sudden
increase in glitch rate when the number of channels exceeded a cer-
tain value. When running two parallel transmissions with each only
carrying half the channels, we experienced a low rate of glitches. By
running other tests with the tool iperf, which allowed us to set the
rate and size of UDP packets, we found that link capacity was only
one limiting factor. Not less important was the so-called Path MTU
10 . UDP packets larger than the Path MTU are fragmented during
transport. The loss of a single fragment results in the loss of the
whole UDP packet. The likeliness of a UDP packet being dropped
increases with the amount of fragmentation it experiences. For best
performance, the UDP packet size should not exceed the Path MTU.

10Maximum Transmission Unit, is the maximum packet size that is a trans-
mitted in a single network layer transaction, while Path MTU refers to the
maximum packet size that is transmitted through all intermediate hops with-
out fragmentation.

By running tests with iperf, we were not able to saturate a network
link with a UDP stream, when choosing a relatively large packet size
(e.g. 16000 bytes). By selecting a smaller packet size (e.g. 1400
bytes), we were able to achieve a data transfer rate close to the theo-
rethical maximum while still keeping the number of dropped packets
low. This finding shows that the JackTrip protocol is not suitable for
all kinds of payloads, since the UDP packet size depends on bit res-
olution, number of channels and blocksize:

packetsize = HUDP +H jacktrip +N channel × bres

8
×Bbuffer (2)

where HUDP = Header size of UDP datagram,
H jacktrip = Header size of JackTrip frame,
N channel = Number of channels,

bres = bit resolution,
Bbuffer = buffer size

Larger numbers of channels or blocksize result in UDP packet
sizes bigger than the optimal size. With a typical Path MTU of 1500,
and a given blocksize of 128, the largerst number of channels still
fitting into the Path MTU is 5 (1296 bytes). A single audio transmis-
sion with a high number of channels could be split into two or more
parallel transmissions with a lower number of channels in order to
reduce the resulting packet size. However, synchronization between
the transmissions is not guarantueed and therefore this is not a suit-
able solution. The ability to detect the Path MTU and to optimize
UDP packet size by splitting a transmission into many, while keep-
ing synchronicity, are features that still need to be researched.

6.5. UDP hole punching

While there is none or only a negligible penalty for using the UDP
proxy when it is located close to one participating party, it might
add significantly to unacceptable latency, when the participating par-
ties are all located geographically distant from it. In terms of net-
work latency, using a direct link is sometimes as good, and in many
cases clearly superior to using a proxy. A technique called UDP
hole punching allows us to establish a direct UDP conncetion be-
tween two end-points, both acting as client, that is able to traverse
many types of NAT-firewalls. NAT-firewalls usually let an incoming
UDP packet pass, when its receiver address (IP and port) matches the
sender address of a previously outgoing UDP packet. That is because
UDP is a stateless protocol and has no notion about connection. That
is how NAT-firewalls discern outbound connections (that are usu-
ally allowed) from inbound connections (that are usually blocked).
Before establishing the connection, both endpoints contact a central
server to learn about their peer’s public IP address and port number.
Then they start sending packets to the address they learned. Because
this happens on both sides, the firewall on either side "thinks" the
connection was initiated from a local client and it will pass incoming
packets. The technique is already used in webRTC and IP telephony
applications. The tpf-client supports UDP hole punching as an ex-
perimental feature. By double-clicking (instead of single-clicking)
the left button in the peer row an audio transmission using a direct
link is requested. There are still many scenarios where establishing a
such link fails. Supporting more cases and making UDP hole punch-
ing a viable option is certainly a field worthy of further exploration.

34

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

7. ACKNOWLEDGEMENTS

Our research was funded by the Swiss National Science Foundation
11 and took place at the Institute For Computer Music And Sound
Technology 12 (ICST), Zurich University of the Arts, Switzerland.
Over the course of two years, we have been working within a team
that explored many aspects of telematic performances, including sce-
nography, audio engineering, audio and video streaming, network
technology and considerations in the field of media theory. We are
grateful for the collaboration with those very interesting people and
feel there is still a lot waiting to be explored and further researched.
We have been working with Matthias Ziegler, flutist and head of the
research group, Benjamin Burger and Joel De Giovanni, video artists
and scenographers, Bojan Milosevic, composer and researcher, Gina
Keller and Ernesto Coba, audio engineers. We also thank all col-
laborating parties spread around the world for having showed the
willingness to organize and perform telematic concerts with us and
to use and test our tools. We appreciate being a part of this vivid
community.

8. REFERENCES

[1] Juan-Pablo Caceres and Chris Chafe, “JackTrip: Under the
Hood of an Engine for Network Audio,” Journal of New Mu-
sic Research, 2010.

[2] Robert W. McChesney, Digital Disconnect: How Capitalism is
turning the Internet against Democracy, The New Press, New
York, 2013.

[3] “tpf: Protocol Specification,” https://gitlab.zhdk.
ch/TPF/tpf-server/blob/master/protocol_
specification.txt.

[4] Roman Haefeli, “netpd - a Collaborative Realtime Networked
Music Making Environment written in Pure Data,” in Linux Au-
dio Conference, 2013.

[5] Miller Puckette, “Pure Data,” http://puredata.info,
1996, Software.

[6] “Open Sound Control,” http://opensoundcontrol.
org/, Protocol.

[7] J. Romkey, “A Nonstandard For Transmission Of IP Datagrams
Over Serial Lines: SLIP,” Tech. Rep. RFC 1055, IETF, Network
Working Group, 1988.

[8] Adrian Freed and Andy Schmeder, “Features and Future of
Open Sound Control version 1.1 for NIME,” in NIME, 2009.

[9] Miller Puckette, “Pd Documentation,” https://puredata.
info/docs/manuals/pd/x2.htm#s7.1, 2.7.1. abstrac-
tions.

11SNF: http://www.snf.ch/
12ICST: https://www.zhdk.ch/en/research/icst

35

36

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

A CROSS-PLATFORM DEVELOPMENT TOOLCHAIN FOR JIT-COMPILATION IN
MULTIMEDIA SOFTWARE

Jean-Michaël Celerier

SCRIME
Université de Bordeaux, France

jeanmichael.celerier@gmail.com

ABSTRACT

Given the relative stagnation in single-thread performance of many
processors in the recent years, made even worse by the recent security
findings such as SPECTRE or L1TF which led to restrictions in ex-
isting features and decreased performance for the sake of security, it
is necessary to find new ways to improve the run-time performance
of dynamic multimedia systems. In this paper, we present the in-
troduction of a just-in-time compiler in the ossia score interactive
score authoring and playback software. We discuss in particular the
creation of a toolchain and software development kit for C++ just-in-
time compilation on the three major desktop platforms, the challenges
and benefits caused by the use of C++ in terms of standard library
requirement, but also the benefits that the system offers in terms of
live-coding.

Keywords: interactive scores, just-in-time compilation, toolchains

1. INTRODUCTION

Users of multimedia software demand two features which can be hard
to reconcile. On one hand, they ask for more performance, the ability
to run more tracks, add more effects, etc. On the other hand, they
request more dynamic behavior, and easily extensible systems – in
particular, systems which do not require the user to write Makefiles and
set-up a compilation toolchain. But such a dynamic behavior generally
comes at a cost: for instance, Javascript, Lua or Python are often
integrated with media environments, such as Blender, ossia score,
and Renoise. These languages can have undesirable properties in low-
latency audio environments: they can cause spurious dynamic memory
allocations, which prevents real-time guarantees to be ensured.

Ongoing advances in just-in-time compilation can to some extent
reconcile these needs. The LLVM project [7] provides simple APIs
to integrate compiler and assembler in C++ software, through the
MCJIT and OrcJIT sub-libraries.

The benefits of just-in-time compilation have been known for
a long time [2] ; of particular interest to us is the ability of just-
in-time compilers to adapt to the exact CPU type available in the
user’s computer. This can lead to great performance improvements:
modern compilers are able to generate correctly vectorized code for
vector instruction sets, such as SSE, AVX, AVX-2, AVX-512 on x86-
based platforms, or Neon on ARM platforms. But in the traditional
compilation model, the author of the software has to know beforehand
for which instruction set the software shall provide optimized routines,
and either write them manually in assembler or with intrinsincs, use
compiler-specific extensions such as GCC’s function multiversioning 1

or resort to manual run-time dispatch to the correct function according
to detection of the user’s CPU. This leads to an increase in executable

1https://lwn.net/Articles/691932/

size for all the users of the software, and can be quite time-consuming
for the developer. Thus, we propose to leverage JIT compilation for
some of the most performance-critical parts of media software so that
they can be compiled in the most optimal way for the user’s CPU.

The proposed system simply compiles C++ code. This is in con-
trast with many approaches such as Faust [11] for audio signal process-
ing, PostgreSQL [13] for improvement of the SQL query performance
or the language created by Avramoussis et al. for transformation of
geometry assets in the VDB format [1]. These systems all provide
custom domain-specific languages (DSL) to solve a well-defined task.
This has the advantage of freeing oneself from C and C++’s compli-
cated legacy and generally simplify the language semantics, but also
means that:

• A large amount of work must be provided by the new language
authors.

• The language won’t necessarily be subject to new advances
in compiler development unless its authors keep working on
it: while some optimization phases can occur at later stage
if leveraging an existing compiler framework such as LLVM,
some optimizations require actual knowledge of the language’s
semantics and thus cannot be applied generically to any DSL.

• The language may not be able to leverage the existing corpus
of libraries available in C and C++.

The system is integrated in the ossia score software [6, 4] for
media creation. Part of the motivation is to improve run-time perfor-
mance while live-coding: the software currently features a Javascript
engine which can be leveraged to provide new behaviors at run-time.
While it is one of the software’s user-base’s favorite features, it comes
at a cost: no real-time safety due to the Javascript engine performing
many memory allocations, and huge “context switch” costs between
the native code world, and the interpreted Javascript engine world.
The objective is to improve the run-time performance, while retaining
some of the properties provided by live-coding: for this, Thor Mag-
nusson gives the hard criteria that a live-coding language should not
take more than five seconds between code and sound [10].

We will first give a brief overview of the OSSIA project, and
of the way just-in-time compilation is introduced into the system.
Then, we will give some pointers towards the creation of a cross-
platform toolchain which allows to support JIT compilation in the
three major desktop operating systems, Linux, macOS and Windows.
Some performance metrics will be discussed.

2. OSSIA PROJECT

ossia 2 is an open-source software suite composed of a library (li-
bossia) and a graphical user interface (ossia score) for managing

2https://ossia.io/

37

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

communication, mapping and time-scripting between various soft-
ware in interactive multimedia artworks. This toolset is cross-platform
(Windows, macOS, Linux), cross-protocol (OSC, MIDI, ...). The
libossia library has been ported to many creative coding tools (Able-
ton, Max/MSP, PureData, VVVV, Touch Designer, OpenFrameworks,
Processing…). It simplifies connecting and controlling various digital
production software together. Its main goals are to facilitate the devel-
opment of time-centric interactive artworks and lower the barrier of
entry to interactive media creation and authoring for emerging artists.

The ossia score software’s execution engine is based on a dataflow
architecture described in [3]. The user interface part leverages a
modern C++ and Qt-based generic document framework which can
be easily reused for other document-centric software. It features an
extensible plug-in API, undo-redo with automatic recovery in case
of crash, interface injection, serialization, selection handling and
multiple document management. It is specifically well-tailored to
hierarchical document structures and enforces strong typing practices.

This framework has been used in an unrelated software as a test
of its flexibility: a point-and-click game editor (SEGMent, developed
with Raphaël Marczak3).

Figure 1: ossia score, the main software leveraging this framework

3. C++ JIT

We chose to extend ossia score with a C++ just-in-time compilation
mechanism. The main motivations for this were:

• Using C++ allows reusing easily large amounts of existing
code ; for instance digital signal processing libraries such as
Gamma[12], KFR4 or FFmpeg5.

• Due to the amount of software built using C++, compiler opti-
misations for this language are still an active research topic [8,
9], which guarantees “free” performance improvements in the
following years.

• ossia score was already integrating Faust, which itself uses
LLVM, and thus acted as a gateway drug of sorts.

4. PLUG-IN AND PLUG-IN APIS

ossia score already provides multiple plug-in APIs: a simple API
based on defining a unit generator with strong type-safety features

3https://scrime.u-bordeaux.fr/Arts-Sciences/Projets/
Projets/SEGMent2-Study-and-Education-Game-Maker

4https://www.kfrlib.com
5https://www.ffmpeg.org

relating to the input and output ports of the unit generator, and a low-
level API which allows creating plug-ins that can modify every part
of the ossia score software: menus, panels, etc.

The JIT system leverages the existing plug-in APIs: the same
code can seamlessly be integrated either during the build of ossia
score, or at run-time. We give thereafter a brief overview of these two
APIs.

4.1. Safe process API

This API only gives the ability to provide a new unit generator to
the system. Inputs, outputs and controls are given as C++ constant
expressions, which generates the user-interface code at compile-time
and guarantee type-safety. The necessary boilerplate being relatively
low (for C++ code), it is viable to use in live-coding contexts. A
specific unit generator, for now simply named “C++ Jit process” in
the software, allows the user to input code using such API, which will
be live-recompiled ; the corresponding node will be instantiated.

Algorithm 1 provides an example of a “gain” node, which has
one audio and one floating-point input, one audio output, and applies
the gain to the input.

Algorithm 1 : A naive gain implementation in the “safe” plug-in
API. The inputs and outputs of the unit generator are declared in
the Metadata struct. A compile-time mechanism ensures that the
prototype of the run function conforms to the prototype, and that
the types of the arguments are correct. This increases type safety at
run-time when compared to the more traditional C-based solutions
where the programmer has to manually cast the inputs of the unit
generator into the correct type according to knowledge not part of the
type system.

struct Node

{

struct Metadata : Control::Meta_base

{

static const constexpr auto prettyName = "Gain";

static const constexpr auto controls

= std::make_tuple(Control::FloatSlider{"Gain", 0., 2., 1.});

static const constexpr audio_in audio_ins[]{"in"};

static const constexpr audio_out audio_outs[]{"out"};

};

using control_policy = ossia::safe_nodes::last_tick;

static void run(

const ossia::audio_port& p1, float g, ossia::audio_port& p2,

ossia::token_request, ossia::exec_state_facade)

{

const double gain = (double)g;

const auto chans = p1.samples.size();

p2.samples.resize(chans);

for (std::size_t i = 0; i < chans; i++)

{

auto& in = p1.samples[i];

auto& out = p2.samples[i];

const auto samples = in.size();

out.resize(samples);

for (std::size_t j = 0; j < samples; j++)

{

out[j] = in[j] * gain;

}

}

}

};

38

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

4.2. General plug-in API

This API enables its user to introduce new elements in most parts of
the software:

• New menus, panels, etc.

• Run-time additions to existing data types of the software.

• File loaders.

• Network and hardware protocols.

At the source code level, it mainly leverages the Abstract Factory
design pattern. A plug-in can define a new interface, identified by an
UUID. An example is given in algorithm 2:

Algorithm 2 : An example of interface definition in ossia score. This
particular interface allows a plug-in to register the handling of new
file types in the “Library” panel.

class LibraryInterface : public score::InterfaceBase

{

SCORE_INTERFACE(LibraryInterface, "9b94d974-9f2d-4986-a62b-

b69e51a4d305")

public:

~LibraryInterface() override;

virtual QSet<QString> acceptedFiles() const noexcept;

virtual QSet<QString> acceptedMimeTypes() const noexcept;

virtual void setup(

ProcessesItemModel& model

, const score::GUIApplicationContext& ctx);

virtual bool onDoubleClick(

const QString& path

, const score::DocumentContext& ctx);

// ...

};

Plug-ins can then register implementations for these interfaces,
which can be listed and accessed through a global context object.

The majority of the ossia score codebase is based on this API, the
actual software being itself merely a set of plug-ins implemented on
top of the base plug-in framework. The JIT extension discussed here
is itself a plug-in 6.

The original plan for ossia score was to rely on this plug-in API to
allow prebuilt extensions to be downloaded from a common repository.
Due to the ongoing development of the software, no ABI (Application
Binary Interface) stability guarantees are provided, which means that
plug-ins must generally be recompiled against the source code of
newer versions. This requires an extensive compilation architecture
which could not only rebuild and publish new versions of ossia score
but also the plug-ins regularly. Common service providers such as
Travis CI and Appveyor do not provide enough capacity for this to be
viable for an open-source, volunteer-led project.

Hence, the plan going forward is to distribute the plug-ins not
included in the base software under source code form. The JIT system
looks for addons on startup in the user library folder: for instance
~/Documents/ossia score library/Addons and simply compiles
all the source files of the addon together. This guarantees that API and
ABI breakage do not cause subtle run-time errors since the add-ons
are compiled against the exact source code that was used to build the
software, the headers being shipped as part of the package: if the API
has changed in a breaking manner, the add-on will not be compiled at
all and the user warned.

6https://github.com/OSSIA/score-addon-jit

5. A CROSS-PLATFORM TOOLCHAIN

ossia score being a cross-platform software, it is necessary to ensure
the same level of support on the three major operating systems: Win-
dows, macOS and Linux. The endeavor was relatively straightforward
on Linux thanks to the availability of the LLVM libraries and com-
pilers in package managers. In particular, the Linux implementation
of JIT compilation in ossia score is also able to use system libraries
instead of the ones provided by the toolchain. The official release of
ossia score is based on the AppImage mechanism which allows it to
work on many distribution: as such, it is also necessary to build a
recent toolchain to be able to target older systems, such as CentOS 7
or Ubuntu 12.04.

The complete toolchain, whose build scripts are available at
https://github.com/OSSIA/sdk provides the following libraries:

LLVM 7.0.1 (8 svn on Windows due to previous versions not
working) , Qt 5.12 , FFMPEG 4.1 , PortAudio , JACK headers , SDL2
, OpenSSL , Faust.

5.1. Uniform C++ standard library

The C++ parts of the toolchain are built against the libc++ standard
library implementation on all platforms. This is for two reasons: uni-
formity, and licensing. Using a single C++ standard library across
all platforms guarantees less variance in behavior, which is still fairly
common for instance across the various implementations in the im-
plementation of standard algorithms, or complex libraries such as
<regex>. Especially on Windows, the standard library headers pro-
vided as part of Visual Studio are not freely redistributable. This
means that this would introduce an unacceptable dependency on a
Visual Studio installation into ossia score. Hence, we use the system
headers provided by the mingw-w64 project, along with the LLVM
libc++ standard library. The build process implies a first build of the
LLVM project, clang compiler and libc++ standard library, which are
then used to boostrap a second set of LLVM libraries. This is needed
due to the JIT implementation directly calling into LLVM’s OrcJIT
API: if we linked directly against the first set of LLVM libraries, there
would be a standard library mismatch which would in the best case
fail to link properly, and in the worst case fail at run-time.

The llvm-mingw project7 greatly simplified the creation of the
Windows toolchain.

5.2. macOS and rpath handling

macOS is special in that libc++ is the default C++ library implemen-
tation. There is no equivalent to MinGW in the Apple world: the
only implementation of system headers is the one provided by Apple.
Those are not under a free license, to the exception of the C standard
library and Mach kernel headers.

In addition, the customized clang / libc++ provided by Apple is
slightly out-of-date when compared to other platform’s implemen-
tations and suffers from some artificial limitations: using various
C++17 standard library types, such as std::any, std::optional or
std::variant restricts the deployment to the latest in date version of
macOS, 10.14, which is not acceptable for multimedia software users
often restricted to older system versions for the sake of compatibil-
ity. The macOS version of the toolchain thus provides its own clang /
libc++ build which overcomes this problem.

7https://github.com/mstorsjo/llvm-mingw

39

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

A custom-built clang-based toolchain on macOS will by default
still link against the system libc++ implementation. The observed
behavior is as follows:

• No arguments passed: the compiler hard-codes an absolute
path to the system /usr/lib/libc++.1.dylib.

• -L$SDK/lib -lc++ -lc++abi: the compiler links the soft-
ware to @rpath/libc++.1.dylib.

It is thus necessary to specifiy the rpath to get working binaries
during development: -L$SDK/lib -lc++ -lc++abi -Wl,-rpath,/

sdk/lib.

6. BENCHMARKING

We provide a few performance tests of the system: what advantages
and what costs actually bring C++ JIT compilation. Benchmarks are
run on two machines, both running Linux (Kernel: 4.20.8-arch1-1-
ARCH):

• Machine 1: Intel(R) Core(TM) i7-6900K CPU @ 4.00GHz
(Broadwell architecture, desktop).

• Machine 2: Intel(R) Core(TM) i7-8750H CPU @ 4.00GHz
(Coffee Lake architecture, laptop).

6.1. Compile times

C++ is notorious for its slow compile times, due to large amounts of
header files to include, and the cost of the template instantiation mech-
anism. More recent C++ standards being oriented towards compile-
time computation of most values in a program also leads to an increase
in compile times.

On the test machine, a simple node such as the one provided in 1
takes between 1.3 and 1.5 seconds to compile on an average of five
runs. A generic test addon providing mock implementations of a few
interfaces, comprised of 7 source files, 10 header files, for a total of
428 lines of code which themselves include part of the C++ standard
library and Boost, takes between 4.5 and 5 seconds to compile on an
average of five runs.

LLVM generates bitcode, which could be cached on-disk, and
be used to make following start-ups faster. This optimization is not
yet applied and a complete recompile cycle currently occurs for each
addon on startup.

The current “interactive” performance characteristics, while much
slower than what the Javascript interpreter provides, are thus still
viable for some level of live-coding.

6.2. Run times: benchmarking gain adjustment

We discuss here the runtime improvements provided by the system.
The following cases cases are tested:

• The gain node of algorithm 1 as provided pre-built in the ossia
score binary, which must work on a variety of systems and thus
is not optimized for any kind of vector instruction set outside
of the x86-64 SSE2 baseline.

• The same gain node, passed in the system presented in this
paper which operates at an -Ofast -march=native optimiza-
tion level and is thus able to take into account the user’s actual
CPU features.

• A manually optimized version of the gain node, done with
hand-written AVX intrinsincs.

We measure every time the time taken by the computation for
various common buffer sizes. Figure 2 gives the measurements for
the first machine, figure 3 for the second machine.

64 128 256 512 1024

0

50

100

150

Array size

Ti
m

e
(n

s)
Figure 2: Broadwell CPU: average time in nanoseconds to compute
a buffer. In blue: generic code with the default compilation settings.
In orange: generic code while built with the JIT system. In green:
manually-written AVX implementation.

64 128 256 512 1024

0

50

100

Array size

Ti
m

e
(n

s)

Figure 3: Results for the Coffee Lake CPU, following the same nomen-
clature than the Broadwell CPU.

Figure 4 presents the improvements between the two CPUs, in
order to help the reader see the differences more clearly between
figures 2 and 3.

40

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

64 128 256 512 1024
−6

−4

−2

0

Array size

Ti
m

e
de

lta
(m

ac
hi

ne
2

-m
ac

hi
ne

1)

Figure 4: Performance difference between the Coffeelake and the
Broadwell CPU: it is interesting to note that the buffer size heavily
influences which workloads benefits the most from the CPU improve-
ments.

6.3. Run times: benchmarking FFT

For this benchmark, we compare the run time of a Fast Fourier Trans-
form algorithm implemented in the KFR library mentioned earlier.
This library provides hand-optimized versions for many different in-
structions sets, ranging from SSE2 to AVX2. The results are presented
in 1. The test is done on a large array: 16384 double-precision floating-
point values.

Machine Generic JIT Time saved

Broadwell 214 µs 144 µs 32.7%
Coffeelake 172 µs 107 µs 37.8%

Table 1: Performance increases yielded by using the proper instruction
set.

6.4. Discussion

A few things are made apparent by the previous benchmarks:

• In simple cases, it is pointless to try to optimize better than
what the compiler can: the manually-written AVX version
is almost never faster than the simple for-loop version when
optimized by the compiler.

• The improvement in that case is fairly expected: AVX is able
to compute almost twice as many floats than SSE2 in the same
time.

• In the more complex, hand-optimized case of the FFT, there
are also important performance benefits.

• The C++ compile-times are certainly not negligible for large
amounts of code. Potential paths for improvement could be the
use of precompiled headers, or upcoming C++ modules.

In addition, we note that the system does not currently add any
performance benefits – nor drawbacks – versus compiling the whole
codebase at -Ofast -march=native. Thus, the system is mainly use-
ful performance-wise in the case where the end-user is not able to
rebuild the software himself. While on Linux systems this is generally
not a problem (even though users may use old distributions with com-
pilers unable to support recent editions of the C++ language required
by ossia score), this is tremendously useful for Mac and Windows
users where the default toolchain requires mutltiple gigabytes of disk
space and takes a long time to install.

7. CONCLUSION

We presented the integration of a C++ just-in-time compilation system
based on LLVM in an existing media authoring environment, ossia
score.

There are multiple further steps that we would like to reach for
the system:

• Correct live-reloading of addons. The main problem to handle
is that a JIT-compiled addon may instantiate new objects in the
system. These objects must be tracked, serialized and reloaded
whenever the addon code change: else, due to the ABI of
objects potentially changing, this will cause runtime crashes.

• Generation of cross-compiled code. An often requested feature
for ossia score is to support embedded architectures. While
the software already builds and run on such systems, it would
be useful to generate a minimal executable for such platforms
from a desktop machine, which only contains a given score
with implementations optimized for the exact system being
targeted.

• In longer time-scales, cross-unit-generator optimizations could
be interesting: in particular, how can the system integrate with
other languages also based on LLVM such as Faust ? The
Mozilla team is currently researching cross-language inlin-
ing between C++ and Rust for instance. Combining multiple
audio nodes written in different languages, and compile them
together in a single dataflow graph may open further optimiza-
tion opportunities.

Finally, the JIT denomination for the system could in practice be
argued: since ossia score is itself an interpreter for a visual language,
but the execution of the programs of this visual language are done
only once every part of the system has been compiled to assembly: for
reasons of safety, we prefer not to launch C++ compilations during
the execution of a score, since it may seriously hamper the available
performance of the system. The JIT process still allows this, but the
user must be aware of the risks in doing so if the score already uses
most of the machine’s cores for instance.

8. ACKNOWLEDGMENTS

We would like to thank Thibaud Keller and the SCRIME & OSSIA
teams for their tireless testing of new ossia score features, Martin
Störsjo for the development of the llvm-mingw toolchain and Stefan
Gränitz for simple examples on how to use LLVM’s OrcJIT API.

41

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

References
[1] Nick Avramoussis et al. “A JIT expression language for fast

manipulation of VDB points and volumes”. In: Proceedings of
the 8th Annual Digital Production Symposium (DigiPro’ 18).
ACM. 2018.

[2] John Aycock. “A brief history of just-in-time”. In: ACM Com-
puting Surveys (CSUR) 35.2 (2003), pp. 97–113.

[3] Jean-Michael Celerier. “Authoring interactive media: a logical
& temporal approach”. PhD thesis. Bordeaux, 2018.

[4] Jean-Michaël Celerier et al. “OSSIA: Towards a Unified Inter-
face for Scoring Time and Interaction”. In: Proceedings of the
International Conference on Technologies for Music Notation
and Representation (TENOR). Paris, France, 2015.

[5] Jean-Michaël Celerier, Myriam Desainte-Catherine, and Jean-
Michel Couturier. “Graphical Temporal Structured Program-
ming for Interactive Music”. In: Proceedings of the Interna-
tional Computer Music Conference (ICMC). Utrecht, The Nether-
lands, 2016.

[6] Théo De la Hogue et al. “OSSIA : Open Scenario System
for Interactive Applications”. In: Proceedings of the Journées
d’Informatique Musicale (JIM). Bourges, France, 2014.

[7] Chris Lattner and Vikram Adve. “LLVM: A compilation frame-
work for lifelong program analysis & transformation”. In: Pro-
ceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimiza-
tion. IEEE Computer Society. 2004, p. 75.

[8] Juneyoung Lee et al. “Reconciling high-level optimizations
and low-level code in LLVM”. In: Proceedings of the ACM on
Programming Languages 2.OOPSLA (2018), p. 125.

[9] Juneyoung Lee et al. “Taming undefined behavior in LLVM”.
In: ACM SIGPLAN Notices 52.6 (2017), pp. 633–647.

[10] Thor Magnusson. “Algorithms As Scores: Coding Live Music”.
In: Leonardo Music Journal 21 (2011), pp. 19–23.

[11] Yann Orlarey, Dominique Fober, and Stéphane Letz. “Faust: an
efficient functional approach to DSP programming”. In: New
Computational Paradigms for Computer Music. Paris, France,
2007.

[12] Lance Putnam. “Gamma: A C++ sound synthesis library fur-
ther abstracting the unit generator”. In: Proceedings of the Joint
International Computer Music Conference (ICMC) / Sound and
Music Computing Conference (SMC). Athens, Greece, 2014.

[13] Evgeniy Yur’evich Sharygin et al. “Dynamic compilation of
expressions in SQL queries for PostgreSQL”. In: Proceedings
of the Institute for System Programming of the Russian Academy
of Sciences 28.4 (2016), pp. 217–240.

42

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

BRINGING THE GRAIL TO THE CCRMA STAGE

Fernando Lopez-Lezcano

CCRMA
Stanford University, USA

nando@ccrma.stanford.edu

Christopher Jette

CCRMA
Stanford University, USA

jette@ccrma.stanford.edu

ABSTRACT

The Stage, a small concert hall at CCRMA, Stanford University,
was designed as a multi-purpose space when The Knoll, the build-
ing that houses CCRMA, was renovated in 2003/5. It is used for
concerts, installations, classes and lectures, and as such it needs to
be always available and accessible. Its support for sound diffusion
evolved from an original array of 8 speakers in 2005, to 16 speak-
ers in a 3D configuration in 2011, with several changes in speaker
placement over the years that optimized the ability to diffuse pieces
in full 3D surround. This paper describes the evolution of the design
and a significant upgrade in 2017 that made it capable of rendering
HOA (High Order Ambisonics) of up to 5th or 6th order, without
changing the ease of operation of the existing design for classes and
lectures, and making it easy for composers and concert presenters to
work with both the HOA and legacy 16 channel systems.

1. INTRODUCTION

We have been hosting concerts at CCRMA since it was created in the
70’s. In 2009 we started expanding our concert diffusion capabilities
while gearing up for the inaugural season of a new concert hall being
built at Stanford, the Bing Concert Hall. In 2013 we were able to
use our newly created GRAIL system (the Giant Radial Array for
Immersive Listening) to diffuse concerts with out own “portable”
speaker array with up to 24 speakers and 8 subwoofers arranged in a
dome configuration for full 3D surround sound diffusion [1].

Figure 1: CCRMA Concert in the Bing Studio with the GRAIL

By 2011 our Listening Room Studio included a 22.4 speaker ar-
ray in a full 3D configuration (with speakers below an acoustically
transparent grid floor), which could accurately decode periphonic

(full 3D) 3rd order Ambisonics. Our upgraded GRAIL concert dif-
fusion system was also able to render up to 3rd order Ambisonics,
or even 4th order if some errors in rendering were ignored. This
was made possible by the publication of algorithms that allowed the
design of HOA decoders for irregular arrays [2]. In particular, the
release of the Ambisonics Decoder Toolkit software package written
by Aaron Heller [3][4], which included software implementations
of the aforementioned research, simplified the task of designing de-
coders. This work enabled the creation of successful diffusion strate-
gies for irregular speaker placement in the Bing Concert Hall and its
rehearsal space (the Studio), as well as other spaces. Both systems
benefited from an open architecture based on the GNU/Linux oper-
ating system and many free audio software packages that, combined,
allowed us to tailor the system to our specific needs.

We have curated many concerts with content of varied spatial
resolution. As composers went on to create works requiring more
speakers for a higher Ambisonic order decode, the limitations of
our systems became apparent. While Ambisonics is well known
for a graceful degradation of the spatial resolution when not enough
speakers are available for the original order of the piece, the state of
research and artistic creation was moving towards orders that were
higher than what we could support.

1.1. From WFS tests to HOA in the Stage

In 2011 we bought 32 small speakers (Adam A3X) to create an ex-
perimental WFS array. Over the next few years we used it for demos
and classes, but other than a couple of concert performances the sys-
tem was used very sparingly. On the other hand, our Stage concert
hall had a complement of 16 speakers and 8 subwoofers, which lim-
ited our ability to render full 3D HOA (we had been recently using a
32.8 system for our off-site concerts).

In an effort to upgrade our dedicated diffusion space at CCRMA,
we proposed to re-purpose the “unused” speakers and add them to
the existing Stage diffusion system. This addition would increase
the total count of speakers to 48, and preliminary studies determined
that we would be able to render up to 6th order Ambisonics quite
accurately. Natasha Barret’s research [5] points to diminishing re-
turns in spatial performance for 7th and higher order decoding, so
we felt confident that moving to a fifth or sixth order system would
be adequate for our needs and a worthwhile upgrade.

The design and implementation of this upgrade ended up being
anything but easy.

2. REQUIREMENTS

The existing system in the Stage consisted of 8 movable tower stands,
each one housing a main speaker (four S3A and four P33 Adam
high quality mid-field studio monitors) and a subwoofer (M-Audio

43

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

SBX10). In addition to those, we had 8 Adam P22 speakers hang-
ing from the trusses and arranged as a ring of 6 with an additional
two more overhead. All 16 speakers could be individually addressed
from a Yamaha DM1000 mixer, with some limitations as the sub-
woofers were paired to the 8 main speakers - we used their internal
crossovers - and could not be used by the upper 8 speakers.

The Stage is not only a concert hall, it is also regularly used for
classes, lectures, demos and other events that do not need or want a
high spatial resolution speaker array. In fact, the majority of users re-
quire access to just stereo playback. As the CCRMA concert events
combine live performers, touring musicians and researchers, many
concerts do not deal with 3D surround sound and use mostly stereo
projection. The existing flexible 16 channel system allowed for cre-
ative diffusion using a combination of speakers and provided flexi-
bility in which orientation the space could be used.

One of the key requirements for the upgrade was that the existing
system and methods of operation would not be changed. Further-
more, the space sometimes is used to accommodate big audiences
(for its size), so any addition to the Stage could not permanently en-
croach in the floor space available for setting up chairs for events.

These varied requirements complicated the design process in
ways which we had not anticipated.

We were required to:

1. have a mode of operation that would keep the existing de-
sign, 8 main speaker and subwoofer towers plus 8 secondary
speakers hanging from the ceiling trusses, all of them driven
directly from our DM1000 digital mixer

2. not degrade the performance of the existing system in any
way, including the low latency achievable with the digital
mixer, appropriate for live performances

3. have a way to easily switch from the basic system to a fully
expanded speaker array which added 32 speakers, all of them
controlled through a single Linux based computer similar to
the one managing diffusion tasks in our Listening Room [6][7]

4. have the ability to physically move the additional small speak-
ers positioned at ear level out of the way, so that they would
not interfere with the existing floor footprint of the diffusion
system

5. easily switch between the two modes of operation, preferably
with “one big switch” that would need no expertise from the
operator

6. the system had to be “low cost”

This created a situation with many mutually incompatible sys-
tem requirements from a design standpoint.

3. FEASABILITY TESTING

Before starting the upgrade a practical question had to be answered:
were the tiny A3X speakers good enough (in quantity) to be able to
produce enough SPL for a concert diffusion situation? Matt Wright
and Christopher Jette organized a quick test session in which we in-
stalled 16 speakers in a ring at ear level (on top of chairs and plastic
bins!) and drove them from our GRAIL concert control computer.
This test was successful and confirmed that they were up to the task,
but only if properly equalized, so we could go ahead with the up-
grade.

4. LOCATION, LOCATION, LOCATION

Where and how to mount all speakers was a difficult task, made
harder by the rectangular shape of the room and the presence of
trusses that hold the cathedral-style ceiling. To arrive at a prelim-
inary even distribution in space we used a simple successive approx-
imation software that treats speaker locations as electrons that repel
each other, and determines the approximate ideal locations of the
speakers [8]. Additional constraints were introduced in the software
to “fix” the position of the existing 16 speakers in space (remember
that our design must be a superset of the existing system), and see
where the rest of the speakers would fall.

Figure 2: Ideal projection of speaker locations on a hemisphere (red
dots: original upper 8 speakers, blue dots: ear level speakers)

A simple geometrical model of the Stage created in OpenSCAD
[9] was used to project those ideal locations into the walls and ceiling
of the Stage, to see where we might approximate the ideal locations
in space with real mounting points. It was challenging to find loca-
tions which would not be shadowed by the ceiling trusses for most
of the audience seating space, and in a couple of instances there was
unavoidable shadowing that we had to ignore.

Figure 3: OpenSCAD model of the Stage (seen from below) with
speaker location projections, the cylinders partially represent the
A/C ducts, the black beams are the lower part of the trusses

We used ADT (the Ambisonics Decoder Toolkit)[3][4] as a de-
sign verification tool, in particular the energy and particle velocity
graphs helped us determine if the proposed mounting locations for
the speakers would provide uniform coverage for the desired Am-
bisonics orders (5ht and 6th order was the goal). Other diffusion

44

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

methods (VBAP, etc) would also benefit from a uniform spatial dis-
tribution of the speakers.

Figure 4: Side view of the Stage with speaker mounting points. Grey
dots are ideal positions in a hemispherical dome, colored rectangles
are the real positions

The final speaker configuration at which we arrived was an ear
level ring of 20 speakers (the 8 original towers plus 12 additional
A3X speakers), another ring of 14 A3X speakers mounted on the
trusses (roughly 20 degrees in elevation above the first ring), and the
original 8 speakers (roughly 20 degrees of elevation higher) plus 6
more A3X’s distributed in the upper part of the dome. The 12 ear
level speakers could not be mounted on stands that would take away
floor space needed for seating, and had to be able to be moved out of
the way when not in use. We installed a truss mounted rail system
and designed telescoping mounts that could be switched between
the normal listening position and a “parked” position where the 12
small speakers are moved next to the existing towers. The mechan-
ical design took a long time and several prototypes were built and
tested. Our final system features custom fabricated mounts made
from 80/20 extruded aluminum profiles and hanging steel channel to
facilitate rolling the speakers between locations.

5. DRIVING MANY SPEAKERS

One of the difficult aspects of the design process was finding an audio
routing and distribution technology that would allow us to satisfy all
the requirements within a reasonable amount of time and with the
limited budget and manpower available to us. Furthermore, the full
system needed to be controlled from a computer running GNU/Linux
(like our Listening Room system), and Linux desktops and laptops
should be able to connect to it for diffusion tasks.

For our GRAIL concert sound diffusion system we had been us-
ing a homebrew system which consisted of one half of a network
snake (the Mamba box), plus some ingenious software in the form
of a Jack[10] client (jack-mamba [11]), to transform it into a very re-
liable 32 channel D/A converter. While the system proved to be rock
solid for our concerts, it was not really expandable in a way which
could satisfy our requirements.

The first audio technology we explored was MADI. We had used
RME MADI audio interfaces which had good driver support in Linux
in our Listening Room system. For this 22.4 system we had to use
two cards, one RME MADI and one RayDAT. This type of system
could scale up to the number of inputs and outpus that we needed, but
we could not find an easy way to control rerouting of connections to

Figure 5: Speaker mount

support both modes of operation. The only reasonable cost option we
found was an RME MADI switching matrix, but switching between
MADI scenes required several operations on the front control panel,
and there was no option for remote software control which would
have enabled us to design a separate simple to use interface.

Our experience with the ethernet based Mamba digital snake sys-
tem suggested that a similar technology based on ethernet could be
an answer to meet our requirements.

There are several protocols that rely on ethernet connections to
transport audio and interconnect several audio interfaces together.
The most widespread commercially so far has been Dante, but that
was ruled out as the protocol specification is closed and proprietary,
and there is no formal support for Linux. There is one company
that offers a 128 channel ethernet card with associated Linux binary
drivers, but there is no guarantee that this will be supported for future
kernel upgrades and the card and driver combo is extremely expen-
sive.

AVB (Audio Video Bridging) [12], on the other hand, is an open
standard with a free software implementation embodied in the ope-
nAVNu project [13]. Regretfully not many manufacturers have used
this standard for their products. One product manufacturer we con-
sidered was Motu, as their newer audio interfaces can be connected
to each other through AVB and standard ethernet cables. Their in-
ternal configuration can be completely controlled through a built-in
web server which makes it platform agnostic, and there is a pub-
lished API that can use JSON http requests and OSC to remotely
control all aspects of its operation. A Linux computer could control
the full system without relying on proprietary software.

Regretfully the AVNu project does not yet include code for a
complete Linux-based solution. It would be possible to create one,
but that would require a substantial software development effort which
was beyond the scope of the resources available to this project.

We bought a couple of interfaces for evaluation and experimented
with using their USB interfaces. In the most desirable MOTU cards
we found that the implementation of the USB2 class compliant driver
was limited to 24 channels, which was much less than what we

45

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

needed (the cards were advertised as having 64 channel I/O through
USB2, but that was only possible when using their proprietary driver).
So we were at an impasse.

5.1. Firmware giveth...

Almost by chance we found an online reference to a “64 channel
mode”, and traced it back to a very recent firmware upgrade that
added a mode selection configuration option to the USB audio in-
terface. The new firmware allowed us to set the maximum number
of channels handled by the USB class compliant driver to 64 if the
sampling rate was limited to 44.1 and 48KHz, which was accept-
able for our use case. This is beyond what the USB2 specification
can do, but it performed well in tests under Linux, and allowed us
to potentially address all speakers through the GRAIL control com-
puter’s USB2 interface, while multiple additional audio interfaces
could communicate audio data through AVB. This new feature also
would enable end users to interface with the finished diffusion sys-
tem using another audio interface with its own USB2 interface. This
would provide multiple entry points into the system using just USB2,
making it easily usable by our users.

A firmware upgrade transformed the Motu hardware into a vi-
able option. But what firmware can give, it can take away, as we will
see...

5.2. Digital Mixer Mode

The first phase of the design centered around finding a configura-
tion that could keep the old setup of DM1000 plus 8 main speakers
operational with minimal changes. Some simple tests determined
that routing the DM1000 to a 16A Motu interface through ADAT
so it would drive the speakers (instead of the DM1000 driving them
directly) would not change the latency of the system significantly.
This 16A audio interface would also be the word clock master for
the whole system, and this basic setup would depend on only the
DM1000 and that interface being up and running to work.

This means that the 16.8 legacy system (we will call this the
“Digital Mixer Mode”) could be kept unchanged, and could be a
subset of the full 48.8 system (the “OpenMixer Mode”).

5.3. Routing the Subwoofers

There was a very long design detour that tried to use the internal
crossover of the old subwoofers in “Digital Mixer Mode” as they
were working fine and everybody wanted to keep their well known
sound. We are going to skip those 4 months and jump straight into
the design that incorporated new subwoofers much later.

The subwoofer upgrade proved to be a problem, both from the
point of view of signal routing and from the specs that they had to
meet. We wanted to have standalone crossovers when in “Digital
Mixer Mode”, and software crossovers implemented in the GRAIL
control computer when in “OpenMixer Mode”. We also wanted to
have a rather high crossover frequency (originally 110Hz, currently
about 90Hz) to minimize the cone excursion of the main speakers at
low frequencies (they are mid-field monitors and almost too small
for the space, but we love their very precise sound). And we wanted
a low frequency limit of around 20Hz with enough power to fill the
room without clipping or distortion.

The ideal subwoofer that would meet all our requirements does
not exist (the details of why that is the case are beyond the scope of

this paper). We ended up buying SVS SB4000 units, and not using
the internal DSP processing included in the unit.

The only workable solution we found was to use external pro-
grammable crossovers when the system was operating in “Digital
Mixer Mode”. We used DBX 260 units and routed them through in-
puts and outputs of the same Motu audio interface used to drive the
8 main speakers (this back and forth tour added a tiny bit of latency).
In “Digital Mixer Mode” the DBX crossovers are inserted into the
signal path by the internal routing of the Motu audio interfaces, and
in “OpenMixer” mode they are completely disconnected so that the
GRAIL control computer can directly interface with speakers and
subwoofers, and provide its own separate digital crossovers. In “Dig-
ital Mixer Mode” the signals going to the 8 main speakers are routed
to the crossovers which split it between the main speakers and to
the corresponding subwoofers, in “OpenMixer Mode” all speakers
are mixed in to the 8 subwoofers. All the signal switching is ac-
complished using the routing matrix that is part of the Motu audio
interfaces.

The use of external crossovers also allowed us to properly match
phase at the crossover frequency and equalize the whole system in
“Digital Mixer mode” for best performance, something we could not
do before the upgrade.

Another 16A Motu interface drives the upper 8 speakers with
signals that are sent from the digital mixer through AVB and the
internal routing matrices of both audio interface cards.

The core system in “Digital Mixer Mode” consists of two Motu
16A cards, the DBX crossover units and the DM100 digital mixer.
That not only keeps the same operational characteristics as before,
but improves the system through better crossovers and speakers.

Figure 6: Signal routing in Digital Mixer Mode

5.4. And firmware taketh away...

In the middle of the design and implementation of the system we
found that newer Motu interfaces no longer had the 64 channel mode
configuration option. It turns out that Motu had “unspecified prob-
lems” with it, and removed the feature from their products through
another firmware upgrade.

Suddenly the audio interfaces were useless for our purposes (24
channels instead of 64), with no fix coming from Motu, after all,
they worked fine with their proprietary drivers. To make a long story
short, we were able to downgrade the firmware to a version where
that feature was still supported, and everything worked again. A not

46

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

very sustainable fix and a hack as we (and possibly random users of
the system) have to ignore the constant reminders that a “software
upgrade is available”.

While software upgradable products offer useful flexibility, you
never know when something you depend on might go away, or some
new and exciting capabilities might be added, and in which order
that might happen. That was not the last problem we had with Motu
firmware versions.

5.5. OpenMixer Mode

With the core architecture now a working reality, we added three
24Ao Motu audio interfaces hidden in the ceiling trusses of the Stage
to drive the additional 32 small speakers (two would have been enough,
but using three made the wiring easier and wiring represented a large
time expenditure in this upgrade). An additional 16A in the Open-
Mixer control computer rack (on casters) acted as the interface be-
tween the OpenMixer Linux control computer and the rest of the
system, using a single USB2 interface. AVB streams are used to
send and receive audio to all other Motu audio interfaces, and finally
to all speakers, and changing the internal routing in the audio inter-
faces through JSON http calls configures the audio routing for the
two main modes of operation.

An additional 24Ai audio interface in the OpenMixer system
rack is the entry point in the system for connecting laptops and other
computers for concert diffusion or other purposes (Windows, OSX
and Linux are all supported). A single USB2 cable allows us to have
up to 64 channels of input/output available, which is enough for our
current needs. AVB and the internal routing of the interfaces is used
to send signals around.

Yet another 16A audio interface is used to interface with our
dedicated Linux desktop workstation which resides on another cart
together with its display, keyboard and mouse. A total of 8 Motu
audio interfaces interconnected through AVB make up the audio part
of the diffusion system.

Three Motu AVB switches connect all the audio interfaces to-
gether, and the different racks and mobile units in the space are eas-
ily connected through long ethernet cables (one mobile rack for the
digital mixer and associated equipment, another for the OpenMixer
control computer and another one for the desktop computer). The
use of ethernet means there is a significantly smaller cable count to
manage 64 channels of audio.

5.6. Switching modes

The attentive reader might have noticed that switching between “Dig-
ital Mixer Mode” and “OpenMixer Mode” seems to be happening
magically so far. While we do have a Linux control computer, we
cannot rely on it for switching modes. The system should keep work-
ing even if the control computer is off, or if it breaks down.

A solution that has worked admirably well is to add yet another
computer (as if the system was not complex enough). This addi-
tional computer is a RaspberryPI 3 with a touch panel, mounted right
next to the digital mixer. It allows the user to switch sampling rates,
switch between operating modes and even activate different options
in “OpenMixer mode” (changing between the Direct and Ambison-
ics modes, selecting Ambisonics decoders, etc). It communicates
through ethernet with all the Motu audio interfaces and the main
OpenMixer control computer.

The OpenMixer control computer also has a touch display, and

Figure 7: Signal routing in OpenMixer Mode

the software was designed so that either of them can be used to con-
trol the system and they stay synchronized with each other.

5.7. What? More Speakers?

Quite early in the implementation process Christopher Jette pushed
for the immediate inclusion of something we had planned as a future
expansion. In addition to the existing subwoofer and main speaker,
the eight main towers would house 8 speakers almost hugging the
ground. These speakers were included to help “pull down” the sound
image, specially in the Ambisonics decoder modes. So our final
speaker count is 56 speakers and 8 subwoofers, adding up to 64 in-
dividual outputs. We are maxed out.

5.8. Control Software

In “OpenMixer Mode” the Linux control computer (currently boot-
ing Fedora and running an optimized RT patched kernel) performs all
internal DSP using SuperCollider[14] and its Supernova multi-core
load-balancing sound server [15]. Jconvolver [16] is used for very ef-
ficient low latency partitioned convolution, and implements the digi-
tal loudspeaker correction filters. The software itself is conceptually
simple, it provides for level and delay equalization of all speakers,
digital crossovers (a combination of Linkiwitz Rayley [17] and But-
terworth filters), routing control so that different sound sources (digi-
tal mixer, laptop, desktop) can be connected to the speakers, optional
built-in Ambisonics decoders created with ADT [3][4](up to 6th or-
der) and of course digital equalization of all speakers with convolu-
tion filters created from analyzing their measured impulse responses
with the DRC (Digital Room Correction [18]) software package.

SuperCollider is started automatically on boot through a systemd

47

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

unit and takes care of orchestrating the rest of the system startup pro-
cess. First, Jack [10] is started, then the SuperCollider program starts
the Supernova sound server and its associated DSP software, two in-
stances of Jconvolver, and finally everything is connected together
using aj-snapshot and dynamically generated XML connection files.
SuperCollider monitors all auxiliary programs, and restarts and re-
connects them if they somehow fail.

The whole system is optimized for low latency, and currently
runs with 128 frames per period (work is underway to get it to work
at 64 frames per period, which would start approaching the perfor-
mance of the digital mixer which runs with 64 frame blocks).

SuperCollider is also used for the touch graphical user interface
in both the main computer and the small RaspberryPi switching ap-
pliance.

5.9. Calibration

For best performance the full speaker array is calibrated after the
initial installation and when hardware changes are made. First el-
evation and azimuth angles for all speakers are measured, as well
as the distances to the center of the space. These measurements are
used to create the Ambisonics decoders for the main array and the
subwoofers, and also to compensate for arrival times at the center
of the space. After that we use Aliki [19] to measure the impulse
response of the speakers, and that information is used to calculate
convolution filters using DRC. Finally SPL measurements are done
to compensate for small differences in speaker loudness in both di-
rect and Ambisonics modes.

6. PROBLEMS AND CHALLENGES

While the selection of Motu products lead to a viable design, there
are still occasional problems when using them on “unsupported plat-
forms”.

Occasionally an audio interface can disconnect from one or more
of its AVB streams. The web interface shows them blinking and we
have not found a way out of this other than rebooting both interfaces.
After the reboot the connections are re-established automatically. We
have not been able to find a way to reproduce this, and it only hap-
pens in the more complex Stage system we are describing in this
paper (it has not happened, so far, in a far simpler system now run-
ning in our Listening Room). We have to do an thorough audit of the
existing streams and only enable exactly what we need. This may
be a problem solved in later firmware releases, but we are chained to
older ones to retain the features that make the system possible in the
first place.

In a different Studio in which we also deployed a single Motu
interface we found another firmware related problem when using the
class compliant driver under Linux. Suddenly inputs going into the
computer through USB would switch channels in blocks of 8. What
was coming through input 1 is suddenly in input 9, and so on and so
forth. Again, downgrading to a previous firmware version fixes the
problem (or using the proprietary driver). Caveat emptor.

In terms of the Linux control computer for the Stage system,
the long term solution for interfacing with the audio interfaces is to
use AVB streams directly. That would lift the 64 channel limitation
(we of course would like to add a few more speakers), and hopefully
make the system more reliable. The foundation of that is available
in the OpenAVNu git repository but much work remains to be done
(some preliminary tests managed to sync the Linux computer to the

AVB clock, and get the system to recognize the existence of a Motu
card).

6.1. Motu vs. Jack vs. PulseAudio

A weird feature of the Motu interfaces is that every time the sampling
rate is changed (even if it is an internal change and the card is not
slaved to an external clock) it takes the card a few seconds to acquire
a “lock”. During this time Jack can try to start, but at some point it
decides that it can’t, and fails.

This can lead to an endless loop of failed starts in the following
scenario: assume the card is already running at 44.1KHz and we
are trying to start Jack at 48KHz. Jack requests exclusive access to
the card from PulseAudio and the request is granted. Jack tries to
start but fails, because the card was running at 44.1KHz and it takes
time to switch to 48KHz. After the attempt the card is switching to
48KHz, but when Jack quits it hands the card back to PulseAudio,
which promptly resets its sampling rate to its default, 44.1KHz. And
we are back where we started. There is no way to start Jack, unless
PulseAudio is killed or its default sampling rate is changed to the
one we want, or we tell it to ignore the card, which is not what we
want to do.

If there is no change in sampling rate and Jack fails to start,
waiting a few seconds and trying again succeeds.

To avoid this problem, in the control software for both the Lis-
tening Room and Stage Linux computers we use a JSON http call to
check the lock status of the audio interface clock and delay the start
of Jack until the sampling rate is locked.

7. CONCLUSIONS

The opening concerts of the newly upgraded Stage took place in Oc-
tober 4/5 2017, and the system performed very well (at the time we
were still using the old subwoofers). Another round of upgrades in
2018 replaced the original subwoofers with newer ones, as outlined
above, and also upgraded the main 8 speakers with newer A77X
Adam monitors. The lower layer of speakers were repositioned at
the bottom of the main towers, and the new subwoofers were stacked
immediately above them (originally they had been reversed). A sec-
ond round of successful concerts (our annual Transitions concerts)
took place in October 2018 with the fully upgraded array. The full
array has seen more use in the past year, with several concerts using
it instead of what would have been stereo or quad diffusion.

We have outlined the design process of a complex Linux-based
diffusion system, using off-the-shelf components and GNU/Linux
for all the software components.

8. ACKNOWLEDGMENTS

This would have been impossible to accomplish without the sup-
port of CCRMA and its community. Many many hours of discus-
sions made for a better system that satisfies all the use cases of the
space. Endless critical listening tests honed the system into better
and better sound quality. Many thanks to Eoin Callery for his con-
tributions to the design and keen ears, and for keeping us grounded
at all times (we tend to fly away). The whole project would not have
happened had we not had Christopher Jette on the CCRMA Staff
at the time. He pushed and worked and talked and discussed and
designed and kept things going. Invaluable. Matt Wright, our Tech-
nical Director, also spent many hours helping with big and small
details. Many students helped, in particular thanks to Megan Jurek,

48

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 8: Transitions 2018 concert

who spent many hours soldering many many small connectors, and
routing what seemed like miles of cables. No audio would flow if
not for her help. Jay Kadis, our audio engineer at the time, also
spent quite a bit of time wiring DB25 connectors and cabling the
main towers. Juan Sierra, one of our MA/MST students, was instru-
mental in properly phase matching of the new subwoofers with the
main speakers and tuning the crossovers for best performance, the
Stage sounds much better thanks to him. Carlos Sanchez, sysadmin
and staff at CCRMA, designed and implemented the hardware and
software that drives the touch interface that controls the whole sys-
tem. And Constantin Basica, our new concert coordinator, has been
helping visiting artists use the full system for much more interesting
concerts over the past year. Many thanks to all involved, we can now
do justice to many fantastic pieces from composers that tickle our
ears with beautiful sounds arranged in space.

9. REFERENCES

[1] Fernando Lopez-Lezcano, “Searching for the grail,” Computer
Music Journal, vol. 40, no. 4, pp. 91–103, 2016.

[2] Franz Zotter and Matthias Frank, “All-round ambisonic pan-
ning and decoding,” J. Audio Eng. Soc, vol. 60, no. 10, pp.
807–820, 2012.

[3] Aaron Heller, Eric Benjamin, and Richard Lee, “A toolkit for
the design of ambisonic decoders,” Proceedings of the Linux
Audio Conference 2012, 2012.

[4] Aaron Heller and Eric Benjamin, “The ambisonics decoder
toolbox: Extensions for partialcoverage loudspeaker arrays,”
Proceedings of the Linux Audio Conference 2014, 2014.

[5] Thibaut Carpentier, Natasha Barrett, Rama Gottfried, and
Markus Noisternig, “Holophonic sound in ircam’s concert hall:
Technological and aesthetic practices,” Computer Music Jour-
nal, vol. 40, no. 4, pp. 14–34, 2016.

[6] Fernando Lopez-Lezcano and Jason Sadural, “Openmixer: a
routing mixer for multichannel studios,” in Proceedings of the
Linux Audio Conference 2010, 2010.

[7] Elliot Kermit-Canfield and Fernando Lopez-Lezcano, “An up-
date on the development of openmixer,” Proceedings of the
Linux Audio Conference 2015, 2015.

[8] A. B. J. Kuijlaars E. B. Saff, “Distributing many points in a
sphere,” in The Mathematical Intelligencer, Volume 19, Num-
ber 1, 1997.

[9] “Openscad, the programmers solid 3d cad modeller,” http:
//www.openscad.org/.

[10] Paul Davis, “Jack audio connection kit,” http://
jackaudio.org/, 2002.

[11] Fernando Lopez-Lezcano, “From Jack to UDP packets to
sound and back,” in Proceedings of the Linux Audio Confer-
ence 2012, 2012.

[12] “The avnu alliance (avb),” https://avnu.org/.

[13] “Openavnu git repository,” https://github.com/
AVnu/OpenAvnu.

[14] J. McCartney, “Supercollider: A new real-time synthesis lan-
guage,” in Proceedings of the International Computer Music
Conference, 1996.

[15] Tim Blechmann, “Supernova: a multiprocessor aware real-
time audio synthesis engine for supercollider,” M.S. thesis, TU
Wien, 2011.

[16] Fons Adriaensen, “Jconvolver, a convolution engine,” http:
//kokkinizita.linuxaudio.org/linuxaudio/,
2006.

[17] Siegfried Linkwitz, “Active crossover networks for noncoin-
cident drivers,” in Journal of the Audio Engineering Society,
Volume 24 Issue 1, 1976, pp. 2–8.

[18] Denis Sbragion, “Drc: Digital room correction,” http://
drc-fir.sourceforge.net/, 2002.

[19] Fons Adriaensen, “Aliki, an integrated system for im-
pulse response measurements,” http://kokkinizita.
linuxaudio.org/linuxaudio/, 2006.

[20] Ingo Molnar and Thomas Gleixner, “Real-time linux, the pre-
empt_rt patches,” https://wiki.linuxfoundation.
org/realtime/start, 2000.

49

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 9: Transitions 2017 concert

50

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

RENDERING OF HETEROGENEOUS SPATIAL AUDIO SCENES

Nicolas Bouillot, Michał Seta, Émile Ouellet-Delorme, Zack Settel, Emmanuel Durand

Société des arts technologiques [SAT]
Montréal, Canada

[nbouillot,mseta,eodelorme,zack,edurand]@sat.qc.ca

ABSTRACT
We present the ability of our Spatial Audio Toolkit for Immersive En-
vironment (SATIE) to render simultaneously real-time audio scenes
composed of various spatialization methods. While object oriented
audio and Ambisonics are already included in SATIE, we present a
prototype of a directional reverberation method based on Impulse
Response computation and describe how this method will be in-
cluded in SATIE.

1. INTRODUCTION

A growing number of computer music performance venues are now
equipped with large loudspeaker configurations [1], and therefore
provide new opportunities for artists using 3D audio scene environ-
ments for composition and sound design. This, along with the recent
rise of affordable spatial audio recording devices and increased inter-
est in virtual reality experiences, gives rise to a growing need of com-
bining multiple spatialization methods: captures (live or not) made
in different ambisonic formats, mono object-based audio sources as
well as flexible & adaptable speaker configurations. We anticipate
the evolution of spatial audio composition — targeting perform-
ing arts, installations or any other immersive experiences — involv-
ing different types of audio sources such as live audio capture, field
recordings and synthetic audio, and where visual[2] and haptic[3]
correlates with the audio part.

Moreover, innovation from the game industry is pushing forward
virtual and augmented realities, approaching spatial audio with an
object oriented manner: sources are sound objects, located in space
and controlled with low level parameters such as gain, equalizer and
spread. This approach, although effective for speaker array systems,
is missing architectural acoustical responses and adapts poorly to
non clearly located sound sources such as the sound of a river. The
3D graphic world is now entering audio and provides methods for
the simulation of sound based on physics of soft body vibration and
sound propagation [4]. Although such simulations are probably hard
to achieve in real-time, simulations of acoustic responses of 3D envi-
ronment may improve significantly the coherence of the integration
of audio sources with the virtual space, while still allowing a real-
time & 6-DoF navigation [5]. The use of ray tracing algorithms for
real-time rendering is appropriate [6] and has the advantage of in-
cluding the direction of the sound during auralization [7], allowing
real-time calculation of directional sound reflections.

One of the main challenges today for spatial audio render is to
support the multiplicity of the i) audio display methods, ii) spatial
audio algorithms and iii) spatial audio authoring and 6-DoF naviga-
tion in spatial audio [8]. To date however, many existing real-time
3D audio scene rendering systems, such as COSM [9], Blender-
CAVE [10], Spatium [11], Zirkonium [12], CLAM [13], 3Dj [14],
Panoramix [15] and the spatDiff library [16] mostly focus on trajec-
tory based composition with object oriented audio and sound fields

Figure 1: Example of an augmented reality application where a com-
bination of several spatialization algorithms (ambisonics and object
oriented audio): a 360° audiovisual capture is rendered simultane-
ously with synthetic objects, the bubbles coming out from the white
vase.

with ambisonics. The challenge of navigating in heterogeneous spa-
tial audio content is illustrated with Figure 1, where the spatial audio
scene is constituted from 360° audio/video footage where the sound
field captured using an ambisonic microphone1 is mixed with syn-
thetic audio is spatialized through an object oriented approach and
correlated with 3D objects on screen (the white bubbles coming out
from the white vase).

In this paper, we present how our Spatial audio Toolkit for Im-
mersive Environments (SATIE2) addresses the challenge of several
approaches to audio scene rendering, possibly combining simultane-
ously object based audio, ambisonic formats and architectural based
acoustical spatialization.

2. SATIE

The development of SATIE (with the SuperCollider language [17])
was first motivated by the need to render dense and rich audio scenes
the Satosphere, a large dome-shaped audiovisual projection space at
the Society for Art and Technology [SAT] in Montreal, and to com-
pose real-time audio/music scenes consisting of hundreds of simul-
taneous sources targeting loudspeaker configurations of 32 channels
or more, and sometimes with two or more different audio display
systems [18]. In fact, SATIE easily adapts to different audio display
configurations and supports plugins architecture which makes it eas-
ily extensible to new situations. As such, it fills the role of a rapid

1The Zylia ZM-1 microphone.
2https://gitlab.com/sat-metalab/satie, accessed Dec.

2018

51

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Reverberating sources Sound field sources

Sound objects

Ambisonic decoder
and effects (order 5)

SATIE multichannel mastering

Figure 2: Example pipeline of a spatial rendering involving hetero-
geneous audio sources: reverberating sources, sound field sources
and sound object.

prototyping tool for spatial audio composition.
Control of sound sources in SATIE is done through unified OSC [19]

messages allowing for life management of each sound sources, along
with (possibly custom) parameters control.

3. RENDERING METHODS

Facing a variety of approaches to composition with dense audio struc-
tures and a variety of audio displays, SATIE implements a flexible
rendering pipeline allowing mixing of different audio input formats
and multichannel mastering and is easily adaptable to various audio
displays. We rely mainly on SuperCollider’s supernova rendering
engine for multi-threading operation. Consequently, we have access
to parallel groups[20] which solve some real-time related issues with
synth instantiating and bus allocation. SATIE structures different
types of audio processors in layers, represented by a hierarchy of
parallel groups (ParGroups):

• audio sources

• effects

• post-processors.

Audio sources are different types of mono or multichannel audio
generators and players. On the second level are effects which usu-
ally do not generate sound but modify the signal of audio sources.
Finally, post-processors are meant as mastering stage, where the fi-
nal stages of DSP are done. In the actual implementation, the post-
processors are divided in two groups: one for b-format signals and
one for traditional mono/multichannel signals.

The signals between audio sources and effects pass through busses,
i.e. the user allocates auxiliary busses and manages the bus access
on both, the generator and effect side. If any post-processors are
present, all signals are collected there, otherwise, they bypass di-
rectly to the spatializer. Multiple spatializers can be used, in which
case SATIE will create appropriate number of output channels.

Figure 2 shows a rendering pipeline that combines object based
audio sources, sound field sources and reverberating sources into het-
erogeneous mix.

object oriented
source #0

object oriented
source #1

mono file

effect (optional)

object oriented
spatializer

SATIE multichannel mastering

live mono input

effect (optional)

object oriented
spatializer

other object oriented
sources

Figure 3: Internal pipeline for object oriented sound spatialization

3.1. Object Based Audio

Object audio (Figure 3) is what is most commonly used in various
entertainment industries where a sound source has a clearly defined
position within the coordinate system [21]. SATIE supports different
types of object based audio sources, such as mono audio, mono live
input sources and synthesized sounds [22]. The spatializers handling
object audio expect azimuth, elevation and gain for panning each
audio object.

SATIE was initially designed to render large numbers of mono
audio sources, optionally with effects, to large multi-channel loud-
speaker systems. Audio sources and effects can be placed in groups
and controlled either per group or on individual basis. Similarly,
spatializers take mono signals and place them on different chan-
nels according to azimuth, elevation and gain parameters. The post-
processing audio object is comparable to mastering effects in a stu-
dio or live pipeline, typically limiting, compressing or normalizing
signals.

While all parameters (audio object specific as well as spatial-
ization) can be modified either directly from the SuperCollider lan-
guage, SATIE supports OSC and our preferred method is using a 3D
engine for “volumetric” control of the sources as well as actual ge-
ometry computation. In line with this object based approach and load
balancing physical computation we were able to use particle swarms
of hundreds simultaneous sound sources.

3.2. Ambisonics

Ambisonic pipeline, implemented via SC-HOA plugins/quark 3 (Fig-
ure 4(a)) provides means to play multichannel files, live audio inputs,
encode mono signals into b-format signals and transcode between
different ambisonics formats (ACN and FuMa). It supports b-format
up to order 5.

SATIE supports ambisonics with the same approach to signal
path. The ambisonic audio input can be sent to ambisonic effects and
post-processors such as rotation, mirroring, and beamforming filter-
ing. The significant cost of ambisonic decoding is payed only once
since not embedded in each ambisonic source pipeline, but rather at

3https://github.com/florian-grond/SC-HOA

52

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

ambisonic
source #0

ambisonic
source #1

ambisonic file
player (order 5)

Ambisonic decoder
and effects (order 5)

live ambisonic
stream

rotation

Ambisonic decoder
and effects (order 1)

other ambisonic
sources

Other orders
(4, 3 & 2)

SATIE multichannel mastering

(a) Pipeline for ambisonic sources.

source #0

Ambisonic IR
for source #0

multichannel
convolution

mono file player

Ambisonic decoder
and effects (order 5)

other sources
...

Other orders
(4, 3, 2, & 1)

SATIE multichannel mastering

(b) Pipeline for convolution based spatialization.

Figure 4: SATIE pipeline involving ambisonics

the post-processor stage. We can also transcode between different
ambisonic orders.

3.3. Reverberating Sources with Convolution Reverb

Having various audio rendering methods driven by 3D engines opens
doors to the desire of simulating acoustic spaces. Consequently, we
have started developing a tool for real-time generation of impulse re-
sponses through ray tracing with the idea of integrating the IR work-
flow with SATIE. Figure 5(a) shows a screenshot of a real-time ren-
dered frame where the listener is facing a sound source represented
by a cube at the end of the hallway. Figure 5(b) shows a wireframe
view of a simple model (not related to the picture on the left) show-
ing what is actually going on. The black dots on the inner faces of
the model represent the impact points of the rays on the walls of a 3D
model. Sound sources and the listener are not shown, it simply shows
a point cloud mapped on the model for reference. This implementa-
tion uses another custom software, VARAYS 4, which shares the 3D
model with the 3D engine (in this case we’re using EIS), receives the
coordinates of the sound sources and the listener and writes IR files
to disk. The IR files are read by SATIE which continuously replaces
the buffer read by SuperCollider’s PartConv UGen. A crude proto-
type of this process (using mono convolution) is demonstrated in the
following video https://vimeo.com/306202441.

Besides mono IR, we can also generate Ambisonic IR (AIR),
although at the time of the writing, this process has not yet been
integrated into SATIE.

4. CONCLUSION

This paper outlined some of our approaches to heterogeneous audio
scenes consisting of different types of audio input sources and multi-
channel displays. We described some SATIE functionalities with re-
gard to heterogeneous spatial audio scenes. We have also described

4https://gitlab.com/sat-metalab/varays

our approach to Ambisonic Impulse Response (AIR) in VARAYS in
order to enable ambisonic acoustic simulation. VARAYS is still at
very early stages of development, it needs proper support for mate-
rial based diffraction and diffusion. Figure 4(b) shows the general
workflow, where AIR is applied to a mono sound source and is spa-
tialized using the usual SATIE pipeline. There is still some work left
to do in order to fully integrate vaRays into SATIE pipeline (both
IR and AIR). One of the areas to explore is in the interpolation of
IR instances in order to compensate for real-time changes in the lis-
tener and the sound source location. This process can be mixed with
types of rendering which provides sufficient creative liberty to the
user. There is also some work left to provide IR and AIR to SATIE
as files I/O are not the most optimal. We will be looking into sending
OSC blobs. Another path would be sharing buffers between SATIE
and vaRays using out shared memory library SHMDATA 5. Another
desired functionality is rendering VBAP spatialization into b-format
signals.

5. ACKNOWLEDGEMENTS

This project would not be possible without the support of the Min-
istère de l’Économie et de l’Innovation du Québec. We also wish
to thank Julien Wantz who spent time with us at the [SAT] Metalab,
starting implementation of VARAYS, Mylène Pardoen for sharing the
Paris 3D model used in Figure 5(b) and Florian Grond for his Super-
Collider Higher Order Ambisonics library, SC-HOA.

6. REFERENCES

[1] N. Barrett, “A musical journey towards permanent high-density
loudspeaker arrays,” Computer Music Journal, vol. 40, no. 4,
pp. 35–46, Dec 2016.

[2] Zack Settel, Nicolas Bouillot, and Michal Seta, “Volumet-
ric approach to sound design and composition using SATIE:

5https://gitlab.com/sat-metalab/shmdata

53

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

(a) The cube floating at the end of the hallway in the 18th century Paris
model represents a sound object. The image is from a prototype developed
by Metalab using EIS for visual rendering and navigation, VARAYS for real-
time impulse response processing and SATIE for audio spatialisation.

(b) Visualisation showing the impacts (black dots) of sound sources (not
shown) on the walls of a 3D volume for a listener (not shown) placed inside
the same volume. For this example, 2000 rays were thrown with a maximum
of 3 reflections. A point cloud representing the impacts was saved by our
software VARAYS and rendered in BLENDER.

Figure 5: Example of directional reverberation approach with our prototype based on conjoint use of SATIE and vaRays. We used the Bretez
3D of the 18th century.

a high-density 3D audio scene rendering environment for large
multi-channel loudspeaker configurations,” in 15th Biennial
Symposium on Arts and Technology, Ammerman Center for
Arts and Technology at Connecticut College, New London, feb
2016, 8 pages.

[3] Nicolas Bouillot and Michał Seta, “A scalable haptic floor
dedicated to large immersive spaces,” in Proceedings of The
Linux Audio Conference, March 2019.

[4] Jui-Hsien Wang, Ante Qu, Timothy R. Langlois, and Doug L.
James, “Toward wave-based sound synthesis for computer ani-
mation,” ACM Trans. Graph., vol. 37, no. 4, pp. 109:1–109:16,
July 2018.

[5] David Poirier-Quinot, Brian FG Katz, and Markus Noisternig,
“EVERTIMS: open source framework for real-time auraliza-
tion in architectural acoustics and virtual reality,” in Proceed-
ings of Digital Audio Effects (DAFx), New York, NY, USA,
2017.

[6] Samuli Laine, Samuel Siltanen, Tapio Lokki, and Lauri
Savioja, “Accelerated beam tracing algorithm,” Applied Acous-
tics, vol. vol. 70, no. no. 1, pp. pp. 172–181, 2009.

[7] Mendel Kleiner, Bengt-Inge Dalenbäck, and Peter Svensson,
“Auralization-an overview,” J. Audio Eng. Soc, vol. 41, no. 11,
pp. 861–875, 1993.

[8] Axel Plinge, Sebatian J. Schlecht, Oliver Thiergart, Thomas
Robotham, Olli Rummukainen, and Emanuël A. P. Habets,
“Six-degrees-of-freedom binaural audio reproduction of first-
order ambisonics with distance information,” in Audio Engi-
neering Society Conference: 2018 AES International Confer-
ence on Audio for Virtual and Augmented Reality, Aug 2018.

[9] Graham Wakefield and Wesley Smith, “COSM: a toolkit for
composing immersive audio-visual worlds of agency and au-
tonomy,” in Proceedings of the International Computer Music
Conference 2011, University of Huddersfield, UK, aug 2011.

[10] David Poirier-Quinot, Damien Touraine, and Brian F.G. Katz,
“BlenderCAVE: A multimodal scene graph editor for virtual
reality,” in Proceedings of the 19th International Conference
on Auditory Display (ICAD2013), Lodz, Poland, jul 2013,
Georgia Institute of Technology & International Community
for Auditory Display.

[11] Rui Penha and Joao Pedro Oliveira, “Spatium, tools for sound
spatialization,” in Proceedings of the Sound and Music Com-
puting Conference, Stockholm, Sweden, 2013.

[12] Chikashi Miyama and Götz Dipper, “Zirkonium 3.1-a toolkit
for spatial composition and performance,” in Proceedings of
the International Computer Music Conference, 2016, vol. 313,
p. 312.

[13] Natanael Olaiz, Pau Arumi, Toni Mateos, and David Garcia,
“3D-audio with CLAM and blender’s game engine,” in pro-
ceedings of The Linux Audio Conference, Parma, Italy, 2009.

[14] Andres Perez-Lopez, “3Dj: a supercollider framework for real-
time sound spatialization,” in Proceedings of the 21th Inter-
national Conference on Auditory Display (ICAD–2015), Graz,
Austria, jul 2015.

[15] Thibaut Carpentier, “Panoramix: 3D mixing and post-
production workstation,” in 42nd International Computer Mu-
sic Conference (ICMC), Utrecht, Netherlands, Sept. 2016.

[16] Jan C. Schacher, Chikashi Miyama, and Trond Lossius, “The
spatdif library - concepts and practical applications in audio
software,” in ICMC, 2014.

54

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[17] James McCartney, “Rethinking the computer music language:
SuperCollider,” Computer Music Journal, , no. 26, pp. 61–68,
2002.

[18] Zack Settel, Peter Otto, Michal Seta, and Nicolas Bouillot,
“Dual rendering of virtual audio scenes for far-field surround
multi-channel and near-field binaural audio displays,” in 16th
Biennial Symposium on Arts and Technology, Ammerman Cen-
ter for Arts and Technology at Connecticut College, New Lon-
don, February 2018, 5 pages.

[19] M. Wright, “Open sound control 1.0 specification,” Published
by the Center For New Music and Audio Technology (CN-
MAT), UC Berkeley, 2002.

[20] Tim Blechmann, “Supernova, a scalabale parallel audio syn-

thesis server for SuperCollider,” in Proceedings of the Interna-
tional Computer Music Conference 2011, University of Hud-
dersfield, UK, aug 2011.

[21] Ben Shirley, Rob Oldfield, Frank Melchior, and Johann-
Markus Batke, “Platform independent audio,” Media Produc-
tion, Delivery and Interaction for Platform Independent Sys-
tems: Format-Agnostic Media, pp. 130–165, 2013.

[22] Nicolas Bouillot, Zack Settel, and Michal Seta, “SATIE: a live
and scalable 3d audio scene rendering environment for large
multi-channel loudspeaker configurations,” in New Interfaces
for Musical Expression (NIME’17), Copenhagen, Denmark,
2017.

55

56

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

A JACK-BASED APPLICATION FOR SPECTRO-SPATIAL ADDITIVE SYNTHESIS

Henrik von Coler

Audio Communication Group
TU Berlin

voncoler@tu-berlin.de

ABSTRACT

This paper presents a real-time additive sound synthesis appli-
cation with individual outputs for each partial and noise component.
The synthesizer is programmed in C++, relying on the Jack API for
audio connectivity with an OSC interface for control input. These
features allow the individual spatialization of the partials and noise,
referred to as spectro-spatial synthesis, in connection with an OSC
capable spatial rendering software. Additive synthesis is performed
in the time domain, using previously extracted partial trajectories
from instrument recordings. Noise is synthesized using bark band
energy trajectories. The sinusoidal data set for the synthesis is gen-
erated from a custom violin sample library in advance. Spatialization
is realized using established rendering software implementations on
a dedicated server. Pure Data is used for processing control streams
from an expressive musical interface and distributing it to synthe-
sizer and renderer.

1. INTRODUCTION

1.1. Sinusoidal Modeling

Additive synthesis is among the oldest digital sound creation meth-
ods and has been the foundation of early experiments by Max Math-
ews at Bell Labs. It allows the generation of sounds rich in timbre,
by superimposing single sinusoidal components, referred to as par-
tials, either in the time- or frequency domain. Based on the Fourier
Principle, any quasi-periodic signal y(t) can be expressed as a sum
of Npart sinusoids with varying amplitudes an(t) and frequencies
ωn(t) and an individual phase offset ϕn:

y(t) =

Npart∑

n=1

an(t) sin(ωn(t) t+ ϕn) (1)

In harmonic cases, which applies to the majority of musical in-
strument sounds, the partial frequencies can be approximated as in-
teger multiples of f0:

y(t) =

Npart∑

n=1

an(t) sin(2 π n f0(t) t+ ϕn) (2)

Although relative phase fluctuations are important for the per-
ception [1], the original phase can be ignored in many cases, which
is of benefit for manipulations of the modeled sound:

y(t) =

Npart∑

n=1

an(t) sin(2 π n f0(t) t) (3)

Based on this theory, an algorithm for speech synthesis has been
proposed by McAulay et al. [2]. For musical sound synthesis the
algorithm has been added a noise component [3], resulting in the

sinusoids+noise model. The signal is then modeled as the sum of the
deterministic part xdet and the stochastic part xstoch, also referred
to as residual:

x = xdet + xstoch (4)

Modeling of residuals can for example be performed by approx-
imating the spectral envelope using linear predictive coding [3] or a
filter bank based on Bark frequencies [4]. The phase of the stochastic
signal is random, in theory, and thus needs not be modeled. However,
residuals usually are not completely random since they still contain
information from the removed harmonic content.

In order to fully model the sounds of arbitrary musical instru-
ments, a transient component xtrans is included [4] in the full signal
model. This component captures plucking sounds and other percus-
sive elements:

x = xdet + xstoch + xtrans (5)

Since the work presented in this paper focuses on the violin in
legato techniques, the transient component can be neglected without
impairing the perceived quality of a re-synthesis.

1.2. Spectral Spatialization

In electronic and electroacoustic music, the term spectral spatializa-
tion refers to the individual treatment of a sound’s frequency compo-
nents for a distribution on sound reproduction systems [5]. Timbral
sound qualities can thusly be linked to the spatial image of the sound,
even for pre-existing or fixed sound material. In the case of spectro-
spatial synthesis, this process is integrated on the synthesis level,for
example in additive approaches. This is not yet a common feature
in available synthesizers, but several research projects have been in-
vestigating the possibilities of such approaches with applications in
musical sound processing, sound design, virtual acoustics and psy-
choacoustics.

Topper et al. [6] apply additive synthesis of basic waveforms
(square wave, sawtooth), physical modeling and sub-band decompo-
sition in a multichannel panning system with real time, prerecorded
and graphic control. Their system is implemented in MAX/MSP and
RTcmix, running on both Mac and PC/Linux hardware with a total
of 8 audio channels.

Verron et al. [7] use the sinusoids + noise model for spectral
spatialization of environmental sounds. Each component can be syn-
thesized with individual position in space on Ambisonics and Binau-
ral systems. Deterministic and stochastic components are composed
and added together in the frequency domain and subsequently spa-
tially encoded with a filterbank. Control over the synthesis process
is depending on the nature of the environmental sounds [8].

In the context of electroacoustic music, James [9] expands Den-
nis Smalley’s concept of spectromorphology to the idea of spatiomor-
phology. Timbre Spatialization is achieved using terrain surfaces

57

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

0 50 100
10−6.00

10−5.00

10−4.00

10−3.00

10−2.00

10−1.00

Frame

a
i

0

10

20

30

Partial index

Figure 1: Partial amplitude trajectories of a violin sound

0 50 100
0

10,000

20,000

Frame

f
/
H
z

0

10

20

30

Partial index

Figure 2: Partial frequency trajectories of a violin sound

and by mapping these to spacio-spectral distributions. Max-MSP
is used for computing the contribution of spectral content to individ-
ual speakers with Distance-based amplitude panning (DBAP) and
Ambisonic Equivalent panning (AEP) methods.

Spectral spatialization can also be used to synthesize dynamic
directivity patterns of musical instruments in virtual acoustic envi-
ronments. Since the directivity in combination with movement has
a significant influence on an instrument’s sound, this can increase
the plausibility. Warusfel et al. [10] use a tower with three cubes,
each containing multiple speakers, to spatialize frequency bands of
an input signal for the simulation of radiation patterns.

1.3. The Presented Application

The presented application incorporates different synthesis modes, of
which only the so called deterministic mode will be subject of this
paper. In this basic mode, precalculated parameter trajectories, as
presented in Sec. 2, are used for a manipulable resynthesis of the
original instrument sounds.

The software architecture is designed to allow the use of addi-
tive synthesis, respectively of sinusoidal modeling, on sound field
synthesis systems or other reproduction setups. This is achieved by
providing individual outputs for all partials and noise bands in an
application implemented as a JACK client, described in Sec. 3. Us-
ing JACK allows the connection of all individual synthesizer output

0 100 200 300
−300.00

−200.00

−100.00

0.00

100.00

Frame

ϕ

0

10

20

30

Partial index

Figure 3: Unwrapped partial phases of a violin sound

0 100 200 300
10−6.00

10−5.00

10−4.00

10−3.00

10−2.00

Frame

R
M
S
i

0

10

20

Bark band

Figure 4: Bark band energy trajectories of a violin sound

channels to a JACK-capable renderer, such as the SoundScape Ren-
derer (SSR) [11], Panoramix [12] or the HOA- Library [13]. Making
each partial a single virtual sound source in combination with these
rendering softwares, the spatial distribution of the synthesis can be
modulated in real-time. Pure Data [14] is used to receive control
data from gestural interfaces or to play back predefined trajectories
for generating control streams for both the synthesizer and the spa-
tialization renderer. A direct linkage between timbre and spatializa-
tion is thus created, which is considered essential for a meaningful
spectro-spatial synthesis.

2. ANALYSIS

The TU-Note Violin Sample Library [15], [16], is used as audio con-
tent for generating the sinusoidal model. Designed in the style of
classic sample libraries, this data set contains single sounds of a vio-
lin in different pitches and intensities, recorded at an audio sampling
rate of 96 kHz with 24Bit resolution.

Analysis and modeling is performed beforehand in Matlab, us-
ing monophonic pitch tracking and subsequent extraction of the par-
tial trajectories by peak picking in the spectrogram. YIN [17] and
SWIPE [18] are used as monophonic pitch tracking algorithms. Based
on the f0-trajectories, partial tracking is performed with STFT, ap-
plying a hop-size of 256 samples (2.7ms) and a window size of

58

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

update_voices()

set_parameters()

get_deterministic_value()

set_interpolator()

cycle_start_deterministic()

getNextSample()

sine-sample

new_random()

get_next_value()

noise-sample

getNextBlock_TD(pos)

out

getNextFrame_TD(*OUTBUFF)

*OUTBUFF

jackclient:JackClient voicemanager:VoiceManager singlevoice:SingleVoice sinusoid:Sinusoid ressynth:ResidualSynth

loop

[nPart]

loop

[nBuff]

loop

[nPart]

loop

[nBuff]

loop

[nBands]

loop

[nVoices]

Figure 5: Sequence diagram for the jack callback function

4096 samples, zero-padded to 8192 samples. Quadratic interpola-
tion (QIFFT), as presented by Smith et al. [19], is applied for peak
parameter estimation of up to 80 partials. Due to the sampling fre-
quency, the full number of partials is only analyzable up to the note
D5 (576.65Hz)

By subtracting the deterministic part from the complete sound in
the time domain, the residual signal is obtained. The residual is then
filtered using a Bark scale filterbank with second order Chebyshev
bandpasses and the temporal energy trajectories are calculated for
the resulting 24 band-limited signals. At this point, a large amount
of information is removed from the residual signal. Due to the short-
comings of the time domain subtraction method, the residual still
contains information from the deterministic component. By averag-
ing the energy over the Bark bands, this relation is eliminated.

Results of the synthesis stage are trajectories of the partial am-
plitudes, as shown in Figure 1, the trajectories of partial frequencies
and phases, as shown in Figure 2, respectively Figure 3 as well as the
trajectories of the Bark-band energies, illustrated in Figure 4. The
resulting data is exported to individual YAML files for each sound,
which can be read by the synthesis system.

3. SYNTHESIS SYSTEM

3.1. Libraries

The synthesis application is designed as a standalone Linux com-
mand line software. The main functionality of the synthesis system
relies on the JACK1 API for audio connectivity and the liblo2, respec-

1http://jackaudio.org/
2https://github.com/radarsat1/liblo

tively the liblo C++ wrapper for receiving control signals. libyaml-
cpp3 is used for reading the data of the modeled sounds and the rel-
evant configuration files. libsndfile4 for reading the original sound
files, as well as the libfftw5 are included but not relevant for the as-
pects presented in this paper. Frequency domain synthesis and sam-
ple playback are partially implemented but not used at this point.

3.2. Algorithm

Both the sinusoidal and the noise component are synthesized in the
time domain, using a non-overlapping method. For the sinusoidal
component, the builtin sin() function of the cmath library and a
custom lookup table can be selected. The choice does not affect the
overall performance, significantly. The filter bank for the noise syn-
thesis consists of 24 second order Chebyshev bandpass filters with
fixed coefficients, calculated before runtime. The amplitude of each
frequency band is driven by the previously analyzed energy trajecto-
ries.

During synthesis, the algorithm reads a new set of support points
from the model data for each audio buffer and increments the posi-
tion within the played note. Figure 5 shows a sequence diagram
for the deterministic synthesis algorithm, starting at the JACK call-
back function, which is executed for each buffer of the JACK audio
server. Since the synth is designed to enable polyphonic play, the
voice manager object handles incoming OSC messages in the func-
tion update_voices() to activate or deactivate single voices.

3https://github.com/jbeder/yaml-cpp/
4http://www.mega-nerd.com/libsndfile/
5http://www.fftw.org/

59

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Control input

Puredata

Synth

Spatial Renderer

Audio Out

MIDI, OSC, ...

OSC OSC

Multi-Audio
(1ch / partial)

Multi-Audio
(1ch / speaker)

Performance
System

Figure 6: Combination of synthesizer and renderer on separate ma-
chines using Pure Data for synth configuration and parameter parsing

For the synthesis of mostly monophonic, excitation continuous in-
struments like the violin, the polyphony merely handles the overlap-
ping of released notes. Subsequently, the voice manager loops over
all active voices in the function getNextFrame_TD(), first set-
ting the new control parameters for each voice.

In cycle_start_deterministic(), support points for
all partial’s parameters are picked at the relevant voice’s playback
position. These support points are then linearly interpolated over the
buffer length in set_interpolator().

Finally, in getNextBlock_TD(), each single voice gener-
ates the output for all sinusoids and all noise bands in two separate
vectorizable loops, adding both to the output buffer.

3.3. Runtime Environment and Periphery

The runtime system for the synthesis is starting a JACK server with
48 kHz sampling rate, a buffer size of 128 samples and 2 periods
per buffer. This results in 5.3ms latency for the audio playback,
which is within the limits for this synthesis approach. On an Intel(R)
Core(TM) i7-5500U CPU @ 2.40GHz with disabled speed-stepping
and a Fireface UFX, the JACK server is showing an average load of
approximately 20%.

The interaction of the involved software components is visual-
ized in Figure 6. For reasons of performance and increased flexibility
in the studio, two separate machines are used for synthesis and spa-
tialization. Connectivity between the systems is realized with MADI
or DANTE, using individual channels for the 80 partials and 24 noise
bands.

3.4. Control

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

ϕ

S

x

y

Figure 7: Spatialization scene in a 2D setup with 30 partials and their
positions

The control data for the partial positions in the rendering soft-
ware is not generated in the synthesis system at this point and is
managed, externally. This offers more flexibility for testing different
mappings at this stage of development. A Pure Data patch is used to
receive incoming control messages, either from OSC or MIDI, and
distribute them to the synthesizer and the spatialization software. For
live performance, the patch receives continuous control streams for
pitch and intensity from an improved version of the interface pre-
sented by von Coler et al. [20] and visualizes the sensor data. Pitch
and intensity are forwarded to the synth, directly. Additionally, data
from several Force Sensitive Resistors (FSR) and a 9 degrees of free-
dom IMU, which can be used for controlling the spatialization, is
sent to the patch.

Figure 7 shows an example for a simple spatialization mapping
on a 2D system. The absolute orientation of the IMU is used to con-
trol the general direction ϕ of the partial flock. A second parameter
S, derived from the intensity and additional sensor data, controls the
spread of the partials around this angle, depending on the partial in-
dex.

4. CONCLUSION

After significantly improving the performance of the synthesis sys-
tem, the application can now be used with the full 80 partials and
24 Bark bands as individual outputs. Recent tests in combination
with different spatial rendering softwares and different loudspeaker
setups show promising results. However, the dynamic spatialization
of such number of virtual sound sources and the resulting traffic of
OSC messages is demanding for the runtime system. Using separate
machines for synthesis and rendering reduces the individual load.
The number of rendering inputs can also be reduced without limit-
ing the perceived quality of the spatialization. Multiple partials may
share one virtual sound source.

60

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Next steps are now possible, which include the empirical inves-
tigation of mappings from controller sensors to both the spectral and
spatial sound properties. This includes user experiments to evalu-
ate different mapping and control paradigms, as well as perceptual
measurements of the synthesis results.

5. ACKNOWLEDGMENTS

Thanks to Benjamin Wiemann for contributions to the project in it’s
early stage and to Robin Gareus for the help in restructuring the code
and hencewith improving the performance.

6. REFERENCES

[1] T. H. Andersen and K. Jensen, “Importance and Representa-
tion of Phase in the Sinusoidal Model”, J. Audio Eng. Soc,
vol. 52, no. 11, pp. 1157–1169, 2004.

[2] R. McAulay and T. Quatieri, “Speech analysis/Synthesis based
on a sinusoidal representation”, Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 34, no. 4, pp. 744–
754, 1986.

[3] X. Serra and J. Smith, “Spectral Modeling Synthesis: A Sound
Analysis/Synthesis System Based on a Deterministic Plus Stochas-
tic Decomposition ”, Computer Music Journal, vol. 14, no. 4,
pp. 12–14, 1990.

[4] S. N. Levine and J. O. Smith, “A Sines+Transients+Noise
Audio Representation for Data Compression and Time/Pitch
Scale Modi cations”, in Proceedings of the 105th Audio En-
gineering Society Convention, San Francisco, CA, 1998.

[5] D. Kim-Boyle, “Spectral spatialization - an Overview”, in
Proceedings of the International Computer Music Conference,
Belfast, UK, 2008.

[6] D. Topper, M. Burtner, and S. Serafin, “Spatio-operational
spectral (sos) synthesis.”, in Proceedings of the International
Computer Music Conference (ICMC), Singapore, 2003.

[7] C. Verron, M. Aramaki, R. Kronland-Martinet, and G. Pal-
lone, “Spatialized additive synthesis of environmental sounds”,
in Audio Engineering Society Convention 125, Audio Engi-
neering Society, 2008.

[8] C. Verron, G. Pallone, M. Aramaki, and R. Kronland-Martinet,
“Controlling a spatialized environmental sound synthesizer”,
in 2009 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, IEEE, 2009, pp. 321–324.

[9] S. James, “Spectromorphology and spatiomorphology of sound
shapes: Audio-rate aep and dbap panning of spectra”, in Pro-
ceedings of the International Computer Music Conference 2015,
2015.

[10] O. Warusfel and N. Misdariis, “Directivity synthesis with a 3d
array of loudspeakers: Application for stage performance”, in
Proceedings of the COST G-6 Conference on Digital Audio
Effects (DAFX-01), Limerick, Ireland, 2001, pp. 1–5.

[11] J. Ahrens, M. Geier, and S. Spors, “The SoundScape Ren-
derer: A unified spatial audio reproduction framework for ar-
bitrary rendering methods”, in Audio Engineering Society Con-
vention 124, Audio Engineering Society, 2008.

[12] T. Carpentier, “Panoramix: 3d mixing and post-production
workstation”, in Proceedings of the International Computer
Music Conference (ICMC), 2016.

[13] A. Sèdes, P. Guillot, and E. Paris, “The HOA library, review
and prospects”, in International Computer Music Conference|
Sound and Music Computing, 2014, pp. 855–860.

[14] M. S. Puckette, “Pure Data”, in Proceedings of the Interna-
tional Computer Music Conference (ICMC), Thessaloniki,
Greece, 1997.

[15] H. von Coler, J. Margraf, and P. Schuladen, TU-Note Vio-
lin Sample Library, TU-Berlin, 2018. DOI: 10 . 14279 /
depositonce-6747.

[16] H. von Coler, “TU-Note Violin Sample Library – A Database
of Violin Sounds with Segmentation Ground Truth”, in Pro-
ceedings of the 21st Int. Conference on Digital Audio Effects
(DAFx-18), Aveiro, Portugal, 2018.

[17] A. de Cheveigné and H. Kawahara, “YIN, a Fundamental
Frequency Estimator for Speech and Music”, The Journal of
the Acoustical Society of America, vol. 111, no. 4, pp. 1917–
1930, 2002.

[18] A. Camacho, “Swipe: A Sawtooth Waveform Inspired Pitch
Estimator for Speech and Music”, PhD thesis, Gainesville,
FL, USA, 2007.

[19] J. O. Smith and X. Serra, “PARSHL: An Analysis/Synthesis
Program for Non-Harmonic Sounds Based on a Sinusoidal
Representation”, Center for Computer Research in Music and
Acoustics (CCRMA), Stanford University, Tech. Rep., 2005.

[20] H. von Coler, G. Treindl, H. Egermann, and S. Weinzierl,
“Development and Evaluation of an Interface with Four-Finger
Pitch Selection”, in Audio Engineering Society Convention
142, Audio Engineering Society, 2017.

61

62

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

GPU-ACCELERATED MODAL PROCESSORS AND DIGITAL WAVEGUIDES

Travis Skare

CCRMA
Stanford University, USA

travissk@ccrma.stanford.edu

Jonathan Abel

CCRMA
Stanford University, USA

subsection abel@ccrma.stanford.edu

ABSTRACT

Digital waveguides and highly-resonant filters are potential funda-
mental building blocks of physical models and modal processors.
What might a sound designer accomplish with a massive collection
of these objects?

When the building blocks are independent, the overall system
becomes highly parallel. We investigate the feasibility of using a
modern Graphics Processing Unit (GPU) to run collections of waveg-
uides and filters, toward constructing realtime collections of room
simulations or instruments made up of many banded waveguides.

These two subproblems offer different challenges and bottle-
necks in GPU acceleration: one is compute-bound while the other
has memory optimization challenges.

We find that modern GPUs can run these algorithms at audio
rates in a straightforward fashion–that is, sample-by-sample without
needing to implement transforms that allow computation of subse-
quent time samples concurrently. While a fully-realized instrument
or effect based on these building blocks requires additional process-
ing and will have more data dependencies that reduce parallelism, we
find that consumer-GPU-accelerated audio enables a scale of real-
time models which would be intractable on contemporary consumer-
CPUs.

1. INTRODUCTION

Potential applications for a large number of modal filters or digital
waveguides include:

• A large collection of coupled acoustic spaces, for example an
opera house with listening booths that may be seen as res-
onators, or the interior architecture of ancient Chavín[1].

• A virtual orchestra where we have many players, each using
an instrument made up of several digital waveguides.

• A virtual reality simulation where a server may track room-
and position-dependent modal reverberators for a number of
participants on low-power client devices.

• A drum set made up of a couple dozen individual instruments,
each using many modal filters.

While the first three ideas are hypotheticals enabled by having
access to massively parallel filtering/waveguide systems, the fourth
exists as a real-world proof of concept to synthesize a dozen modal
cymbal models at realtime rates using a GPU. Active work is toward
adding realtime controls for a performer.

1.1. Building Blocks: Modal Synthesis and Digital Waveguides

Modal synthesis involves determining the natural resonant modes of
a vibrating object, and using the appropriate frequencies, amplitudes,
and decay rates to build a system that simulates the original sound.

A filter bank of high-Q filters is often used for such sound syn-
thesis, and is also the backbone of modal reverberators[2]. The more
modes we can compute at realtime audio rates, the higher the fidelity
of the sound, and the more sources or rooms we may model.

Digital waveguides[3] are efficient for simulation of traveling
waves, and with scattering junctions and nonlinearities added, a wide
range of physically-accurate bowed strings, brass, etc. may be sim-
ulated with robust realtime performance controls. Here, we are in-
terested in working toward many virtual performers each playing an
independent instrument (orchestra), or one performer given control
over simultaneous but mostly independent “clusters” of waveguide-
powered instruments, such as a virtual drum set with a large number
of pieces.

Digital Waveguides may be implemented efficiently in the 1-
dimensional case via a bidirectional delay line representing two trav-
eling waves, plus filters to account for dispersion loss. These are
the basic building blocks we seek to accelerate, noting that for more
complex physical models we will add scattering junctions, additional
filtering, and nonlinear elements incurring additional computation
cost. In some cases, such as piano string modeling[4], some terms
may be commuted, or combined with an impulse response, to add
complexity to the overall model without scaling the overall steady-
state computational cost.

1.2. GPU Acceleration for Audio Algorithms

For years, graphics processing units (GPUs) have supported both
high-level realtime graphics APIs as well as lower-level, general-
purpose computational APIs. GPU acceleration of audio synthe-
sis and audio effect algorithms has been shown to yield substantial
speedups on certain algorithms. GPUs advance in performance each
generation in terms of parallel core count and base core speed, so
we expect some previously intractable problems to become tractable
over time.

Among papers in the literature:
Savioja et. al.[5] give an overview of potential audio tasks that

may be accelerated via GPGPU programming at audio rate and rea-
sonable buffer sizes for realtime performance. Sinusoid-based addi-
tive synthesis obtained 250x+ speedup over CPU implementations,
FFTs running on a GPU were able to be eight times as long as those
running on a CPU-based implementations, and FIR filters were able
to be 130 times as long as their CPU counterparts. In [5] and [6], the
authors showed it was possible to synthesize 1.9 million sinusoids in
realtime, a 1300x speedup over a serial lookup table computation on
one CPU. This was on a GPU that is six generations behind ours and
three major GeForce architecture revisions behind our card1. And
we note that our graphics card is itself now a generation and ma-
jor architecture advance behind the times. This work results in a

1Fermi (GTX 480, 2010) → Kepler → Maxwell → Pascal (GTX 1080Ti,
2017); RTX cards released in 2018 use the Turing architecture.

63

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

realtime sound canvas with more “paint” than previously available
(how might an artist use 1.9 million partials in additive synthesis?).
The million sinusoids example also demonstrates that maximum per-
formance requires tuning and knowledge of the specific underlying
hardware.

Trebien et. al.[7] use modal synthesis to produce realistic sounds
for realtime collisions between objects of different materials. Not-
ing that IIR filters do not traditionally perform well on GPUs, due to
dependence on prior state not mapping well to the parallel nature of
GPUs, they introduce a transform to change this into a linear convo-
lution operator and to unlock time-axis parallelism.

Belloch et. al. [8] accelerate IIR filters on the GPU directly by
using the Parallel IIR representation. They achieve 1256 concurrent
256th-order IIR filters at audio rates and sub-millisecond latency at
a 44.1kHz sampling rate.

Subsequently, Belloch covers GPU-accelerated massively paral-
lel filtering in [9], and Belloch et. al.[10] leverage GPU accelera-
tion to implement Wave Field synthesis on a 96-speaker array, with
nearly ten thousand fractional-delay room filters with thousands of
taps. The maximum number of simulated sound sources is com-
puted for different realtime buffer sizes and space partitions; with a
256-sample buffer (5.8ms at 44.1kHz), between 18 and 198 real-time
sources could be placed in the field.

Bilbao and Webb[11] present a GPU-accelerated model of tim-
pani, synthesizing sound at 44.1kHz in a 3D computational space
within and outside the drum. The GPU approach uses a matrix-free
implementation to obtain a 30x+ speedup over a MATLAB CPU-,
sparse-matrix-based prototype, and a greater-than-7.5x speedup over
single-threaded C code baseline. The largest (and most computationally-
expensive) drum update equation is optimized to 2.04 milliseconds
per sample, where the bottleneck is a linear system update for the
drum membrane.

Our area of study utilizes recursive filters and unfortunately op-
timizations of the million-sinusoinds and Parallell IIR filter works
do not apply directly; we would like to be able to adjust parame-
ters arbitrarily in realtime and at sample rate, which would require
rerunning transformation code too often.

Still, our filter bank is expected to be highly parallel in terms of
independence between the filters. We may have coupling between
modes, but so long as it’s limited, we can implement this in a way
that is compatible with GPU programming ideas. We also do not
need to implement arbitrary IIR filters as in Belloch et. al., but will
be able to use special-purpose damped oscillation filters that only
require a first-order complex update equation (see Section 2).

If GPUs have advanced enough in terms of increased clock rate,
increased floating-point resources, and lower memory latency in the
last few generations, we aim to compute filter and physical model
updates sample-by-sample in realtime.

1.3. GPU Programming

Next, we present a brief overview of GPU programming, and note
advantages and challenges versus programming for a general-purpose
processor.

Various toolkits exist to develop GPU programs: two of the
biggest are NVIDIA’s CUDA for use with their graphics cards, and
APIs implementing OpenCL, a more general heterogeneous compu-
tational framework. For the following investigation we use CUDA.
If readers have any modern NVIDIA card, they may download the
software developer kit at developer.nvidia.com.

When starting to port an algorithm to the GPU, we must con-
sider if it has parallelism to leverage. NVIDIA coined the term “sin-
gle instruction, multiple thread” (SIMT) as a variation on the “single
instruction, multiple data” (SIMD) of vector processors and mod-
ern mainstream processors. If our work is a series of several differ-
ent and dependent computations, we may not be able to achieve a
speedup. If we can structure it as applying identical operations to
many points, it is a good candidate for acceleration.

The core work unit in CUDA is a group of 32 threads, called a
warp. Each thread in a warp may have its own values for local vari-
ables, but all threads in a warp will always run the same instruction
simultaneously.

A warp is executed on a Streaming Multiprocessor (SM). Dif-
ferent graphics cards have different numbers of SMs; a low-power
embedded device may have two while our graphics card used for the
trials below has 28.

A trivial example task would be to take N integer inputs and
double them.

There are two main steps involved in this task. First, we write a
kernel, the code that will run on the GPU. This will accept an array
of inputs; each thread will index into the array, find the element it is
to double, multiply it by 2, and store it in an output array. Second, we
write host (CPU) code that calls a CUDA function to send an input
array to the GPU, execute the kernel, wait for the kernel to complete,
and finally copy the output values back to the CPU, for example so
we can save them to disk.

If we have 32 inputs to double, CUDA will execute our kernel
code on one warp of 32 threads. All 32 threads in that warp execute
in lockstep and run the same instructions, but obtain a different value
of the array to double and a different output location to store the
result. If we have only 15 inputs to double, this is not a problem.
We will still run on one warp, and the 17 threads without any work
to do effectively get a break (they technically are issued instructions
but do not write to memory or compete for resources). If we have
33 inputs to double, we outgrow one warp. Threads will be grouped
in one warp of 32 threads and a second warp of one solitary thread.
More than one warp can run at a time, so it is very likely we will run
in the same time as it took to run the 32 and 15 input cases.

A CUDA-enabled graphics card has some number of Stream-
ing Multiprocessors (SMs). The product specifications for individ-
ual graphics card models and a capabilities table such as provided in
the CUDA Programming Guide lets authors know how many threads
may be in flight per SM, and how many may actually get run each
cycle.

For example, our graphics card may have up to 64 warps as-
signed to each SM (→ 64warps ∗ 32threads/warp = 2048threads),
though only 4 warps (128 threads) may be scheduled on each single
clock cycle.

The programming guide lists other bottlenecks and numbers to
consider. One piece of information very relevant to us is the number
of simultaneous arithmetic operations available.

The graphics card we use is a consumer card meant for gaming.
Some other cards (the NVIDIA TITAN for example) are targeted
more for enterprise and scientific computing uses, albeit at a signifi-
cantly higher price point.

We note the issue rate of floating-point operations from the pro-
gramming guide:

This means that if we require 64-bit precision, our consumer
card is more likely to be bottlenecked by this figure than the enter-
prise card in the lineup.

On the other hand, we note that our card has higher per-clock

64

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Table 1: Throughput of FP instructions (Results per Clock per SM)

Consumer Enterprise
16-bit mult+add 2 128
32-bit mult+add 128 64
64-bit mult+add 4 32

32-bit floating-point throughput. Assuming that is sufficient pre-
cision for a problem, this means our card may execute 128 32-bit
multiply-adds per SM ∗ 28 SMs = 3584 multiply-adds per clock.
For reference, the card’s core clock runs at 1.3-1.5GHz.

Thus far we’ve considered parallelism and availability of arith-
metic units; we must also keep the memory hierarchy in mind.

Each SM has some number of registers. These are very fast. The
compiler will attempt to use them for thread-local variables. On our
card, there are 64,000 32-bit registers per SM.

Each thread block (user-defined organizational unit of threads,
comprised of one or more warps) has some fast “shared” memory.
This is 64KB per SM for our setup. We’ll return to this later as an
optimization.

All threads may access a card-wide pool of read-only constant
memory.

All threads may also access a pool of global memory–11GB on
our card. However, this is described as having roughly 100x the
latency of shared memory or registers.

If a thread’s local data will not fit in registers, the compiler may
reduce parallelism or spill to “local memory.” This technically lives
in the slow global device memory pool, but is backed by a cache.

1.4. Development Approach

We take an iterative development approach, getting a basic algorithm
working and then proceeding to tune it in stages. The CUDA toolkit
contains IDE plugins and debugging tools, making it straightforward
to analyze bottlenecks as we encounter them. The compiler will also
be helping us along the way.

To set expectations, we know there will be overhead involved in
transferring data between CPU and GPU, overheads in starting and
stopping our kernel, and overhead introduced by the host operating
system. We try to mitigate some of these, but some are unavoidable.

It is also important to note the significant effort that would be
involved in moving from this proof of concept to a commercial DAW
plugin. A hypothetical DAW is competing for CPU resources, will
be using the GPU to render its GUI (our kernels can run alongside
that with no issue, but there’s still potential resource competition),
and will force our choice of buffer size and latency.

1.5. Test Setup

The test setup consists of:

• GPU: An NVIDIA GeForce GTX 1080Ti, which is a consumer-
grade graphics card, though a relatively high-level one.

• CPU: An Intel i5 3570K running at stock speed. We note
this CPU is six generations old and a mid-level chip even in
its generation, and newer CPUs may include newer vector in-
structions including AVX-512. However it is unlikely to bot-
tleneck us, as it is used primarily for memory transfer and
GPU kernel launches.

• RAM: CPU has 16GB, GPU has 11GB; neither will bottle-
neck us in these synthetic benchmarks.

• Storage: consumer SATA SSDs that will not be a bottleneck,
especially since our tests should reside completely in RAM.

• OS and software: Development was cross-platform; kernels
were written on Ubuntu Linux with Microsoft’s open-source
VSCode as a text editor and compiled using the CUDA Toolkit.
During the memory optimization phase of the project, NVIDIA
Nsight Visual Studio Edition on Windows was used for its
“Next-Gen CUDA Debugger,” though it is noted that the Lin-
ux/Mac Eclipse edition also contains an Eclipse-based pro-
filer.

• Programs were compiled as 64-bit in case we use more than
4GB of RAM, possible with high buffer sizes and high num-
bers of parallel waveguides.

We discuss development of two algorithms: high-Q filters suit-
able for use in modal processors, and a simplified form of digital
waveguides, running independently without scattering junctions and
only a gain multiplier in the feedback loop. These two systems were
developed simultaneously and do not depend on each other; we begin
with the modal filter code since it is simpler, can essentially ignore
the GPU memory hierarchy (everything besides output data fits in
registers), and we estimate will be bottlenecked exclusively by the
floating-point throughput of the graphics card, which makes it the
easier of the two to optimize.

2. MASSIVE MODAL FILTER BANK

As described above, a modal filter bank used for synthesis, effects or
reverberation consists ofN resonant filters. We make the assumption
that all the filters are uniform in construction and vary in parameters;
a GPU can of course run multiple styles of filters in parallel, either
through conditional execution or simultaneous kernel execution.

In practice, rapidly changing the coefficients on e.g. Direct-
Form II filters may result in audible artifacts. In [12] Max Mathews
and Julius Smith proposed a filter that is very-high-Q, numerically
stable, and artifact-free, based on properties of complex multiplica-
tion.

This is suitable for modal synthesis and reverberators such as in
[2]; the recursive update equation we need to implement is:

ym(t) = γmx(t) + e(jωm−αm)ym(t− 1) (1)

where:
x() is an input or excitation signal.
ωm is mode frequency m.
γm is a per-mode complex input amplitude gain.
αm is a per-mode dampening factor.
This is straightforward to implement; the state we store for each

mode is limited to the prior output ym(t−1), the parametersαm, γm,
and ωm, even if only for intermediate computation. For simplicity
we keep them all; noting that while complex values use two 32-bit
registers each (four when using 64-bit precision), we likely have 255
registers per thread and have room to spare.

We benchmark three approaches:
When letting these resonating filters run as undamped oscilla-

tors, we are able to compute and reuse the complex exponential
value, and only conditionally add the input term; with these sim-
plifications we will require two floating-point multiplies per cycle.
We create a benchmark to determine the number of such oscillators

65

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

we can run in parallel in realtime. We run two variations of this
benchmark at different buffer sizes. A third benchmark simulates a
pesrformance that modulates all the filters on every sample: we re-
compute the exponential term each time it is used, and look at the
performance impact.

We move to benchmark those three approaches. In more detail:
Free-Run is the optimal case where the oscillators only need to

update based on a complex multiplication of y(t − 1) with a static
value of the complex exponential. A buffer size of 2,000 samples
is likely larger than we’d want for realtime performance (45ms at
44.1kHz), but allows us to reduce kernel-switch overhead.

Small Buffer is identical to Free-Run, but with a buffer of 256
samples (5.8ms at 44.1kHz).

Continuous Modulation is our third approach, simulating gain
parameters and frequencies changing continuously, requiring recom-
puting the complex exponential term with each sample update, in ad-
dition to performing the 2-multiply complex update of the filter state.
This case uses the same 256-sample buffer as Small Buffer.

We measure the amount of time it takes to render ten seconds
of 44.1kHz audio for N phasor filters in parallel. This means that
benchmark runtimes over 10 seconds fall behind realtime perfor-
mance, while values under 10 might be feasible. For each trial, the
median of three runs was used; in practice we did not see large out-
liers in these tests.

Tabulated results are in Table 2; bold entries took less than ten
seconds to compute and thus are candidates for realtime performance.
In practice, we might want to avoid values under but close to ten sec-
onds, due to system variance and unmeasured overhead of a DAW,
OSC server, controller processing, etc. The same data is available as
a plot in Figure 1, with a horizontal line representing realtime limits.
In all graphs in this paper, lines between sample counts are present
only to show trends, and we do not expect results for intermediate
values of N to fall precisely on that line.

Table 2: Time to run N filters for 10 seconds of Audio

N Filters Free-run Small Buffer Continuous Mod.
458752 1.48 2.95 3.97
917504 2.63 4.18 5.54
1835008 4.85 7.17 8.49
3670016 9.23 11.39 13.21

Some observations:
As these filters are completely independent, we achieve high uti-

lization on the GPU and are only blocked on availability of floating-
point units. All data is stored in registers and we avoid memory
accesses, especially global memory accesses.

It is worth reiterating that this is benchmarking building blocks.
We synthesize audio and copy it back to the host RAM, but addi-
tional logic is needed on the CPU to modulate parameters based
on realtime user input or performance data and most likely to post-
process the output with effects.

Using a smaller buffer incurs more cost, which can be 50% and
even higher, percentage-wise, for low N . At very high N the effect
is lower; we bottleneck on floating point unit availability in the large-
buffer version, but have lower kernel launch overhead.

As a final observation on Table 2’s data, the continuously-modulated
version does not suffer as large a performance penalty as expected
since it looks like we had some idle 32-bit floating-point units - they
are not occupied every cycle. It also allows us to eliminate a condi-
tional check since we always run that logic.

Figure 1: Time to run N filters for ten seconds of samples under
different trials.

Moving forward, we benchmark the use of double-precision arith-
metic. We made an alternate 64-bit kernel - basically swapping
cuDoubleComplex in for the default cuComplex, which is by
default typedefed to be single-precision.

With a 256-sample buffer and continuously-changing parame-
ters, and N=458,752 filters, it takes 19.49 seconds to render 10 sec-
onds of audio. Our corresponding single-precision trial only took
3.97 seconds, so we note a 4.9x slowdown. As noted earlier, each
SM on our GPU may only issue four 64-bit floating point multiply-
adds versus 128 32-bit adds. As we did not achieve 100% utilization
of the floating point units in prior benchmarks, we don’t necessarily
suffer a 32x (128/4) slowdown, but it is clear we are being bottle-
necked by double-precision FPU availability with this configuration.

As we might expect, scaling down to 114,688 filters lowers re-
source contention enough to run within our realtime constraints (7.04
seconds to synthesize 10 seconds of audio). If we need the extra pre-
cision, that is likely still more than enough high-Q filters to enable
some interesting instruments and effects, such as creating a virtual
drum set with several thousand filters available to each instrument.

3. MASSIVE WAVEGUIDE “ORCHESTRA”

Next, we code up a kernel that performs the computations for a sim-
ple 1-D Digital Waveguide. This follows the description of the struc-
ture from Section 1.1; each thread owns a bidirectional delay line
made up of continuous memory on its thread stack. This is used as a
circular buffer, with an index value serving as a read/write head, and
a multiplicative factor on feedback introduces dispersion loss. Note
that for most waveguide-based physical models, additional code will
be needed for scattering junctions, nonlinearities, etc., reducing our
maximum throughput and complicating our kernel code, but parallel
waveguides may be benchmarked as a starting point, to suggest an
upper bound for performance.

As a baseline, we start with uniform waveguides of delay-length
M=5000 samples in total2, and process audio in 2000-sample chunks

2lengths in this benchmark represent the total length of the delay in the
system; if building a waveguide from a bidirectional delay line, each delay

66

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

with each launch of the GPU kernel.
Because a buffer size of 2000 at 44.1kHz would be 45 milliseconds–

longer than we’d like for interactive applications–we performed the
same trial at 256 samples (5.8ms).

Then, because we expect to run out of thread registers and spill
to expensive “local” memory (as above, really in the global pool) we
run a second variant of waveguides of length 10 samples and a buffer
of 2000 samples–arguably too much of a simplification, but this may
be useful to establish a loose upper bound on performance.

In each trial, we compute the amount of time it takes to repeat-
edly run the kernel on the GPU and copy some data back out to the
host.

The data copy is non-negligible overhead; assuming 1.8M waveg-
uides and buffer of length 2000, we generate 13GB of audio data
each kernel execution. As such, we first sum all the samples in each
warp to reduce the overhead by a factor of 32 - still leaving us with a
substantial amount of sound data to transfer across the PCI Express
bus.

As in the high-Q filter benchmarks, we build N independent
objects in parallel and measure the time it takes to synthesize ten
seconds of sound at 44.1kHz.

Results are in Table 3. N is a multiple of 32 to ensure all warps
are occupied. Bold entries take less than ten seconds to compute and
thus ran faster-than realtime. A plot of the data is in Figure 2.

Table 3: Time to generate 10s of Audio, Uniform Waveguides

N DWGs Baseline Small Buffer Short Waveguide
3584 0.249 0.544 0.11
14336 0.522 0.811 0.272
57344 1.44 1.75 0.95

114688 2.79 3.09 1.83
229376 5.5 5.74 3.68
458752 10.85 11.07 7.28
917504 21.14 20.24 14.59

1835008 42.611 49.72 29.152

We note some trends:
As expected, computing more waveguides requires more time.

Scaling is sub-linear while growing at small N as we utilize more
of the GPU in the parallel section of the benchmark (“for free”), but
we still incur a cost for memory transfer of the outputs off the card,
which itself scales linearly with N . The parallel sound synthesis
portion of the program becomes linear with N as resources are ex-
hausted; beyond this point we essentially are cycling through groups
of warps serially.

Decreasing the buffer size from processing 45ms to 6ms of audio
per kernel execution did not seem to affect the feasibleN as much as
anticipated. There is a notable 2x difference at small N but for both,
the 458,000 waveguides trial was not feasible while the 230,000
waveguide trial used approximately 55% of the available time slice.

A variation of the trial using a shorter waveguide showed that
through the range of our trial values of N , scaling is partially de-
pendent on memory usage. As noted above, this is an experiment
performed to validate that, as we might expect, longer-length delay
lines may incur more computational cost. Of course, the delay line
lengths used in practice will be defined by our physical model and
sampling rate.

would have length M /2

Figure 2: Time to run N waveguides for ten seconds of samples under
different trials.

These preliminary benchmarks suggest a rough upper bound, so
in our iterative development approach we return to coding, refin-
ing our kernel and un-relaxing some assumptions. Currently, all the
waveguides have the same delay line length; this is unrealistic for
real-world applications, so we next move to have waveguides play
one of 1000 different pitches, by having each parallel digital waveg-
uide own a delay line of different length. We use our baseline setup,
and allocate the same blocks of memory as before, but have waveg-
uide n be of length 128+ 5n mod 5000. This means that all waveg-
uides inside a warp will have different delay line lengths, and warps
compute different values overall.

Results are in Table 4.

Table 4: Time to generate 10s of Audio, “Baseline” uses same-length
waveguides, “Differing” experiment uses heterogeneous waveg-
uides. Slowdown Factor is the multiplicative performance penalty.

N DWGs Baseline(s) Differ.Lengths(s) Slowdown Factor
3584 0.249 2.0 8.03x

14336 0.522 5.03 9.63x
57344 1.44 19.72 13.69x

114688 2.79 39.41 14.12x
229376 5.5 78.41 14.26x
458752 10.85 156.08 14.38x

This is not ideal; we see a slowdown factor of 14x in our highly-
parallel cases and went from supporting computation of 450 thou-
sand simultaneous commuted waveguides to only 28 thousand. What
changed? Two initial ideas come to mind:

Increased branch divergence: Some advice when writing GPU
kernels is to avoid branch divergence where a portion of the threads
in a warp take one path of an if() statement but others take the
else(). This is because GPU threads do not have independent
branching logic: the SIMT approach means that all threads exe-
cute each instruction in lockstep. In the case of an if() statement,
threads evaluate the conditional and vote; if they are not unanimous,
then both branches are executed in serial and threads ignore execu-

67

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

tion during the branch they did not take.
Looking at our code, the piece of our code that uses branching is

trying to determine whether to loop in a delay line’s circular buffer:

if (bufferIndex >= waveguideLength) {
bufferIndex = 0;

}

The overhead of running both branches is minimal: we incur
an extra instruction of setting a register to zero more often (1 cycle)
and the else() branch is a no-op. In addition, GPUs have support for
predicated instructions for short branches, which means this case is
compiled to the non-branching code:

cond = bufferIndex >= waveguideLength
cond? bufferIndex = 0

This may be validated by looking at generated PTX pseudoassem-
bly code, or using profiling tools to annotate branch divergence for
each line of our source code after a test run.

The second thought of why we see slowdown when introducing
heterogeneous delay line lengths is memory access patterns.

Our block of memory for waveguide state was defined to be
of size WARPSIZE*NWAVEGUIDES by BUFFERSIZE rows. This
means the N waveguides write to memory locations 0..N − 1 on the
first sample, N..2N − 1 on the second sample, etc.

Global memory access in CUDA is slow, but reads and writes
may be coalesced; that is, if all threads in a warp are accessing
data in the same aligned 128-byte block, only one to four line reads
will need to occur (this is card-dependent). Newer cards have better
caches, compiler optimizations, and runtime logic for global mem-
ory placement, but this is still worth considering.

In our case, consider we have 32 waveguides in a warp; these are
of lengths 5000..5031. During the first “trip” through the waveg-
uide’s circular buffer (first 5000 samples), memory is aligned as all
waveguides index to the same offsets. Over the next several cycles
through the waveguide, some waveguides will cycle earlier than oth-
ers and eventually we will reach a state where we require simultane-
ous memory reads to 32 different lines, so slowdown will result.

Such memory accesses are cached, but with high numbers of
waveguides we could easily evict old entries quickly. We open the
CUDA Analysis tools, profile memory access, and find that this is
indeed the case; Figure 3 shows lots of global memory accesses with
only 2% hitting the L1 cache:

Figure 3: CUDA memory profiler results. L1 cache hit rate is 2.4%

To work past this slowdown, we propose two ideas:

3.0.1. Synchronize on Cycle Point

We could determine the longest waveguide in a block and ensure all
waveguides’ circular buffers loop at the same moment. For example,
if we have guides of length 250 and 255, the former avoids writing
to memory until our indexing counter loops back to index 1 of the
array. The tradeoff is that we need to run more overall cycles in order
to completely fill the output buffer from the shorter waveguide3.

In a degenerate case, what if we have waveguides of length 5000
and 100? Only 2% of cycles are spent actually generating audio for
the shorter waveguide with a naïve approach.

We could sort all waveguides by length globally, so that similarly-
sized waveguides are in the same warp, to minimize the number of
extra iterations–however this makes it much slower to later couple
specific waveguides together, which we aim to do in a project that
leverages this acceleration.

We could consider a middle ground where we have multiple el-
igible cycle points. Perhaps every 32 or 64 calculated samples, we
could reset and unblock waveguides that are currently idle. This
introduces a tradeoff between number of simultaneous memory ac-
cesses and number of cycles to compute at the end. On a positive
note, in the case of coupling a busy memory controller with the “un-
derpowered” 64-bit Floating Point unit on consumer cards would
hide some of the drawback of each.

In the end we did not pursue this approach in depth; a second
approach was more promising and produces more readable code:

3.0.2. Shared memory

Shared memory is a type of memory that belongs to a thread block
and has much lower latency than global memory, but is only readable
by threads within the block that owns it. This sounds great for our
current use case and bottleneck. With our card’s hardware, we have
96KB of shared memory available to each thread block. This means
that we could choose, for example, two warps per block and have
1.5KB of RAM per thread, or 384 32-bit samples per thread.

We may wish to have longer waveguides than 384 samples, so
we propose two workarounds:

• Lower utilization: Simply split the 1.5KB up among fewer
threads, and use for example 24 out of 32 threads in a warp.
While our overall utilization will be lower, the faster memory
might save us enough time overall to run multiple copies of
our work serially to increase N globally.

• Mixed-size waveguide groups: We could split the available
shared memory such that, for example, the two shortest-length
waveguides in a warp each donate half their buffer to the
longest waveguide.

While the second approach may still seem problematic from a
memory access point of view, the rules for shared memory access
optimization are different than those for global memory access opti-
mization. Shared memory on our GPU’s architecture is grouped into
32 banks, and as long as two threads do not access the same bank
at the same time (a bank conflict), we obtain full-speed access. On
our card, access is actually done in two successive stages, each ob-
taining results for a half-warp, so the “donation” approach should be
safe from slowdown as long as we can arrange memory accesses in
time to have no bank conflicts. With simple donation schemes this is
straightforward.

3we also note writes to that output buffer, previously perfectly aligned,
are now unaligned themselves.

68

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

As a middle ground, we can sacrifice some compute utilization
for larger buffer donations. Consider having each warp provide a
developer a predefined “care package” of: (a) One “Extra Large”
digital waveguide that occupies 4 banks of shared memory (length
configurable, up to 1536 samples of delay), (b) Two “Large” waveg-
uides owning 2 banks each (up to 768 samples each), and (c) 26
normal waveguides (up to 384 samples each).

This still lets us compute 28 waveguides per warp vs. the 32
we had before (87.5% effective utilization) but allows for lower fre-
quency extension. We note that with such approaches we are becom-
ing opinionated concerning the basic system building blocks; when
we do this certain applications are enabled but we may block other
applications.

We adjust our kernel to use shared memory. Due to the resource
configuration of the graphics card and the dimensions of problem,
we would use more shared memory than is available in each SM, so
we must move from using 64 threads (2 warps) per block down to 32
threads (1 warp), at which point we are under the shared-memory-
per-SM limit and our kernel can be scheduled. This serves as a re-
minder that GPU hardware is not as abstracted as we may be used
to when coding for a CPU. In this particular case though, the “nvcc”
compiler helpfully caught this at compile-time since it was an over-
sized static allocation, making for an easy fix.

We also include a quick performance gain of pinning memory on
the host, accomplished by simply swapping malloc with the API
call cudaMallocHost.

Results are in Table 5. As before, bolded entries are feasibly
realtime. A plot of the same data is in Figure 4.

Table 5: Time to generate 10 seconds of Audio, “Baseline” uses
same-length waveguides, “Differing” experiments use heteroge-
neous waveguides with either global or shared memory.

N DWGs Baseline differing: global mem... ...shared mem
3584 0.249 2.0 0.58

14336 0.522 5.03 0.96
57344 1.44 19.72 1.82
114688 2.79 39.41 3.50
229376 5.5 78.41 6.79
458752 10.85 156.08 12.59

To summarize: using shared memory allows us to make higher-
waveguide counts tractable again. We can still run over a hundred
thousand independently-sized waveguides with half of our cycles to
spare for extending the algorithm.

At this point we have enough waveguides that we can spend
some time thinking of creative applications for them. Those appli-
cations will certainly make them computationally more expensive
by adding coupling, nonlinearities, modifiable tap points, fractional-
length delays, etc.

4. AREAS FOR DEVELOPMENT

We stop here, but note there may still be room acceleration. For ex-
ample, relatively new GPUs including ours have the ability overlap
kernel executions with host/device memory transfers. If we were to
double-buffer on the host and device, we can work on one array while
the other transfers, and vice versa. This would help us especially at
small N or if we wanted to copy hundreds of thousands of individ-
ual audio streams back to the host (skipping our current merge step
where we sum them per-warp).

Figure 4: Time to run N heterogeneous waveguides for ten seconds
of samples under different trials.

We have been discussing the general-purpose case of supplying
waveguides of preconfigured lengths. With a pre-specified configu-
ration, we could write tooling to efficiently group waveguide com-
putations into a warp for maximum resource utilization.

In the modal filter bank, we note that we do not implement
phase-correct input re-excitation which is a nice feature supported
by these filters: we have logic to track zero-crossings but do not im-
plement parameter updates from the host in a fashion that a “real”
system would use. This is a simple and low-cost feature. Further-
more, it is likely that either CPU or GPU should interpolate parame-
ters, which is work that is not being accounted for.

The high performance of these oscillators bodes well if we were
to implement a massive collection of digital waveguide oscillators–
another case requiring only a few variables and limited multiplies
per cycle. It may be worth looking at algorithms that traditionally
did well on VLSI architectures for use here, as the concept of many
parallel independent instances of a module executing concurrently
but varying on input data is shared between the two architectures.

5. CONCLUSIONS

We showed modern consumer GPUs may run high-Q phasor filters
and 1D digital waveguides without needing to leverage parallelism
across time. In particular, we showed that it is feasible to build a bank
of several hundred thousand 1D waveguides, a hundred thousand 64-
bit phasor filters with stable per-sample adjustments, or a few million
phasor filters at 32-bit precision, all at 44.1kHz.

Reflecting on the the overall optimization development and de-
bugging strategy used here: care must be taken to have the right
number of warps grouped together into grids and blocks. Memory
accesses should go to the fastest RAM possible, and we need to pay
attention to memory alignment. While CPU code does benefit from
similar optimizations, GPU algorithms rapidly fall in performance
when parameters stray from the ideal range.

One other note around generalizing this code for end users: dur-
ing development we consulted the capabilities of our particular graph-
ics card several times, to see how many registers we have or to see the

69

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

various ways we can slice shared memory. While these parameters
may be queried from the card at runtime and for the most part newer
and more powerful GPUs contain a superset of old resources, this
is not a guarantee, and for example if we tried to run our compiled
waveguide binary on a GTX 480 from several generations back, it
would fail to run because we request too much shared memory.

Still, optimization of these algorithms can be seen as an interest-
ing puzzle; profiling tools make it easy to see where bottlenecks live
(if not how to work around them), and it’s fun to transpose an array
or adjust memory layout and unlock a 10x speedup.

From a sound designer’s point of view, being able to use so many
of these building blocks at audio rates may allow for higher-fidelity
physical models and modal effects, using commodity hardware that
often sits idle while working with audio software.

6. ACKNOWLEDGMENTS

Special thanks to conference organizers, and to reviewers for help-
ful suggestions in improving background and presentation. Thanks
to cited authors for providing foundational background for this work:
demonstrating feasibility of parallel audio-rate algorithms on the GPU
and describing an efficient, numerically stable high-Q filter.

7. REFERENCES

[1] Regina E Collecchia, Miriam A Kolar, and Jonathan S Abel,
“A computational acoustic model of the coupled interior ar-
chitecture of ancient chavín,” in Audio Engineering Society
Convention 133. Audio Engineering Society, 2012.

[2] Jonathan S. Abel, Sean Coffin, and Kyle Spratt, “A modal
architecture for artificial reverberation with application to room
acoustics modeling,” in Audio Engineering Society Convention
137, Oct 2014.

[3] Julius O. Smith III, “Physical modeling using digital waveg-
uides,” Computer music journal, vol. 16, no. 4, pp. 74–91,
1992.

[4] Julius O Smith III and Scott A Van Duyne, “Commuted piano
synthesis.,” in ICMC, 1995.

[5] Lauri Savioja, Vesa Välimäki, and Julius O Smith, “Audio sig-
nal processing using graphics processing units,” Journal of the
Audio Engineering Society, vol. 59, no. 1/2, pp. 3–19, 2011.

[6] Lauri Savioja, Vesa Välimäki, and Julius O. Smith III, “Real-
time additive synthesis with one million sinusoids using a gpu,”
128th Audio Engineering Society Convention 2010, vol. 1, 05
2010.

[7] Fernando Trebien and Manuel Oliveira, “Realistic real-
time sound re-synthesis and processing for interactive virtual
worlds,” The Visual Computer, vol. 25, pp. 469–477, 05 2009.

[8] Jose Belloch, Balazs Bank, Lauri Savioja, Alberto Gonzalez,
and Vesa Välimäki, “Multi-channel iir filtering of audio sig-
nals using a gpu,” in ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, 05
2014, pp. 6692–6696.

[9] Belloch Rodríguez and José Antonio, Performance Improve-
ment of Multichannel Audio by Graphics Processing Units,
Ph.D. thesis, 2014.

[10] Jose A Belloch, Alberto Gonzalez, Enrique S Quintana-Orti,
Miguel Ferrer, and Vesa Välimäki, “Gpu-based dynamic wave
field synthesis using fractional delay filters and room compen-
sation,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, no. 2, pp. 435–447, 2017.

[11] Stefan Bilbao and Craig J Webb, “Physical modeling of tim-
pani drums in 3d on gpgpus,” Journal of the Audio Engineering
Society, vol. 61, no. 10, pp. 737–748, 2013.

[12] Max Mathews and Julius O. Smith III, “Methods for synthesiz-
ing very high q parametrically well behaved two pole filters,”
in Proceedings of the Stockholm Musical Acoustics Conference
(SMAC 2003)(Stockholm), Royal Swedish Academy of Music
(August 2003), 2003.

[13] NVIDIA Corporation, “NVIDIA CUDA toolkit documenta-
tion,” https://docs.nvidia.com/cuda/, [Online].

70

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

CPU CONSUMPTION FOR AM/FM AUDIO EFFECTS

Antonio Jose Homsi Goulart

University of São Paulo
São Paulo, Brazil
ag@ime.usp.br

Marcelo Queiroz

University of São Paulo
São Paulo, Brazil

mqz@ime.usp.br

Joseph Timoney

Maynooth University
Maynooth, Ireland

joseph.timoney@mu.ie

Victor Lazzarini

Maynooth University
Maynooth, Ireland

victor.lazzarini@mu.ie

ABSTRACT
In this paper we present an assessment of the computational perfor-
mance regarding the use of the AM/FM decomposition framework
for the design and implementation of audio effects. The equations
and intuitions are reviewed and audio examples are provided, along-
side Csound code for real-time implementation. Two types of hard-
ware and several computer music techniques were considered for
the comparisons. We also introduce sqENVerb, a novel inexpensive
reverb-enhancer effect.

1. INTRODUCTION

Following studies in areas like modulation vocoder [1] [2] [3] and
modulation filtering [4] [5] [6], in our previous studies [7] [8] the
non-coherent mono-component AM/FM paradigm was presented as
a framework for the development of new audio effects. The theory
was thoroughly revised and treated in [9], however, the computa-
tional effort required to run different types of effects was not ad-
dressed.

In this paper we present an assessment of the performance con-
sidering different computational systems and different audio pro-
cessing techniques. Two kinds of computers were used, namely a
RaspberryPi model 2B and a Lenovo ThinkPad x220. The former
was chosen because it represents the category of low cost program-
ming platforms, that can be used, among other applications, for audio
processing; the later represents a more powerful and relatively pop-
ular computational system. Netbooks and old laptops might loosely
fall in a category between these two examples. Notice also that many
programming platforms similar to the Pi actually outperform it, in
the same way that many computers assembled for gaming purposes
outperform the ThinkPad. So the assessment presented here repre-
sents a somewhat conservative scenario; anything running satisfac-
torily on the Pi and ThinkPad should also run in these more powerful
computers.

Beyond the CPU consumption, while our previous papers em-
phasised manipulations on the instantaneous frequency component
of the AM/FM decomposition, now we also address an effect ob-
tained by manipulating the envelope of the signal.

In Section 2 we will briefly review the AM/FM Hilbert-based
framework and code for real-time implementation. In Section 3 a
new reverb-like effect is introduced and evaluated with a brief objec-
tive assessment based on audio descriptors. Then we proceed in Sec-
tion 4 to a presentation and discussion of the required computational

power in order to run the AM/FM framework and effects. Finally,
we conclude and point our current and future work. Audio examples
will be referenced in the paper with the symbol [Ifilename] and are
available alongside Csound code for download1.

2. THE AM/FM FRAMEWORK

The AM/FM decomposition unravels a signal x(t) to a pair of com-
ponents: an envelope a(t) and an instantaneous frequency signal
f(t). Together these signals can modulate a sinusoid both in am-
plitude and frequency in order to obtain the original signal back, so

x(t) = a(t) cos

(∫ t

0

f(τ)dτ

)
. (1)

We can also think of phasors and interpret the argument for the co-
sine as an instantaneous phase, which is given by regular increments
(the sum represented by the integral) depending of the instantaneous
frequency. For instance, a regular sinusoid is the projection on the
x-axis of a phasor in which the increments are always the same (tied
to its frequency).

In contrast to additive synthesis, where we think globally about
the signal, the local aspect of the signals in the AM/FM framework
tracks local dynamics in the envelope case, while the instantaneous
frequency represents the frequency of a sinusoid that best fits the
original signal at each instant.

One of the possibilities for implementing the decomposition is
by means of an analytic signal

z(t) = x(t) + ix̂(t), (2)

where i =
√
−1 and x̂(t) is the Hilbert Transform of x(t).

The Hilbert Transform shifts all the components in a signal by
90◦ [10], so it might be implemented by using a set of all-pass fil-
ters, as is done in the hilbert Csound opcode. The important
characteristic of the analytic signal is the absence of the negative fre-
quencies; its spectrum resembles the original spectrum of x(t) on
the positive frequencies, while the negative components are void, so

z(t) =
1

2π

∫ +∞

0

X(ω)eiωtdω, (3)

1https://www.ime.usp.br/~ag/dl/lac19.zip

71

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

whereX(ω) is the Fourier Transform of x(t) [11]. In such a way we
can interpret the analytic signal as a superposition of infinite phasors
with different frequencies and radii, as shown in Figure 1.

Figure 1: Analytic signal as a superposition of phasors. The origi-
nal signal is the projection of the analytic signal onto the real axis.
Source: reproduced from [9]

In Csound the AM/FM decomposition might be implemented
with the following code:

opcode Udiff,a,a
setksmps 1
asig xin
/* differentiation */
asig diff asig
ksig = downsamp(asig)
/* phase unwrapping */
if ksig >= $M_PI then
asig -= 2*$M_PI

elseif ksig < -$M_PI then
asig += 2*$M_PI

endif

xout asig
endop

opcode AmFmAna,aa,a
asig xin
aim,are hilbert asig /* xhat and x */
a_am = sqrt(are^2 + aim^2) /* envelope */
aph = taninv2(aim, are) /* inst. phase */

/* inst. freq. */
a_fm = Udiff(aph)*sr/(2*$M_PI)

xout a_am, a_fm
endop

Notice that the hilbert opcode is used in order to obtain the an-
alytic signal, and also that the phase needs to be unwrapped. This
opcode works in the time domain using 6th-order recursive filters
to keep signals in quadrature. Alternatively, we could also employ
the hilbert2 opcode, which implements the same process using a

frequency-domain approach implementing a finite impulse response
filter (FIR) using a Fast Fourier Transform (FFT) algorithm. How-
ever, for this paper we have concentrated on using the former method
due to the fact that the FIR approach introduces a latency between in-
put and output that is proportional to the analysis window, and there-
fore it might not be as well suited to hard real-time applications.
In the tests section, we will compare the costs of the time-domain
AM/FM process against the application of FFT analysis-synthesis to
a signal.

In order to design AM/FM effects we proceed to manipulations
in a(t) and/or f(t) followed by a resynthesis step considering the
modified signals, as represented in the following code:

opcode AmFmRes,a,aa
a_am_p,a_fm_p xin
xout a_am_p*cos(integ(a_fm_p)*2*$M_PI/sr)

endop

Notice that a_am_p and a_fm_p represent the potentially processed
versions of the estimated a_am and a_fm (remember that Csound’s
audio variables names must start with “a”).

3. SQENVERB: A NEW AM/FM EFFECT

In our previous papers different families of manipulations were de-
scribed and thoroughly explained. For instance, the octIFer [8], a
beautiful sounding octaver-like effect might be obtained by multi-
plying the instantaneous frequency signal by 0.5 [Ioctifer-half] or
even by 0.25 [Ioctifer-quarter]. We emphasize, though, that these
manipulations are not directly altering frequencies in the spectrum
of the original signal, but are actually changing the increments that
drive the phasor in the resynthesis process.

Now we describe an effect not yet considered in our previous
studies. The manipulation is based on extracting the square root
of the estimated envelope signal. The analytic signal envelope lies
within the [0,1] range, and considering this interval as our domain
for the square root function, we can affirm that the sqrt will al-
ways return values greater than the argument. Notice that

√
x

x
=

1√
x
, (4)

so the closer the argument is to 0, the greater will be the relative gain.
As a consequence, moments of low-intensity sound will be empha-
sized, leading to pronounced tails. Albeit reverberation is charac-
terized by both early and late reflections [12], the reverberation is
arguably more noticeable in the tail of the sound. In such a way the
effect can be seen as a sort of compressor/expander [13] which in this
case acts extending an already present reverberant tail in the sound.

Differently than a regular gain operation that multiplies the whole
signal by the same amount, the square root application results in a se-
lective gain along the signal duration, directly influencing its decay
and thus the perception of length. In Figure 2 we can actually check
the influence of the Root Mean Square in both the original signal
[Ioriginal] and the one with sqENVerb [Isqenverb]. The RMS is
an audio descriptor related to the perception of level in a sound.

As we would expect, the spectral information is not considerably
altered by extracting the envelope’s square root. In Figure 3 we can
check the spectral centroid for the original audio and the sqENVerb
edition. The spectral centroid [14] is an audio descriptor related to
the perception of brightness in a sound. Both the RMS and spectral
centroid evaluation were realized with the Essentia [15] library.

72

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 2: RMS of dry (solid blue) and processed (dashed magenta)
signals. Low intensity moments are greatly influenced by the square
root operation.

Figure 3: Spectral centroid of dry (solid blue) and processed (dashed
magenta) signals. The operation on the envelope does not consider-
ably influence the spectral centroid.

4. AM/FM CPU CONSUMPTION

The CPU consumption assessment in important both for artistic con-
siderations (e.g. maximum tolerated latencies to avoid difficulties in
musical performance) and also technical reasons (e.g. hardware siz-
ing). In order to evaluate the computational effort to run the different
effects, the software time2 was used. It is executed from the shell
with the command

time csound amfmdafx.csd

Here amfmdafx.csd refers to a Csound code with an AM/FM ef-
fect implemented. The default time execution returns three mea-
sures:

• real: total duration of the process under analysis;

• user: time taken to work directly on the process;

• sys: time taken to work on system tasks related to the process.

The CPU consumption is then given as user+sys
real

.
The results3 are shown in Table 1, which is divided in several

parts:

2http://manpages.ubuntu.com/manpages/xenial/man1/
time.1.html

3In order to give more meaning to the numbers, the hardware specifica-
tions are: RaspberryPi 2B / quad-core ARM Cortex-A7 @ 900 MHz 32 bits
/ 1 GB SD-RAM @ 400 MHz / Raspbian / Csound 6.08; ThinkPad x220 /
dual-core i5-2520M @ 2.5 GHz 64 bits / 8 GB RAM DDR3 @ 1333 MHz
/ Debian / Csound 6.09.1. The sample rate considered was always 44100
samples per second.

• in the first part of the table some simple and inexpensive com-
puter music tasks are evaluate just to set the scale for the com-
parisons;

• the second part shows the consumption for realising a FFT
and an inverse FFT, considering different windows and hop
sizes (shown as number of samples);

• the performance for classic octaver and reverb implementa-
tions are then shown;

• then the raw AM/FM framework performance is presented
(decomposition followed by resynthesis, with no effects im-
plemented);

• the second to last part shows the performance for some AM/FM
effects explored in [9];

• the last part shows the performance considering the octIFer
and the sqENVerb cases.

Table 1: CPU consumption for different types of effects. *The Rasp-
berryPi could not handle a 5000-sample long convolution reverb.

CPU consumption (%)
RaspberryPi 2B ThinkPad x220

looped audio 9.49 4.69
clip distortion 10.77 5.06

FFT pair (1024/512) 26.35 8.52
FFT pair (1024/256) 37.38 10.37
FFT pair (1024/128) 45.76 12.31
FFT pair (512/256) 26.05 8.68
FFT pair (512/128) 33.68 10.47

FFT octaver (1024/128) 48.00 12.41
convolution reverb 2500 88.98 14.73
convolution reverb 5000 –* 22.97

simulation reverb 26.13 7.67
AM/FM framework 25.23 7.53
AM/FM IF filtering 29.72 7.73

AM/FM IF compression 33.21 7.78
AM/FM IF modulation 29.23 7.92

AM/FM octIFer 29.87 7.81
AM/FM sqENVerb 28.51 7.77

The FFT algorithm [16] is used widely for the design of audio
effects, therefore we adopt it here as a benchmark against which we
can measure the computing costs of the AM/FM framework. From
the table we can check that both the FFT and AM/FM schemes are
computationally accessible, and also that the AM/FM framework is
lighter than the FFT/iFFT in all its cases. Another observation is
that, in both frameworks, the implementation of a manipulation in
the alternative domain does not cause a large increase in the CPU
consumption, in comparison to the case where the raw frameworks
are applied without any actual effects.

The octIFer effect delivers a high quality sonority [Ioctifer-half]
for a cost considerably lower than the classic contender [Ioctaver],
bearing good resemblance in the sonority.

The sqENVerb effect shows a similar consumption in relation
to the simulated reverb case [Isimu-reverb], and a huge economy
in relation to the convolution reverb. We emphasize that the 5000-
sample impulse response convolution [Iconv-reverb5000] required
almost twice CPU as the heaviest FFT case; it was not even possible

73

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

to run in the RaspberryPi, so another IR with 2500 samples was con-
sidered [Iconv-reverb2500]. The sonority obtained in this case was
not bad, but such a limitation might be questionable, and even with
the short IR the Raspberry CPU was almost entirely taken. All the
tested AM/FM examples leave considerable CPU headroom so other
effects might be applied concurrently.

5. CONCLUSIONS

In this paper we presented, for the first time, a computational perfor-
mance assessment of the AM/FM audio effects framework. The new
AM/FM effect sqENVverb was also developed and compared to the
established reverb techniques.

All the examples we explored are based on the non-coherent
mono-component Hilbert Transform case of AM/FM decomposition.
Different techniques for the decomposition are available, and richer
scenarios might also be considered, for instance a filter bank frame-
work, where the dry signal is separated in bands and the subsequent
decomposition and processing are applied individually to each band,
increasing the computational cost.

The AM/FM decomposition takes the signal to an alternative
representation, where even subtle modifications in the envelope or
instantaneous frequency signals might result in deep effects after the
resynthesis.

The means by which both the octIFer and the sqENVerb effects
emulate the octaver and reverb effects might not be orthodox, but
the sonorities obtained in both cases resemble the classic techniques,
at a considerably lower computational cost. The octIFer sound is
quite similar to the classic octaver, and the sqENVerb works fine as
a reverb, albeit lacking any control besides a dry/wet mix parameter
(which is actually extremely efficient for tuning a reverb).

While it is true that powerful computational systems are increas-
ingly available at decreasing cost, low-consumption algorithms will
always be on demand: draining the battery of devices like tablets
or smartphones with audio effects might not bring a good user ex-
perience; contemporary small single-board computers are still very
limited in processing power; old laptops and netbooks, nowadays
usually discarded, can instead be harnessed as terrific multi effect
pedals.

Plugins for the octIFer and sqENVerb are currently being devel-
oped, to be released as open-source software.

6. ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001.

7. REFERENCES

[1] Sascha Disch and Bernd Edler, “An amplitude and frequency-
modulation vocoder for audio signal processing,” in Proceed-
ings of the International Conference on Digital Audio Effects
(DAFX-08), Espoo, Finland, September 2008.

[2] Sascha Disch and Bernd Edler, “An iterative segmentation al-
gorithm for audio signal spectra depending on estimated lo-
cal centers of gravity,” in Proceedings of the International
Conference on Digital Audio Effects (DAFX-09), Como, Italy,
September 2009.

[3] Sascha Disch and Bernd Edler, “An enhanced modulation
vocoder for selective transposition of pitch,” in Proceedings of
the International Conference on Digital Audio Effects (DAFX-
10), Graz, Austria, September 2010.

[4] S. Schimmel and L. Atlas, “Coherent envelope detection for
modulation filtering of speech,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, 2005., March 2005, vol. 1, pp. 221–224.

[5] Qin Li and Les Atlas, “Over-modulated am-fm decomposi-
tion,” in Proceedings of the SPIE - Advanced Signal Processing
Algorithms, Architectures, and Implementations, Bellingham,
WA, 2004, pp. 172–183.

[6] P. Clark and L. Atlas, “Time-frequency coherent modulation
filtering of nonstationary signals,” IEEE Transactions on Sig-
nal Processing, vol. 57, no. 11, Nov 2009.

[7] Antonio José Homsi Goulart, Joseph Timoney, Victor Laz-
zarini, and Marcelo Queiroz, “Psychoacoustic impact assess-
ment of smoothed AM/FM resonance signals,” in Proceedings
of the Sound and Musical Computing Conference, Maynooth,
Ireland, July 2015.

[8] Antonio José Homsi Goulart, Joseph Timoney, and Victor Laz-
zarini, “AM/FM DAFx,” in Proceedings of International Con-
ference on Digital Audio Effects (DAFx), Trondheim, Norway,
December 2015.

[9] Antonio José Homsi Goulart, Marcelo Queiroz, Joseph Ti-
money, and Victor Lazzarini, “Interpretation and control in
AM/FM-based audio effects,” in Proceedings of International
Conference on Digital Audio Effects (DAFx), Aveiro, Portugal,
September 2018.

[10] Stefan Hahn, Hilbert Transforms in Signal Processing, Artech
House, Norwood, MA, 1996.

[11] A.V. Oppenheim and R.W. Schafer, Digital signal processing,
Prentice Hall, New Jersey, USA, 1975.

[12] F. Richard Moore, Elements of computer music, Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1990.

[13] Udo Zölzer, Ed., DAFx: Digital Audio Effects, Wiley & Sons,
2nd edition, 2011.

[14] James Beauchamp, “Synthesis by spectral amplitude and
’brightness’ matching of analyzed musical instrument tones,”
J. Audio Eng. Soc, vol. 30, no. 6, 1982.

[15] Dmitry Bogdanov, Nicolas Wack, E. Gómez, Sankalp Gulati,
Perfecto Herrera, O. Mayor, Gerard Roma, Justin Salamon,
J. R. Zapata, and Xavier Serra, “Essentia: an audio analysis li-
brary for music information retrieval,” in International Society
for Music Information Retrieval Conference (ISMIR), Curitiba,
Brazil, 04/11/2013 2013, pp. 493–498.

[16] Julius Smith, Spectral Audio Signal Processing, W3K Publish-
ing, 2011.

74

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

FORMALIZING MASS-INTERACTION PHYSICAL MODELING IN FAUST

James Leonard and Jérôme Villeneuve

Univ. Grenoble Alpes, CNRS, Grenoble INP*, GIPSA-lab,
38000 Grenoble, France

* Institute of Engineering Univ. Grenoble Alpes
james.leonard@gipsa-lab.grenoble-inp.fr

Romain Michon,1,2 Yann Orlarey1 and Stéphane Letz1

1GRAME-CNCM, Lyon (France)
2CCRMA, Stanford University (USA)

michon@grame.fr

ABSTRACT

This paper presents recent work conducted on the integration of
mass-interaction physical models in the FAUST programming lan-
guage. After a brief introduction to mass-interaction networks,
FAUST, and previous works on this topic, we present a simple mod-
eling framework, a FAUST code generator and its associated library,
allowing to implement 1D mass-interaction models. In addition to
the open-source tool itself, this research offers a perspective on for-
malizing arbitrarily large networks of bidirectional feedback cou-
plings and state-space models in FAUST, through routing patterns.
We finish with a set of examples, and discuss future perspectives and
challenges.

1. INTRODUCTION

For several decades, physical modeling has been used to synthesize
audio by means of simulating the behaviour of vibrating objects. A
panoply of methods have been proposed over the years, from lumped
discrete models [1], to Waveguides [2], to large scale Finite Differ-
ence schemes [3], that have gained in popularity with the increase
of computing power. Creating a model of a mechanical instrumental
system can be simpler than explicitly formulating the signal that it
produces (as sound properties emerge from the physical conditions
of the matter) and offers direct means for control and interaction, ei-
ther by simulating musical gestures or by coupling the user and the
virtual object, for instance using haptic technologies [4].

FAUST [5] is a functional programming language for real-time
Digital Signal Processing (DSP) with a strong focus on the design of
synthesizers, musical instruments, audio effects, etc. The FAUST
compiler can be used to “translate” a FAUST program to various
non-domain-specific-languages such as C++, C, JAVA, JavaScript,
LLVM bit code, WebAssembly, etc. Thanks to a wrapping system,
code generated by FAUST can be easily compiled into a variety of ob-
jects ranging from audio plug-ins to standalone applications, smart-
phone apps, web apps, etc.1 This mechanism also makes it possible
to add MIDI, OSC, polyphony, etc. support to any FAUST-generated
program.

1.1. Mass-Interaction Physical Models

Pioneered in artistic applications by the CORDIS-ANIMA system
[1] at ACROE, mass-interaction physical modeling allows to formu-
late physical systems in the form of lumped networks, composed
of two main components: masses, representing material points in a
given space (1D, 2D, 3D) with a given inertial behaviour, and inter-
actions, each representing a specific type of physical coupling (i.e.,

1The FAUST website contains an exhaustive list of all the FAUST targets:
https://faust.grame.fr.

visco-elastic, collision, non-linear, etc.) between two mass elements.
Mass-interaction systems are now used in a variety of contexts (mu-
sical & other), partly for the fact that arbitrarily complex virtual ob-
jects can be described simply as a construction of elementary physi-
cal components. A basic model is shown in Figure 1.

Figure 1: Topological representation of a mass-interaction model.
Here, a fixed point (represented on the left) is connected to a trian-
gle composed of masses and dampened springs. An input module
interacts with the top mass through a non-linear pluck interaction.

Unlike FDTD methods [3], creating physical models with this
formalism avoids the need to explicitly define a mathematical model
(partial difference equations systems, boundary conditions, etc.) for
a given physical structure beforehand. Therefore, it lends itself par-
ticularly well to iterative and exploratory design of "physically plau-
sible" virtual objects, grounded in the laws of Newtonian physics
but not necessarily limited to the mechanical constraints of the real
world.

Mass-interaction physical models can contain anything from a
couple of physical elements to tens or hundreds of thousands of
them. Assembling and configuring the models element by element
can be very time consuming. To this end, user-friendly modeling
environments have been proposed, namely GENESIS [6] (and more
recently Synth-A-Modeler [7]) for 1D audio applications. The for-
mer offers high level tools for generating topological structures, and
analyzing/tuning physical constructions through modal analysis [8].

1.2. Current State of Physical Modeling in Faust

Various projects have been using FAUST to implement physical mod-
els of musical instruments.

The FAUST-STK [9] is a complete re-implementation of the
waveguide and modal models of the Synthesis ToolKit (STK) [10].
It also contains various models from the Soundius Project. 2

2Unfortunately, there is no documentation/publication on this project yet.

75

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Julius O. Smith implemented a series of waveguide meshes that
landed in the FAUST libraries3 but that were never documented/pub-
lished.

More recently, the FAUST physical modeling toolkit [11] was
introduced. It is based on a library allowing for the implementation
of bi-directional block diagrams in FAUST and containing a wide
range of musical instrument parts that can be assembled in a mod-
ular way. It also comes with mesh2faust[12], a tool to generate
modal physical models compatible with the FAUST physical model-
ing library using Finite Element Analysis (FEA).

The work presented in this paper was partly inspired by Ed
Berdahl’s Synth-A-Modeler [7] (which itself direcly draws upon
CORDIS-ANIMA [1] and GENESIS [6]). This environment allows
for the implementation of hybrid models combining mass-interaction
systems with waveguide models using a graphical user interface
(GUI). Synth-A-Modeler is based on a series of FAUST libraries and
generates custom FAUST programs corresponding to the models im-
plemented in the GUI. While it successfully combines various types
of modeling techniques at a high level and facilitates their control
using custom haptic interfaces such as the FireFader [13], it has,
to our knowledge, never been used to implement large scale mass-
interaction models.

Our proposed approach does not aim to supplant Berdahl’s;
rather, from a similar starting point it questions how the FAUST lan-
guage’s versatility can be used to formalize arbitrarily large mass-
interaction models – and more generally speaking complex feedback
networks – in a direct, concise and clear manner.

2. MASS INTERACTION PARADIGM IN FAUST

Before getting into implementation specifities, this section presents
the basics of mass-interaction networks, in the case of 1D systems,
in which all masses vibrate along a single z axis. These models are
sometimes referred to as "zero-D", since they are purely topological
and contain no direct geometrical information. First, discrete-time
mass and interaction physical algorithms are presented and assem-
bled into an explicit computational scheme.

Then, relying on a matrix-based representation of the topological
network, we present a generic FAUST architecture that implements
this computational scheme.

2.1. Discrete-Time Physical Algorithms

Below, we present finite difference implementations of two of the
most basic elements in a mass-interaction network: punctual masses
and springs.

2.1.1. Discrete-time implementation of a punctual mass

The motion equation for a continuous time mass is given by New-
ton’s second law:

f = m.a = m
d2x

dt2
(1)

Where f is the force applied to the mass, m is its inertia a its
acceleration, and x its position. Applying the second-order central
difference scheme, with the sampling interval noted ∆T , a discrete
equation of the mass can be formulated as follows:

f(t) = m.
x(t+∆T)− 2x(t) + x(t−∆T)

∆T 2
(2)

3https://github.com/grame-cncm/faustlibraries

Equation (2) can be normalized to unity, and rearranged in order
to express the mass’ position update scheme (discrete-time positions
and forces are noted X and F) :

X(n+1) = 2X(n) −X(n−1) +
F(n)

M
(3)

With M , the discrete time inertial parameter defined as :

M =
m

∆T 2
(4)

Hence, the basic discrete-time mass module produces new po-
sition data based on its current position, previous position, the
"discrete-time" mass parameter M , and the sum of forces applied
to the mass from the previous interaction computation step.

The initial position X(0), delayed initial position X(−1) (which
infers initial velocity) and initial force F(0) must be supplied at the
start of the computation.

2.1.2. Discrete-time implementation of a dampened spring

The elastic force applied by a linear spring with a stiffness k and a
resting length of l0 = 0 connecting a mass m2 at the position x2 to
a mass m1 at the position x1 is given by Hookes law:

fs1→2 = −k.(x2 − x1) (5)

The exact equivalent of this equation in discrete time is :

Fs1→2(n) = −K.(X2(n) −X1(n)) (6)

Where the discrete-time stiffness parameter K = k. The fric-
tion force applied by a linear damper with a damping parameter z
connecting the same two masses is :

fd1→2 = −z.d(x2−x1)

dt
(7)

Using the Backward Euler difference scheme, the frictional force
can be formulated in discrete-time as :

fd1→2(t) = −z. (x2(t)−x1(t))− (x2(t−∆T)− x1(t−∆T))

∆T
(8)

Which after normalization becomes :

Fd1→2(n) = −Z.((X2(n)−X2(n−1))−(X1(n) −X1(n−1))) (9)

With the discrete time inertial parameter Z defined as :

Z =
z

∆T
(10)

The global equation of the force applied by the dampened spring
is composed of Fs and Fd :

F(n) =−K.(X2(n)−X1(n))

− Z.((X2(n)−X2(n−1))− (X1(n)−X1(n−1)))
(11)

It is applied symmetrically to each mass (Newton’s third law):

F2→1(n) = −F(n)

F1→2(n) = +F(n)

(12)

76

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

2.1.3. Discrete mass - dampened spring - fixed point oscillator

A linear harmonic oscillator is obtained by combining equations (3)
and (11), in the case where X1 is a fixed point set to X1(n) = 0,
n ∈ Z. This results in :

X(n+1) =
(

2−K+Z

M

)
.X(n) +

(Z

M
−1
)
.X(n−1) +

F(n)

M
(13)

Since the basic oscillator is a very common element in modeling,
the integrated form given in (13) can be implemented in the form a
specific mass-type module (although it is identical to assembling a
mass, dampened spring and a fixed point).

2.1.4. Generalization

Any element in a mass-interaction model follows the basic template
of the elements described above. More complex interactions stem
from conditional statements (e.g. springs only active during inter-
penetration of two material points, as in visco-elastic collisions) or
dynamic stiffness or damping parameters that depend on the posi-
tion and/or velocity of the connected material points (e.g. through
non-linear lookup tables, such as in plucking or bowing interactions
[14]).

It is important to note that the M and Z parameters are depen-
dent on the sampling interval. Hence, the oscillatory behaviour of
physical models will be dependent on the sampling rate of the simu-
lation.

2.2. Computation Scheme

Computing a mass-interaction model consists in calculating the
mass-type and interaction-type algorithms in a closed loop. The ex-
plicit time step increment is carried by the masses, as shown in the
discrete-time equation (3). The interactions in themselves are delay-
less operations, but can be computed since their output is fed back
into the masses for the next calculation step (cf. Figure 2). In other
words, calculating a step of real-time audio requires to run all the
masses’ algorithms once, then all the interactions’ algorithms.

2.3. Representing the Topological Network

The topological connections of a mass-interaction model can be for-
malized as a routing matrix of dimensions J × 2K, where J is the
number of material elements (or M points) in the network, and K is
the number of interactions (each interaction module has two connec-
tions - or L points in the usual terminology[1]) :




i0_l1 i0_l2 . . . ik_l1 ik_l2

m1 1 or 0 1 or 0 1 or 0

m2 1 or 0
...

...
...

...
. . .

...
...

mj 1 or 0 1 or 0




(14)

Each column in the matrix must have a single connection set to
1 and all others to 0, as an L point only connects to a single M point
(partially connected interactions are not allowed). On the other hand,
a material point could be connected to any number of interactions in
a given model (many connections set to 1 for a single line).

Figure 2: Computation cycles of the model presented in Figure 1.
At each time step, the mass-type algorithms are first computed using
the forces calculated in the previous step, then the interaction-type
algorithms are computed using the new positions.

As an example, (15) presents the routing matrix for the topolog-
ical structure shown in Figure 1. The material elements (fixed point,
three masses and a position input module) are represented vertically
and the L points of the four springs and the non-linear interaction are
represented horizontally.

The closed-loop physical calculation scheme performed by
FAUST is shown in Fig. 3. On the left, a LINKTOMASS connec-
tion function routes the force feedback signals produced by the in-
teractions based on the routing matrix (thus calculating the sum of
forces for each mass). The new positions of the material elements
modules are then calculated. These positions are then fed into a
MASSTOLINK connection function, that routes the signals to all of
the concerned interactions. Finally, the pairs of force signals pro-
duced by the interactions are fed back for the next calculation step.

Position and force inputs are directly incorporated into the
LINKTOMASS function, so that they are applied to the correct in-
put module. Similarly, modules whose positions are observed as
audio outputs are simply added as extra signals at the end of the
MASSTOLINK function.

2.4. FAUST Implementation of Mass and Interaction Elements

The mi.lib library contains the FAUST implementation of most
elementary mass-type elements (i.e., masses, fixed points, oscilla-
tors, etc.) and link-type elements (i.e., springs, collisions, non-linear
plucking / bowing, etc.). Since the implementations are similar, we
will explicit only the two simplest and most common elements be-
low: the mass and the spring.

77

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019




r0_1 r0_2 r1_1 r1_2 r2_1 r2_2 r3_1 r3_2 nl1 nl2

s 1 0 0 0 0 0 0 0 0 0
m0 0 1 1 0 0 0 0 1 0 0
m1 0 0 0 1 1 0 0 0 0 1
m2 0 0 0 0 0 1 1 0 0 0
in 0 0 0 0 0 0 0 0 1 0


 (15)

Figure 3: FAUST-generated diagram corresponding to the model presented in Fig. 1.

2.4.1. Mass

The discrete-time algorithm of a basic mass module described in
(3) can be easily expressed with letrec environment expression
in FAUST:

mass(m,x0,x1) = equation
with{

A = 2;
B = -1;
C = 1/m;
equation = x
letrec{

’x = A*(x : initState(x0)) +
B*(x’ : iniState((x0,x1))) +

*(C);
};

};

Listing 1: The discrete-time mass algorithm in FAUST.

The module takes an input signal (the sum of all forces fed back
through the interaction feedback loop and routing function) and pro-
duces a position output. The initial position and delayed position of
the module are dealt with using the initState function, which
initializes the first step with the correct values.

2.4.2. Dampened spring

Similarly, a visco-elastic spring expressed in FAUST is shown in List-
ing 2. Interaction modules such as the spring take two input signals
(the positions of the masses connected together by the link) and pro-
duce two identical and opposite force signals.

Attention must be paid to the correct initialization of velocity
based interactions, especially when the initial position or speed of
the masses is non-zero. To this end, the delayed initial positions

of the two connected mass elements are supplied as arguments to the
interaction function, which initializes them with the initState()
function.

spring(k,z,x1r0,x2r0,x1,x2) =
k*(x1-x2) +
z*(

(x1 - (x1’ : initState(x1r0))) -
(x2 - (x2’ : initState(x2r0)))

)
<: *(-1),_;

Listing 2: The discrete-time dampened spring algorithm in FAUST.

3. CREATING MODELS WITH MIMS

MASS INTERACTION MODEL SCRIPTER4 is a simple graphical or
command-line tool written in Python to generate structured FAUST
code from a textual description of a physical model.

Models are described in a format similar to the PNSL language
[15]: each physical element has a specific label, specific physical
parameters and/or initial conditions, etc. Parameters can be added
to this description and shared by any number of physical modules,
allowing global variation of the physical attributes (i.e., stiffness,
damping, mass, etc.) of a subset of modules in real-time.

MIMS’ physics2faust tool compiles the model by :

• parsing all of the physical modules and noting any specific
elements (i.e., position or force inputs, audio outputs, etc.)

• creating the routing matrix and translating it into the two dual
FAUST routing functions.

4https://github.com/mi-creative/MIMS

78

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

• ordering the resulting data into the output .dsp file. "Place-
holder" functions are created for position / force inputs, al-
lowing the user to describe his input functions directly in the
FAUST code.

Define global parameter attributes
@m_K param 0.1
@m_Z param 0.001

@nlK param 0.05
@nlScale param 0.01

Create material points
@m_s0 ground 0.
@m_m0 mass 1. 0. 0.
@m_m1 mass 1. 0. 0.
@m_m2 mass 1. 0. 0.

Create and connect interaction modules
@m_r0 spring @m_s0 @m_m0 0.05 0.01
@m_r1 spring @m_m0 @m_m1 m_K m_Z
@m_r2 spring @m_m1 @m_m2 m_K m_Z
@m_r2 spring @m_m2 @m_m0 m_K m_Z

Inputs and outputs
@in1 posInput 0.
@out1 posOutput @m_m2

Add plucking interaction
@pick nlPluck @in1 @m_m1 nlK nlScale

Listing 3: MIMS description for the model presented in Fig. 1.

The graphical UI version of MIMS also provides basic tools
for generating certain categories of physical structures (i.e., strings,
membranes, etc.) and performing modal analysis of linear structures.

Figure 4: The MIMS model editor prototype.

The FAUST code generated from the model in Code Listing 3 is
presented in Code Listing 4. The only hand-written element is the
inPos function, that adds a graphical slider to control the position
of the input mass. The control-rate output of the slider is smoothed
to avoid artifacts.

import("stdfaust.lib");
import("mi.lib");

inPos = hslider("pos",1,-1,1,0.0001) : si.
smoo;

OutGain = 10.;

m_K = 0.1;
m_Z = 0.001;
nlK = 0.05;
nlScale = 0.01;

model = (
RoutingLinkToMass:

ground(0.),
mass(1.,0., 0.),
mass(1.,0., 0.),
mass(1.,0., 0.),
posInput(0.) :

RoutingMassToLink :
spring(0.05,0.01, 0., 0.),
spring(m_K,m_Z, 0., 0.),
spring(m_K,m_Z, 0., 0.),
spring(m_K,m_Z, 0., 0.),
nlPluck(nlK,nlScale),

par(i, 1,_)
)~par(i, 10, _): par(i, 10,!), par(i, 1, _)
with{
RoutingLinkToMass(l0_f1,l0_f2,l1_f1,l1_f2,

l2_f1,l2_f2,l3_f1,l3_f2,l4_f1,l4_f2,in1)
= l0_f1, l0_f2+l1_f1+l3_f2, l1_f2+l2_f1+
l4_f2, l2_f2+l3_f1, l4_f1, in1;

RoutingMassToLink(m0,m1,m2,m3,m4) = m0, m1,
m1, m2, m2, m3, m3, m1, m4, m2,m3;

};
process = inPos : model: *(OutGain);

Listing 4: MIMS description for the model presented in Figure 1.

4. EXAMPLES AND EVALUATION

The basic mi_faust package contains several examples of virtual in-
struments and use-cases of mass-interaction physics in FAUST. All
of these examples can be compiled and executed directly as web ap-
plications via the FAUST online editor,5 with generic user interfaces.
They can also be found as pre-compiled web-apps on the mi_faust
project web-page.6

• IPlayTheTriangle: the demonstration model discussed
previously in this paper (Figure 1).

• PolyTriangle: the same model (with a direct force im-
pulse applied instead of a pluck system), using FAUST’s abil-
ity to automatically handle polyphonic voice allocation for
MIDI instruments.

• PluckedHarmonics: a 150-mass string terminated by two
fixed points. The first position input allows plucking the

5https://faust.grame.fr/tools/editor/
6https://faust.grame.fr/community/

made-with-faust/mi-faust

79

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

string, and three others are used to press down lightly on the
string at specific areas in order to bring out natural harmonics.

• BowedString: a bowed string, using the nlBow interaction.
The user can control bow pressure and velocity, as well as the
stiffness of the string.

• LargeTriangleMesh: a big triangular mesh, fixed at one
summit, excited by a plucking system and damped by user
input.

• Resonator: the audio input is fed into one end of a resonat-
ing physical model. The user can alter the properties of the
resonator.

• PhysicalLFO: Using a physical model with slow dynamics
as a control variable for another synthesis process. Here, the
wave propagation observed along a very loose string is used
to modulate the amplitude of a white noise source, generating
AM modulation going from complex patterns at the onset to
quasi-sinusoidal modulation as the higher modes of the string
decay.

In addition to these examples, two large structures (a 20 by
30 mass mesh: 20x30mesh and a 1000 mass string: 1000
massString) were created for model complexity tests. The bench
test results in Table 1 show the compile time and CPU load for var-
ious models. Large routing functions result in slower compilation,
and maximum complexity is reached for approx. 1800 physical el-
ements. Overall, fairly complex models run well, with a reasonable
CPU load.

5. FUTURE WORKS

5.1. Faust

FAUST proves to be well adapted to implement mass-interaction
physical models. The combination of connection matrices and of
the use of the letrec environment expression allowed us to seam-
lessly implement the various elements of mi.lib. However, this
raised some issues that will need to be solved in the future. They are
presented below.

5.1.1. Specifying Initial States in letrec

The letrec environment expression doesn’t allow us to specify an
initial state (i.e., the value of y(n− 1), y(n− 2), etc. at n = 0). We
got around this problem by implementing the initState function
which requires some unneeded computation. Hence, letrec could
be modified to allow this type of expression to be written (rewriting
Code Listing 1):

equation = x
letrec{

x’ = x0;
x’’ = x1;
’x = A*x +B*x’ + *(C);

};

We believe that this would significantly reduce computation for
large scale models.

5.1.2. Optimizing Routing Matrices

The current “bare bone” implementation of connection matrices
(e.g., RoutingLinkToMass in Code Listing 3) is hard to solve
by the FAUST compiler, preventing large models to be generated (see
§4). This could be solved by turning this operation into a primitive
of the language. Compilation time would be significantly reduced
since pattern matching [5] wouldn’t be involved to solve this type of
expression.

6. CONCLUSIONS

In this paper, we have presented early results of formal integration
of 1D mass-interaction physical modeling into the FAUST environ-
ment, resulting in a new library. The MIMS and physics2faust tools
allow to automatically generate FAUST dsp code for complex topo-
logical models, by expliciting the routing scheme for the model’s
position and force signals. Several basic models have been imple-
mented and benchmarked, showing promising results. Furthermore,
FAUST’s capabilities offer an efficient solution for playing several
dynamically allocated and parameter-mapped instances of a physical
model across large ranges. More generally, this work extends beyond
mass-interaction modeling and explores the possibilities for describ-
ing complex feedback networks and state space-models in FAUST.

7. REFERENCES

[1] Claude Cadoz, Annie Luciani, and Jean Loup Florens, “Cordis-
anima: a modeling and simulation system for sound and image
synthesis: the general formalism,” Computer music journal,
vol. 17, no. 1, pp. 19–29, 1993.

[2] Julius O. Smith, “Physical modeling using digital waveguides,”
Computer Music Journal, vol. 16, no. 4, pp. 74–91, Winter
1992.

[3] Stefan Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, John Wiley and
Sons, Chichester, UK, 2009.

[4] James Leonard, Nicolas Castagné, Claude Cadoz, and Annie
Luciani, The MSCI Platform: A Framework for the Design
and Simulation of Multisensory Virtual Musical Instruments,
pp. 151–169, Springer International Publishing, Cham, 2018.

[5] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[6] Nicolas Castagné and Claude Cadoz, “Genesis: a friendly
musician-oriented environment for mass-interaction physical
modeling,” in ICMC 2002-International Computer Music Con-
ference. MPublishing, 2002, pp. 330–337.

[7] Edgar Berdahl, “An introduction to the Synth-A-Modeler com-
piler: Modular and open-source sound synthesis using physical
models,” in Proceedings of the Linux Audio Conference (LAC-
12), Stanford, USA, May 2012.

[8] Jérôme Villeneuve and Claude Cadoz, “Understanding and
tuning mass-interaction networks through their modal repre-
sentation,” in 40th International Computer Music Confer-
ence/11th Sound and Music Computing Conference, 2014, pp.
1490–1496.

80

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Model Name N. Masses N. Springs FAUST Comp. Dur. CPU Load
1000massString 1000 1002 - -

20x30mesh 598 1151 20.576s 45%
BowedString 150 152 1.962s 14%

IPlayTheTriangle 3 5 0.029s 1%
LargeTriangleMesh 324 901 12.083s 48%

PhysicalLFO 10 12 0.032s 1%
PluckedHarmonics 150 152 2.192s 14%
PolyTriangle 3 5 0.027s 1%
Resonator 30 32 0.056s 4%

Table 1: Number of masses and springs, compilation duration, and CPU load of the examples. Measurements were made on a Lenovo ThinkPad
X1 Carbon with the following configuration: Linux Manjaro, Intel i7-7500U 4 cores at 2.7GHz, 16GiB of RAM, sampling rate of 48KHz, buffer
size of 256 samples. Programs were compiled as ALSA applications with a GTK interface using faust2alsa.

[9] Romain Michon and Julius O. Smith, “Faust-STK: a set of lin-
ear and nonlinear physical models for the Faust programming
language,” in Proceedings of the 14th International Conference
on Digital Audio Effects (DAFx-11), Paris, France, September
2011.

[10] Perry Cook and Gary Scavone, “The Synthesis Toolkit (stk),”
in Proceedings of the International Computer Music Confer-
ence (ICMC-99), Beijing, China, 1999.

[11] Romain Michon, Julius O. Smith, Chris Chafe, Ge Wang, and
Matt Wright, “The faust physical modeling library: a modular
playground for the digital luthier,” in Proceedings of the 1st
International Faust Conference (IFC-18), Mainz (Germany),
2018.

[12] Romain Michon, Sara R Martin, and Julius O Smith,
MESH2FAUST: a Modal Physical Model Generator for the
Faust Programming Language - Application to Bell Modeling,
Ann Arbor, MI: Michigan Publishing, University of Michigan
Library, 2017.

[13] Edgar Berdahl and Alexandros Kontogeorgakopoulos, “The
firefader: Simple, open-source, and reconfigurable haptic force
feedback for musicians,” Computer Music Journal, vol. 37, no.
1, pp. 23–34, 2013.

[14] James Leonard and Claude Cadoz, “Physical modelling con-
cepts for a collection of multisensory virtual musical instru-
ments,” in Proceedings of the Conference on New Interfaces
for Musical (NIME15), Baton Rouge, USA, May 2015.

[15] Nicolas Castagné, Claude Cadoz, Ali Allaoui, and Olivier
Tache, “G3: Genesis software environment update,” in ICMC
2009. MPublishing, 2009, pp. 407–410.

81

82

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

ARE PRAAT’S DEFAULT SETTINGS OPTIMAL FOR INFANT CRY ANALYSIS?

Giulio Gabrieli

Psychology Program, School of Social Sciences
Nanyang Technological University, Singapore

GIULIO001@e.ntu.edu.sg

Wan Qing Leck

Psychology Program, School of Social Sciences
Nanyang Technological University, Singapore

LECK0006@e.ntu.edu.sg

Andrea Bizzego

Department of Psychology and Cognitive Science
University of Trento, Italy

andrea.bizzego@unitn.it

Gianluca Esposito

Psychology Program, School of Social Sciences
Nanyang Technological University, Singapore

Department of Psychology and Cognitive Science
University of Trento, Italy

gianluca.esposito@ntu.edu.sg
gianluca.esposito@unitn.it

ABSTRACT

In recent years, the number of studies investigating possible non-
invasive health screening techniques for infants have increased ex-
ponentially. Amongst those, one of the most prominent is health
screening based on the acoustic investigation of infant cry. Clini-
cians involved in the field moved from visual inspection of the audi-
ble spectrum to automatized analysis of cry samples using computer
software. A software that has been more widely adopted in recent
years is Praat, a free software designed for speech analysis. Unfor-
tunately, the software’s default settings are not suitable for investi-
gation of cry samples, yet rarely used settings are reported in final
manuscripts. In this article, we tested 4 different computer gener-
ated signals, with frequency features comparable to cry frequencies,
and 3 real cry samples using both Praat’s standards and tuned set-
tings. Our results highlight the importance of properly tuning soft-
ware’s parameters when expanding their field of usage, and provide
a starting point for the development of optimal Praat algorithm’s pa-
rameters selection for cry analysis.

1. INTRODUCTION

Screening of infants’ health statuses can lead to early recognition
of developmental pathologies, this allows clinicians to define an in-
tervention program, which can lead to enhanced outcomes when
adopted in earlier stages of life. Among infants’ health screening
methods, non-invasive techniques received the highest level of atten-
tion within the community of pediatricians and researchers. Starting
from the second half of the Twentieth Century, researchers inves-
tigated several possible ways to identify different pathologies and
developmental issues through non-invasive methods.
For example, pulse oximetry, a non invasive technique that mea-
sures the amount of oxygenated and deoxygenated hemoglobin in
blood by mean of infrared light, has been widely tested for early
screening of congenital heart defects in asymptomatic newborn ba-
bies [1, 2, 3, 4, 5]. Recently, in a review by Thangaratinam et al. [5],
authors compared the overall sensitivity of this method and false-
positive ratio against other screening techniques, including prena-
tal ultrasounds and routine physical exams [6, 7]. [what are the
results?] One of the techniques in which researchers’ interest in-

creased exponentially during the last sixty years is the empirical
analysis of infant cry [8, 9]. Acoustical properties of infant cry
have been associated with different developmental pathologies, in-
cluding Autism Spectrum Disorders (ASD), Sudden Infant Death
Syndrome (SIDS), hearing impairments and unilateral cleft lip and
palate (UCLP) [10, 11, 12].

1.1. Properties of Infant cry

Cry sound utterances are produced by the larynx during the expira-
tory phase of respiration. Pressure differences of air streams flow-
ing through the larynx cause vocal folds to open and close rapidly,
from about 250 to about 550 times per second in healthy infants
[13, 14, 15, 16, 17, 18, 19]. This ratio of vibration is defined as
fundamental frequency (F0) [20, 21]. Position of the vocal folds is
modulated by central nervous system (CNS), and therefore activity
of the vocal folds can be used to estimate an infant’s developmen-
tal status. Moreover, the lower vocal tract produces different sound
characteristics, including the loudness of the expiratory phase.
The upper vocal folds concur instead in the production of higher fre-
quencies, resonants of the fundamental frequency [22, 23]. During
the first two years of life, an infant’s body evolves. The vocal tract
shapes during this period, and therefore acoustical properties of cry
vocalizations changes accordingly. [24, 25, 26].
Research studies conducted on infants suffering from pathological
conditions highlighted a positive shift in the spectrum of cry fre-
quency properties, as compared to those of healthy infants. For ex-
ample, investigation of infants at high risk of developing ASD disor-
ders showed that the fundamental frequency of their cry vocalization
can be higher than 700 Hz [27]. Analogous, F0 collected from vocal-
ization of infants suffering from colic were significantly higher than
those collected from healthy infants [28].

1.2. Cry analysis

In a typical cry experiment, audio recordings are collected by in-
ducing infants to cry using a specific paradigm, or trigger (e.g. pain
caused heel prick test [29]). Collected samples are then preprocessed
to increase the signal to noise ratio.

83

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

During the 1960s, when systematic analysis of infant cry began, re-
searchers relied on visual inspection of spectrograms [30, 31]. With
the advent of more powerful computing devices, techniques and al-
gorithms employed in cry analysis became more sophisticated, pro-
ducing more accurate and useful results.
Because of the similarities between infant vocalization and adult
voice, cry researchers adopted software designed for speech analysis.
One of the software most widely used within the field is Praat, a free
software developed by Paul Boersma and David Weenink, specifi-
cally designed for acoustic analysis of adult voice [32]. In the last 18
years, Praat has been used in 41.3% (N=36) of the articles published
within the field during this period (N=87), detailed information about
the software in use is provided[8, 9]. Despite being a robust tool for
speech analysis, Praat’s default parameters are not suitable for ac-
curate analysis of cry samples. In this article we discuss the role
of Praat in cry analysis, highlighting the reasons for which standard
settings are not suitable and provide suggestions on how to apply it
successfully on cry samples.

2. PRAAT

Praat features a graphical user interface that fits the needs of differ-
ent researchers, from phoneticians to musicians and biologists in-
volved in the acoustic analysis of animal vocalizations. Written in
C and C++, Praat provides tools for analysis of signals’ pitch (F0)
and formants in audio signals. Not only that, Praat comes with a pic-
ture tool which produces high-quality graphics ready to be used in
manuscripts and dissertations.
The software uses a general purpose scripting language that can be
used to automatize the analysis of multiple files, allowing for fast
processing of large amount of auditory samples [32].
Praat implements an auto-correlation algorithm for pitch analysis.
According to Boersma, the applied algorithms is not only more ac-
curate than other frequency-based pitch detection procedures, but is
also less dependent on the length of selected window and more re-
sistant to rapid shifts and external noise [33].

2.1. Praat settings

In this work, settings have been verified on Praat version 6.0.43 (8
September 2018), running on a Linux machine (Linux Mint 19 Tara
x86_64, Kernel: 4.15.0-42-generic).

2.1.1. Pitch

Default pitch settings point the algorithm to search for F0 in the fre-
quency range that goes from 75Hz to 500Hz. As introduced above,
healthy infant cry’s fundamental frequency usually lays between 250
and 550 Hz, with the latter higher in sick infants.
With those settings, there are at least two possible situations in which
Praat cannot identify the real fundamental frequency value:

• F0 is above the upper cutoff: In this situation, Praat will iden-
tify a wrong value (lower) for the fundamental, or provide no
pitch information within a window.

• F0 lays between the cutoff values but a strong noise with a
frequency between 75 and 250Hz is present: In the situation
where a strong periodical noise is recorded within the signal,
such as the presence of a split-system air-conditioner within
the recording environment [34], it is possible that the software

identifies this lower frequency as the real fundamental, espe-
cially when this noise is about half of the real fundamental
frequency.

2.1.2. Formants

Standard formant settings are used to obtain up to 5 formants with a
frequency lower than 5500Hz. The GUI returns n− 1 formants’ fre-
quency values, where n is the number of formants indicated within
the settings.

3. ANALYSIS OF COMPUTER GENERATED SIGNALS

To better illustrate pitch and formant extraction errors, we tested
Praat with standard and cry suitable settings on a set of computer
generated signals with a specific F0, to which white noise was added.
Formants (N=5), with a frequency of about F 0∗(n+1) and decreas-
ing amplitudes [35, p. 306] have been added to the generated signals.
For half of the files, noise at a specific frequency band, close to F 0/2.
was added. Four different signals of 5s length have been generated.
Audio files and the source code written in Python which were used
to generate those signals are available online 1. Used frequency val-
ues for F0, formants and, where added, F0/2, are reported in Table
1 (Real). To verify the validity of generated files, a visual inspec-
tion of the spectrum was conducted. Frequency peaks are shown in
parenthesis in Table 1.
Using Praat we extracted value of Pitch and Formants at t = 2.5s,
using both Praat’s standard (Praat S.) and cry-optimized (Praat O.)
settings:

• Pitch:

– Pitch range (Hz) = 250.0 - 800.0 Hz

• Formants:

– Maximum formants (Hz) = 4500.0 Hz

Fundamental frequencies and formant have also been verified by vi-
sual inspection of the spectrogram using Audacity version 2.2.1 and
the following settings:

• Algorithm: Spectrum

• Window size: 1024

• Function: Hanning window

• Axis: Logarithmic frequency

Pitch and formants frequency obtained using the two set of settings,
and their Mean Absolute Percentage Error (MAPE) are reported in
Table 1.

4. DISCUSSION

As described above and demonstrated by analysis on simple com-
puter generated samples, Praat’s default settings are not suitable for
the analysis of infant cry. In example A.wav, F0 is located between
the pitch cutoff values and no periodic noise was added. We can ob-
serve, that parameter optimization led to a general improvement of
formant estimation, with the MAPE drastically reduced.
Similarly, in example B.wav, where F0 was still between pitch cut-
off values and periodic noise was above the lower cut-off with stan-
dard settings but not parameters optimized, the latter configuration

1https://github.com/ABPLab/Praat-LAC2019

84

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

granted a better recognition of the fundamental as well as of the for-
mant.
In example C.wav, F0 was higher than the upper cut-off for the pitch
of Praat’s standard settings. Here, pitch recognition identified the
wrong peak as the signal pitch. This situation did not occur when pa-
rameters were optimized and the higher cut-off was increased. This
is especially important when working with pathological infants or
where the risk of developmental pathology is high, and therefore
acoustic properties of cry are expected to differ from those of healthy
infants.
Finally, as shown with file D.wav, when the presence of periodic
noise was at about half of the fundamental frequency (with a high
fundamental frequency), it led the software to a recognition error
even with optimized parameters. This did not happen when the spec-
trum was visually inspected, since it was clear that the amplitude of
F 0/2 was lower than the amplitude of the peak of F0, as visible in
Figure 1
Parameter tuning sharpens extracted features, but because of the prop-
erties of cry, researchers still have to pay special attention to obtained
values, as well as to the quality of collected data.
Generally, we can expect Praat with standard settings to perform
poorly when employed in infant cry studies, because of the com-
plexity of the signal itself and of the presence of external noise. In
the next section, we will shows the performances of Praat on real cry
sample, using both the standard and optimized settings.

5. ANALYSIS OF REAL CRY SIGNALS

In order to provide a demonstration of Praat’s performance on real
cry samples, we analyzed infant utterances from a public dataset
[36]. More specifically, we assessed the first three utterances from
the file "BabyCrying2.wav", therefore named here as "Utterance1",
"Utterance2" and "Utterance3".
F0 and formants have been first obtained by visual inspection with
Audacity, using the same configurations used to obtain the spectrum
of computer generated signals. Because of the properties of cry, re-
ported value are the mean values of a whole utterance. Frequencies’
peaks are reported in Table 2. Then, each utterance have been an-
alyzed in Praat, using both the default settings (Praat S.) and our
suggested settings (Praat O.). For each pair of file and settings, we
estimated the Mean Absolute Percentage Error using as actual value
the peak obtained manually in Audacity by visual inspection of the
spectrum. Pitch and formants frequency values and MEAP per file
and settings are reported in Table 2.

6. DISCUSSION

As shows in Table 2, the difference in the estimated MEAP of investi-
gates samples follows what have been shown for computer generated
signals in Table 1. Similarly to the previous examples, the higher the
formant number, the higher the difference between the peak detected
in Praat or by visual inspection.
With an average reduction in the estimated MEAP of 18.4%, a fast
optimization of pitch and formant detection parameters demonstrated
to be helpful in increasing the accuracy of estimated features. As
demonstrated by our examples, differences in the used settings can
result in a large variance in estimated frequency values. Because of
that, we expect researchers involved in cry studies to tune the soft-
ware properly and to report used settings in final manuscripts. Unfor-
tunately, this is not the case: only in 12 out of 36 studies in which the

researchers used Praat, details about the used settings were provided
[8, 9].

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency (Hz)

−60

−50

−40

−30

−20

−10

Am
pl
it

de
 (d

B)

F0/2

F0 F1
F2

F3

F4

Spectr m of D.wav

Figure 1: Spectrum of D.wav, extracted using Audacity. Pitch (F0),
formant (F1,F2,F3,F4) and periodic noise (F0/2) have been labelled
accordingly.

7. CONCLUSIONS

In this work, we demonstrated the different level of performance
that Praat, an open source software designed for speech analysis,
can achieve when used with infant cry samples when the parame-
ters are or aren’t tuned. In the first part of this work, we generated
different acoustic signals with features similar to those of real cry
samples. Generated files have been analyzed first by visual inspec-
tion, then using Praat standard settings and finally by fine tuning the
algorithms’ parameters. The performance of the sofware has been
evaluated using the Mean Absolute Percentage Error (MAPE). In
the second part of this work, we applied the same procedure to a
set of real cry utterances. Our results show that Praat standard set-
tings are not suitable for the analysis of cry signal, and therefore the
software should not be employed in cry studies without tuning. Re-
searchers have to carefully examine collected data, to ensure that no
external sources of periodic noises are recorded within the signals.
Furthermore, because of the high inter-individual variability of cry
properties, it may be advisable to tune pitch and formant extraction
settings according to the investigated participants and their health
statuses. We advise researchers of the field to test Praat’s parameters
with more complex and extreme cry sounds so as to identify the ex-
tent to which the software can be correctly integrated in cry studies.

8. REFERENCES

[1] Gary G Berntson, J Thomas Bigger, Dwain L Eckberg, Paul
Grossman, Peter G Kaufmann, Marek Malik, Haikady N Na-
garaja, Stephen W Porges, J Philip Saul, Peter H Stone,
et al., “Heart rate variability: origins, methods, and interpretive
caveats,” Psychophysiology, vol. 34, no. 6, pp. 623–648, 1997.

[2] Jonathan D Reich, Sean Miller, Brenda Brogdon, Jennifer
Casatelli, Timothy C Gompf, James C Huhta, and Kevin Sul-
livan, “The use of pulse oximetry to detect congenital heart
disease,” The Journal of pediatrics, vol. 142, no. 3, pp. 268–
272, 2003.

85

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Table 1: Real and Praat’s estimated values for generated acoustic signal properties. For Praat estimation, standard (Praat S.) and optimized
(Praat O.) settings were used and values where computed at t=2.5s. In parenthesis are values obtained by visual inspection of the spectrum
generated with Audacity version 2.2.1. For each pair of file and settings, the Mean Absolute Percentage Error (MAPE) has been calculated.

A.wav B.wav
Fn Real Praat S. Praat O. Real Praat S. Praat O.

F0 440.0 (444) 448.2 448.0 440.0 (444) 223.0 447.3
F1 867.0 (882) 881.6 667.7 873.0 (882) 864.7 777.7
F2 1339.0 (1384) 1704.9 1367.4 1338.0 (1384) 1688.4 1470.5
F3 1752.0 (1768) 2655.9 1945.4 1755.0 (1768) 2573.1 2078.3
F4 2196.0 (2208) 4444.7 2719.0 2190.0 (2208) 3916.1 2753.1
F5 2641.0 (2756) 2621.0 (2756)
F0/2 - 213.0 (216)

MAPE 36.9% 12.3% 40.4% 13.3%

C.wav D.wav
Fn Real Praat S. Praat O. Real Praat S. Praat O.

F0 575.0 (581) 293.4 588.7 575.0 (581) 293.6 293.5
F1 1166.0 (1131) 932.4 712.1 1169.0 (1190) 1030.9 688.4
F2 1714.0 (1769) 1176.2 1411.0 1707.0 (1769) 1898.7 1397.6
F3 2305.0 (2321) 2617.7 2110.4 2292.0 (2321) 2765.6 2105.0
F4 2889.0 (2942) 3578.0 2880.4 2884.0 (2942) 3695.7 2890.0
F5 3455.0 (3676) 3433.0 (3676)
F0/2 - 306.5 (288)

MAPE 27.6% 13.5% 24.1% 23.3%

[3] Enrico Rosati, Giovanna Chitano, Lucia Dipaola, Claudio
De Felice, and Giuseppe Latini, “Indications and limitations
for a neonatal pulse oximetry screening of critical congenital
heart disease,” Journal of perinatal medicine, vol. 33, no. 5,
pp. 455–457, 2005.

[4] Anna Truzzi, Peipei Setoh, Kazuyuki Shinohara, and Gianluca
Esposito, “Physiological responses to dyadic interactions are
influenced by neurotypical adults’ levels of autistic and empa-
thy traits,” Physiology & behavior, vol. 165, pp. 7–14, 2016.

[5] Shakila Thangaratinam, Kiritrea Brown, Javier Zamora,
Khalid S Khan, and Andrew K Ewer, “Pulse oximetry screen-
ing for critical congenital heart defects in asymptomatic new-
born babies: a systematic review and meta-analysis,” The
Lancet, vol. 379, no. 9835, pp. 2459–2464, 2012.

[6] Alex R Kemper and Gerard R Martin, “Screening of newborn
babies: from blood spot to bedside,” The Lancet, vol. 379, no.
9835, pp. 2407–2408, 2012.

[7] E Garne, C Stoll, and Mog Clementi, “Evaluation of prenatal
diagnosis of congenital heart diseases by ultrasound: experi-
ence from 20 european registries,” Ultrasound in Obstetrics
and Gynecology: The Official Journal of the International So-
ciety of Ultrasound in Obstetrics and Gynecology, vol. 17, no.
5, pp. 386–391, 2001.

[8] Giulio Gabrieli, Li Ying Ng, Giulia Scapin, Marc H. Bornstein,
and Gianluca Esposito, “Acoustic analysis of infants’ cry: A
review and analysis of available research,” The Journal of the
Acoustical Society of America, Manuscript submitted for pub-
lication.

[9] Gianluca Esposito and Gabrieli Giulio, “Replication data for:
(acoustic analysis of infants cry: A review and analysis of
available research),” Dataset published on DR-NTU (Data),
2019.

[10] Gianluca Esposito, Noboru Hiroi, and Maria Luisa Scattoni,
“Cry, baby, cry: Expression of distress as a biomarker and
modulator in autism spectrum disorder,” International Jour-
nal of Neuropsychopharmacology, vol. 20, no. 6, pp. 498–503,
2017.

[11] Sebastian Möller and Rainer Schönweiler, “Analysis of infant
cries for the early detection of hearing impairment,” Speech
Communication, vol. 28, no. 3, pp. 175–193, 1999.

[12] Kathleen Wermke, Christine Hauser, Gerda Komposch, and
Angelika Stellzig, “Spectral analysis of prespeech sounds
(spontaneous cries) in infants with unilateral cleft lip and palate
(uclp): a pilot study,” The Cleft palate-craniofacial journal,
vol. 39, no. 3, pp. 285–294, 2002.

[13] Heidi Elisabeth Baeck and Marcio Nogueira de Souza, “Lon-
gitudinal study of the fundamental frequency of hunger cries
along the first 6 months of healthy babies,” Journal of Voice,
vol. 21, no. 5, pp. 551–559, 2007.

[14] Harvey R Gilbert and Michael P Robb, “Vocal fundamental
frequency characteristics of infant hunger cries: birth to 12
months,” International journal of pediatric otorhinolaryngol-
ogy, vol. 34, no. 3, pp. 237–243, 1996.

[15] Robin Prescott, “Infant cry sound; developmental features,”
The Journal of the Acoustical Society of America, vol. 57, no.
5, pp. 1186–1191, 1975.

86

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Table 2: Real and Praat’s estimated values for generated acoustic signal properties. For Praat estimation, standard (Praat S.) and optimized
(Praat O.) settings were used and values where computed at t=2.5s. In parenthesis are values obtained by visual inspection of the spectrum
generated with Audacity version 2.2.1. For each pair of file and settings, the Estimated Mean Absolute Percentage Error (Estim. MAPE) has
been estimated using as Actual value the peak highlighted by Audacity trough visual inspection.

Utterance1.wav Utterance2.wav Utterance3.wav
Fn Visual Insp. Praat S. Praat O. Visual Insp. Praat S. Praat O. Visual Insp. Praat S. Praat O.

F0 531 380.5 477.3 450 438.2 434.0 415 270.6 434.7
F1 904 1019.5 927.1 873 847.1 762.4 716 852.3 752.0
F2 1343 2078.0 1637.8 1341 1566.0 1350.8 957 1755.9 1325.9
F3 1797 2832.4 2691.8 1810 2816.8 2494.5 1616 2756.4 2454.6
F4 2271 3685.5 3288.1 2285 3935.1 3363.8 2313 3874.2 3114.2

Estim. MAPE 43.2% 25.8% 30.0% 20.4% 55.1% 27.0%

[16] William C Sheppard and Harlan L Lane, “Development of the
prosodic features of infant vocalizing,” Journal of Speech, Lan-
guage, and Hearing Research, vol. 11, no. 1, pp. 94–108, 1968.

[17] Hartmut Rothgänger, “Analysis of the sounds of the child in
the first year of age and a comparison to the language,” Early
Human Development, vol. 75, no. 1-2, pp. 55–69, 2003.

[18] Tanja Etz, Henning Reetz, Carla Wegener, and Franz
Bahlmann, “Infant cry reliability: acoustic homogeneity of
spontaneous cries and pain-induced cries,” Speech Communi-
cation, vol. 58, pp. 91–100, 2014.

[19] Katarina Michelsson, Kenneth Eklund, Paavo Leppänen, and
Heikki Lyytinen, “Cry characteristics of 172 healthy 1-to 7-
day-old infants,” Folia phoniatrica et logopaedica, vol. 54, no.
4, pp. 190–200, 2002.

[20] Katarina Michelsson and Oliver Michelsson, “Phonation in
the newborn, infant cry,” International journal of pediatric
otorhinolaryngology, vol. 49, pp. S297–S301, 1999.

[21] Linda L LaGasse, A Rebecca Neal, and Barry M Lester, “As-
sessment of infant cry: acoustic cry analysis and parental per-
ception,” Mental retardation and developmental disabilities
research reviews, vol. 11, no. 1, pp. 83–93, 2005.

[22] W Tecumseh Fitch and Jay Giedd, “Morphology and develop-
ment of the human vocal tract: A study using magnetic reso-
nance imaging,” The Journal of the Acoustical Society of Amer-
ica, vol. 106, no. 3, pp. 1511–1522, 1999.

[23] Kathleen Wermke, W Mende, C Manfredi, and P Bruscaglioni,
“Developmental aspects of infant’s cry melody and formants,”
Medical Engineering & Physics, vol. 24, no. 7-8, pp. 501–514,
2002.

[24] Houri K Vorperian, Ray D Kent, Mary J Lindstrom, Cliff M
Kalina, Lindell R Gentry, and Brian S Yandell, “Development
of vocal tract length during early childhood: A magnetic reso-
nance imaging study,” The Journal of the Acoustical Society of
America, vol. 117, no. 1, pp. 338–350, 2005.

[25] James F Bosma, “Anatomic and physiologic development of
the speech apparatus,” The nervous system, vol. 3, pp. 469–81,
1975.

[26] C Manfredi, L Bocchi, S Orlandi, L Spaccaterra, and
GP Donzelli, “High-resolution cry analysis in preterm new-
born infants,” Medical engineering & physics, vol. 31, no. 5,
pp. 528–532, 2009.

[27] Lisa M Unwin, Ildiko Bruz, Murray T Maybery, Victo-
ria Reynolds, Natalie Ciccone, Cheryl Dissanayake, Martha
Hickey, and Andrew JO Whitehouse, “Acoustic properties of
cries in 12-month old infants at high-risk of autism spectrum
disorder,” Journal of autism and developmental disorders, vol.
47, no. 7, pp. 2108–2119, 2017.

[28] Philip Sanford Zeskind and Ronald G Barr, “Acoustic char-
acteristics of naturally occurring cries of infants with “colic”,”
Child development, vol. 68, no. 3, pp. 394–403, 1997.

[29] Per Runefors, Einar Arnbjörnsson, G Elander, and K Michels-
son, “Newborn infants’ cry after heel-prick: analysis with
sound spectrogram,” Acta Paediatrica, vol. 89, no. 1, pp. 68–
72, 2000.

[30] Alejandro Rosales-Pérez, Carlos A Reyes-García, Jesus A
Gonzalez, Orion F Reyes-Galaviz, Hugo Jair Escalante, and
Silvia Orlandi, “Classifying infant cry patterns by the genetic
selection of a fuzzy model,” Biomedical Signal Processing and
Control, vol. 17, pp. 38–46, 2015.

[31] O Wasz-Höckert, TJ Partanen, V Vuorenkoski, K Michelsson,
and E Valanne, “The identification of some specific meanings
in infant vocalization,” Experientia, vol. 20, no. 3, pp. 154–
154, 1964.

[32] Paul Boersma and Vincent Van Heuven, “Speak and unspeak
with praat,” Glot International, vol. 5, pp. 341–347, 2001.

[33] Paul Boersma, “Accurate short-term analysis of the fundamen-
tal frequency and the harmonics-to-noise ratio of a sampled
sound,” in Proceedings of the institute of phonetic sciences.
Amsterdam, 1993, vol. 17, pp. 97–110.

[34] Malcolm J Crocker, Jorge P Arenas, and Rajeev E Dyaman-
navar, “Identification of noise sources on a residential split-
system air-conditioner using sound intensity measurements,”
Applied Acoustics, vol. 65, no. 5, pp. 545–558, 2004.

[35] Tony L Sahley and Frank E Musiek, Basic Fundamentals in
Hearing Science, Plural Publishing, 2015.

87

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[36] Gianluca Esposito, “Replication data for: (where the baby cries
matter: context effect in men and women),” Dataset published
on DR-NTU (Data), 2019.

88

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

ISOCHRONOUS CONTROL + AUDIO STREAMS FOR ACOUSTIC INTERFACES

Max Neupert

The Center for Haptic Audio Interaction Research
Weimar, Germany

max@chair.audio

Clemens Wegener

The Center for Haptic Audio Interaction Research
Weimar, Germany

clemens@chair.audio

ABSTRACT

An acoustic interface (also: hybrid controller) is presented. By tap-
ping, scratching, rubbing, bowing, etc. on the surface, excitation
signals for digital resonators (waveguides, lumped models, modal
synthesis and sample convolution) are created in synchronicity with
augmenting control signals. It is described how a direct acoustic
excitation delivers an intimate and intuitive interaction. Questions
are raised about which protocols to use for isochronous audio and
control transmission as well as file formats. Standardization of such
protocols is desirable for future hybrid instruments with analog in-
terfaces. A first step towards standardization is made with the publi-
cation of our implementation.

1. INTRODUCTION

Recent developments in the musical instrument controller market
follow the demand for more expressive and continuous control. At
the same time more computing power allows for expensive synthesis
methods so that more parameters can be made use of as a continuous
stream of control data in several degrees of freedom.

1.1. Keys or silicone?

A keyboard of the MIDI standard is generally sufficient to gener-
ate the parameters for a simple electronic representation of a piano.
Mod-wheel and pitch-bend only extended this affordance mildly. For
instruments with a continuous articulation like wind and string in-
struments the single parameter velocity is inadequate. When Yamaha
came out with the CS-80 in 1977 it pioneered after-touch on ev-
ery key and laid the foundations for a class of ‘extended keyboards’
such as the Haken Continuum [1], McPherson’s TouchKeys [2] and
the Seaboard [3] by Roli. All these instruments make multiple pa-
rameters per key available continuously. A standardization effort
of these parameter streams lead to the MIDI Polyphonic Expression
(MPE) specification. Jones’ Soundplane [4] and Linn’s Linnstrument
likewise belong to this group of instruments but do away with the
traditional (and some may say reactionary) piano key layout.

1.2. Exciting audio

A full audio signal is offering even more expression compared to just
control-rate parameters. Therefore, contact microphones (piezoelec-
tric sensors) have become a staple of electro-acoustic exploration.
They have also found their way in commercial music instruments,
but mostly as cheap threshold trigger pads delivering way below their
potential. Only a handful of commercially available instruments,
namely Korg’s Wavedrum (1994), Zamborlin’s Mogees [5] (2014)
and the ATV aframe [6] (2017) have put them to much more ade-
quate use by feeding the excitation signal into a digital resonator. In
the context of research a variety of implementations for experimental

and affordable instruments with acoustic interfaces have been pro-
posed. From ceramic tiles as a source for percussive sounds [7], to
acrylic sheets instead of guitar strings [8], [9] or intricate prototypes
with vibration insulated pads for eight fingers [10].

1.3. Marrying control and exciter

Miller’s tiles [7] and Momeni’s Caress [10] consider the process-
ing of the contact microphone as sufficiently expressive. Cook’s
Nukulele [11] combines two sensors, one at audio rate and one at
control rate, to create the affordance of an Ukulele which is played
with both hands on different positions of the instrument. As one
would with a guitar, a hand controls the parameters while the other
provides an excitation signal. Former is the control rate input and
latter the audio rate input.

The Kazumi by Zayas is an instrument which combines capaci-
tive sensing and piezoelectric microphones on the same surface [12].
It features seven separate faces in a prismatic heptagonal shape. Each
of the faces has a copper capacitive sensing layer which divides it
into six areas from bottom to tip, combined with a piezo mic under-
neath.

We want to augment the sound signal with additional parame-
ters, so we simultaneously track the position of touch on the surface.
This way we make a second hand for generating parameters obso-
lete. (Figure 1) Our implementation creates a percussive instrument
which can be hit, but also can be melodic and played in continuous
gestures by rubbing, scratching, or bowing on its edge.

Figure 1: Hybridity of audio and control data

1.4. Instrument versus controller

Great effort has been put into abstracting controller hardware to be-
come universal input devices for software instruments. The generic
controller is an interface to change parameters on the synthesizer in
which the actual sound is generated. In our instrument it’s not so
easy to define where the controller ends, and the instrument starts.
Cook writes that “...many of the striking lessons from our history
of intimate expressive musical instruments lie in the blurred bound-
aries between player, controller, and sound producing object.” [11].

89

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

In our instrument we are using the actual audio signal from the sur-
face which then is fed into a digital filter on the computer. In effect,
a significant component of the final sound is defined by the spectrum
and gesture of the excitation signal. While in the literature the term
‘hybrid controller’ is found [9] we prefer to describe the Tickle as
an ‘acoustic interface’. In our opinion ‘hybridity’ is too generic and
there is no declaration of its components, while ‘acoustic interface’
adds clarity to its nature.

2. THE TICKLE

The following section describes the components of the instrument.

2.1. Hardware

The case is made of bent steel with wooden side panels. Its top sur-
face is a printed circuit board and has a capacitive touchpad, three
endless rotary encoders with associated RGB LED and up/down but-
tons (for transposition or other parameters). On the back are six
ports:

1. External in (if plugged-in it mutes the built-in sensor)

2. CV out Y axis (0-4 V)

3. CV out X axis (0-4 V) or note

4. Host (micro-USB port)

5. Gate or envelope (0-5 V)

6. Excitation (audio signal)

2.2. Surface

After a brief evaluation of piano key layouts and variations thereof
[13] it was concluded, that a piano key layout is contradictory to
the intended interaction with the instrument. A hexagon pattern
was chosen to have equal distanced and sized1 segmentation with-
out empty spaces on the surface. It is also found in other electronic
instruments and controllers, for example, the Synderphonics Manta
[14]. From the 8-Bit resolution in X and Y axis we can calculate in
which of the 14 hexagons printed on the surface a touch occurred.
The capacitive touch sensing is single-touch, so polyphony cannot
be achieved by simultaneous touches. A two or more point gesture
will produce erroneous ghosting touch points and thus needs to be
avoided while playing. However, with voice allocation we can let
one touch resonate while a new touch gets its own resonator, so sub-
sequent touch events may have overlapping resonances.

2.3. Material and Texture

To create an acoustic excitation signal we rely on a hard material that
captures the spectra of different gestures. In addition to the rigidity
of the material, a textured surface is essential to create enough noise
when rubbed and wiped. Silicone surfaces are not suitable for our
application since they absorb too much of the subtle interaction.

2.4. Residual and Resonance

Generally, we want the physical surface of the instrument to resonate
as little as possible, so that we can feed the dry residual signal of the
touch gesture (rub, scratch, hit, flick, bow etc.) as excitation sig-
nal into a digital resonator (See also [7]). This way the full power

1except for the hexagons at the edges

of physical modeling synthesis algorithms may be accessed. The
practice of sending generated noise-bursts or clicks into digital res-
onators which can be found in literature for physical modeling and
which is still the standard in many soft- and hardware implementa-
tions is crippling the true potential of such algorithms.

2.5. Synthesis

For the sound synthesis we employ techniques of digital reverbrators
which at their heart are delay lines, feedback and filters. They can
be understood as modeled simulations (waveguides and mass-spring
models) of the physics happening in real instruments as described
by Smith [15]. These models can be generated with Berdahl and
Smith’s Synth-A-Modeler compiler [16] which has received a graphi-
cal interface with Vasil’s SaM-Designer [17]. Synth-A-Modeler gen-
erates Faust code which can be compiled in a variety of other formats
such as a Pure Data external. With the Pure Data object pmpd˜
from Henry’s PMPD [18] library which creates static mass and spring
models, we achieved nice sounding string, plate, and gong topolo-
gies. However, we are not aiming for perfect recreations of classic
instruments, our interest lies in the exploration of synthetic sounds
with an acoustic and intimate level of control. Algorithms such as the
nested comb filter delay as described by Ahn and Dudas [19] prove
interesting and fun to interpret with our instrument while being sur-
prisingly cheap to compute. We can employ our acoustic interface to
excite extended, hybrid and abstract cyberinstruments as described
by Kojs et al. [20]. Convolution methods with samples can be useful
to digital Foley artists to articulate a sample in a plenitude of varia-
tions.

Figure 2: The Tickle instrument

2.6. Software Architecture and Code

Our hardware is based on a Cypress PSoC 5 microprocessor and runs
a firmware which is digitizing the capacitive sensing surface and the
signal from the piezoelectric sensor. It communicates to a custom
kernel driver which is then communicating to user-space software
like our Pure Data external or a VST-plugin. Our kernel driver for

90

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Linux as well as the Pure Data external are published under a free li-
cense. A repository of the source2 is available (mirrored on github3).

2.7. Drivers and Communication

A great challenge was to transmit control rate signals married to a
stream of audio with a stable latency and reliable offset to each other.
The capacitive sensing reports every 4 ms a position while the audio
streams with a sample rate of 48 kHz and a block size of 64 samples.
Currently the user-space software is expected to match these settings
to work reliably. We wrote our own Linux kernel driver receiving
this isochronous stream of control and audio rate signals via USB
from the device.

3. STANDARDS FOR TRANSMISSION AND STORAGE

We believe that acoustic interfaces will soon become a category of
their own and manufacturers will introduce hybrid controllers to the
market. To make these new devices work with synthesis software
there will have to be a standardization effort for interoperability.
McMillen and Thew published a proposal on how to send sound
spectrum information over MIDI and OSC [21]. However many ques-
tions are yet to be answered about which format and standard should
be used for audio and data. A plethora of further questions arise
when thinking about a possible integration of a track with control
and audio-as-synthesis-source into a DAW. With this publication and
the open source driver we wish to start a discussion about possible
open standards for transmission, storage, and integration of analogue
interfaces into the creative workflow of musicians.

3.1. Specifications for the Driver

Our aim is an isochronous transfer of data and audio rate signals
with minimal latency, and more importantly, with little jitter [22].
The touch position data needs to be present before the audio arrives
to be able to tune the synthesis. There can’t be any variation to the
offset between signal and data. The audio stream doesn’t need to be
continuous; it could start on the touch event and end with it. In a fu-
ture polyphonic version, several audio streams could exist in parallel.
The implementation could be a data protocol with (multichannel-)
audio streaming segments on demand, as well as an continuous au-
dio stream with additional data interwoven. The touch events should
refer to a specific sample in the audio, possibly with a timestamp.
Other interface data like extra knobs, faders, potentiometers or ro-
tary encoders don’t need this precision in timing.

3.2. Surveyed Communication Protocols

We’ve considered different established and experimental protocols.
Each was evaluated against the aforementioned goals.

1. A kernel module driver was our choice, as it gives us the
maximum amount of control to make sure it meets our crite-
ria. However, it needs an installation procedure. On Windows
and Mac OS the operating system vendor restricts who can
distribute kernel modules, in fact we have paid Apple and ap-
plied for kernel signing and are still waiting for any response
after 5 months. On Linux, Secure Boot needs to be deac-
tivated or the kernel extension manually signed. A custom

2Source code: https://gitlab.chair.audio/explore/projects
3Github mirror: https://github.com/chairaudio

kernel driver means additional development overhead and for
the customer the fear that the device will be rendered useless
if support ends.

2. Audio spectrum data (via MIDI or OSC). Another approach
would be to break down the audio into metadata and then send
this over established protocols like MIDI or OSC which would
allow for a partial reconstruction. This was proposed in the
aforementioned draft by McMillen [21]. We dismissed this
approach because we see it as necessary to include a full audio
stream to reduce the latency required for the analysis of such
descriptive meta information. It also creates a computational
overhead on both, the sending and receiving device.

3. Audio and MIDI Class Compliant drivers are a viable al-
ternative. It’s possible to use one USB connection providing
two virtual devices, an audio interface, and a HID or a MIDI
device. Using standards means compatibility, no driver in-
stalls and continuous support. However, it’s not guaranteed
that latency and offset will be consistent. Another problem
lies in limitations of popular proprietary DAWs like Ableton
Live, which will only allow the use of one sound card at a
time. Assuming that the sound synthesis happens in a plugin
of the DAW, this restriction would block the plugin to access
the audio device.

4. Control Data as Audio Signal. Control data may be sent as
signals at audio rate, not unlike control voltage in synthesizers
or upsampled sensor output in Wessel’s Slabs, which features
96 channels of audio [23]. It could also be encoded as fre-
quencies and later be decoded with a Fourier transformation
like the Nuance as described in Michon et al. [24].

5. MIDI 2.0 There is no indication that MIDI 2.0, which is cur-
rently in prototyping stage at the MIDI Manufacturers As-
sociation, will include the feature to send audio streams for
acoustic interfaces.

This list claims no completeness, for example we have not sur-
veyed protocols like Ultranet or AVB. It’s likely we have overlooked
something and there may be a sensible solution to our problem al-
ready available.

4. FUTURE WORK

Future research may be conducted to implement the following fea-
tures to the instrument: 1. Multi-touch to relieve from ghosting
issues when two fingers touch the surface simultaneously. It also
allows for polyphony later on. 2. Pressure sensing [25] either for
every point or at least globally for the whole surface. 3. Haptic feed-
back is challenging to implement due to the feedback into the sensor,
but can give the user a much more intense sense of reality. The Lofelt
Basslet[26] is a good demonstration of such a device. 4. Integrated
sound synthesis either implemented by a) analog circuitry or b) an
embedded computing platform, for example the Bela board [27]. 5.
Playful interfaces to manipulate mass-spring models in real-time as
seen in Allen’s Ruratae [28].

91

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 3: One of the more unconventional and unintended ways to
play the Tickle

5. CONCLUSIONS

Our instrument Tickle combines several well-known techniques and
technologies which on their own are not new. Touch pad, contact
microphone, and physical modeling synthesis have been around for
decades. However, in their combination they synergize to a power-
ful intuitive instrument which allows for a natural and intimate [29]
interaction with precise and reproducible control over sound. Feed-
ing an analogue excitation signal into a (digital) resonator can cre-
ate familiar as well as alien sounds. Sounds which either behave
like instruments we know: Violin, guitar, snare drum, cymbal, gong,
marimba, etc., or sounds which are distinctly synthetic but have an
analogue touch to it.4

With this paper we hope to have shown the necessity of sam-
ple accurate, low latency and jitter free communications for acoustic
interfaces and started a discussion on how to achieve it.

6. ACKNOWLEDGMENTS

Our gratitude belongs to Philipp Schmalfuß for coming up with new
synthesis techniques as well as Björn Kessler, Joachim Goßmann,
Richard Dudas, Sven König for valuable input and feedback. Extra
thanks to Brian Bixby for the copy editing and the Sündermann-Oeft
family for hosting us during LAC19. We also would like to thank
the following institutions: The ESF of the European Union which
had funded us for one year through the EXIST! program, as well as
Bauhaus-Universität Weimar for access to workshops and network.

4A playlist of video demonstrations with the instrument can be found on
our website https://chair.audio

92

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

7. REFERENCES

[1] Lippold Haken, Ed Tellman, and Patrick Wolfe, “An Indiscrete
Music Keyboard,” Computer Music Journal, vol. 22, no. 1, pp.
30, 1998.

[2] Andrew McPherson, “TouchKeys: Capacitive Multi-touch
Sensing on a Physical Keyboard,” in Proceedings of the 2012
International Conference on New Interfaces for Musical Ex-
pression, Michigan, 2012.

[3] Roland O. Lamb, The Seaboard: discreteness and continuity in
musical interface design, Dissertation, Royal College of Art,
London, June 2014.

[4] Randall Evan Jones, “Intimate Control for Physical Modeling
Synthesis,” M.S. thesis, University of Victoria, Victoria, 1993.

[5] Bruno Zamborlin, Studies on customisation-driven digital mu-
sic instruments, Dissertation, Goldsmiths, University of Lon-
don and Université Pierre et Marie Curie - Paris 6, London,
Oct. 2014.

[6] “Product Development Story: ATV aFrame – A Next-
Generation Electric Instrument Created through a Fusion of
an Acoustic Instrument, DSP Technologies, and Traditional
Japanese Craftsmanship,” ICON, Sept. 2016.

[7] Miller Puckette, “Infuriating Nonlinear Reverberator,” in Pro-
ceedings of the 2011 International Computer Music Confer-
ence, Huddersfield, 2011, p. 4, International Computer Music
Association.

[8] Daniel Schlessinger and Julius O. Smith III, “The Kalichord:
A Physically Modeled Electro-Acoustic Plucked String Instru-
ment,” in Proceedings of the 2009 International Conference on
New Interfaces for Musical Expression, Pittsburgh, June 2009,
p. 4.

[9] Romain Michon and Julius O. Smith III, “A Hybrid Guitar
Physical Model Controller: The BladeAxe,” in Proceedings of
the 2014 International Computer Music Conference, A. Geor-
gaki and G. Kouroupetroglou, Eds., Athens, 2014, p. 7, Inter-
national Computer Music Association.

[10] Ali Momeni, “Caress: An Enactive Electro-acoustic Percus-
sive Instrumentfor Caressing Sound,” in Proceedings of the
2015 International Conference on New Interfaces for Musical
Expression, Baton Rouge, May 2015, NIME ’15, pp. 245–250.

[11] Perry R. Cook, “Remutualizing the Musical Instrument: Co-
Design of Synthesis Algorithms and Controllers,” in Proceed-
ings of the SMAC 2003, Stockholm, Aug. 2003, p. 4.

[12] Charles Gantt, “Design Challenge Project Summary: Kazumi,”
Apr. 2016.

[13] Max Neupert, “Optimizing chromatic Keyboards for small,
non-tactile Surfaces,” in Proceedings of Korean Electro-
Acoustic Music Society’s 2017 Annual Conference, Gwangju,
Oct. 2017, pp. 29–31.

[14] Jeff Snyder, “Snyderphonics Manta Controller, a Novel USB
Touch-Controller.,” in Proceedings of the 2011 International
Conference on New Interfaces for Musical Expression, Oslo,
2011, pp. 413–416.

[15] Julius O. Smith III, “Physical Modeling Synthesis Update,”
Computer Music Journal, vol. 20, no. 2, pp. 44, 1996.

[16] Edgar Berdahl and Julius O. Smith III, “An Introduction to
the Synth-A-Modeler Compiler: Modular and Open-Source
Sound Synthesis using Physical Models,” in Proceedings of the
2012 Linux Audio Conference, Stanford, Apr. 2012, pp. 93–99,
CCRMA, Stanford University.

[17] Edgar Berdahl, Peter Vasil, and Andrew Pfalz, “Automatic
Visualization and Graphical Editing of Virtual Modeling Net-
works for the Open-Source Synth-A-Modeler Compiler,” in
Haptics: Perception, Devices, Control, and Applications, Fer-
nando Bello, Hiroyuki Kajimoto, and Yon Visell, Eds., Cham,
2016, pp. 490–500, Springer International Publishing.

[18] Cyrille Henry, “Physical modeling for pure data (PMPD) and
real time interaction with an audio synthesis,” in Proceedings
of Sound and Music Computing 2004, Paris, Oct. 2004.

[19] Jae-Hyun Ahn and Richard Dudas, “Musical Applications of
Nested Comb Filters for Inharmonic Resonator Effects,” in
Proceedings of the 2013 International Computer Music Con-
ference, Perth, 2013, vol. 2013, pp. 226–231, International
Computer Music Association.

[20] Juraj Kojs, Stefania Serafin, and Chris Chafe, “Cyberinstru-
ments via Physical Modeling Synthesis: Compositional Appli-
cations,” Leonardo Music Journal, vol. 17, pp. 61–66, Dec.
2007.

[21] Keith McMillen and Barry Threw, “Acoustic Instrument Mes-
sage Specification,” June 2014.

[22] Robert H. Jack, Tony Stockman, and Andrew McPherson, “Ef-
fect of latency on performer interaction and subjective quality
assessment of a digital musical instrument,” in Proceedings
of the Audio Mostly 2016 on - AM ’16, Norrkoping, Sweden,
2016, pp. 116–123, ACM Press.

[23] Adrian Freed, “David Wessel’s Slabs: a case study in Preventa-
tive Digital Musical Instrument Conservation,” in Proceedings
of Sound and Music Computing 2016, Hamburg, Aug. 2016,
p. 5.

[24] Romain Michon, Julius O. Smith III, Chris Chafe, Matthew
Wright, and Ge Wang, “Nuance: Adding Multi-Touch Force
Detection to the iPad,” in Proceedings of Sound and Music
Computing 2016, Hamburg, Aug. 2016, p. 5.

[25] Adam R Tindale, Ajay Kapur, George Tzanetakis, Peter
Driessen, and Andrew Schloss, “A Comparison of Sensor
Strategies for Capturing Percussive Gestures,” in Proceed-
ings of the 2005 International Conference on New Interfaces
for Musical Expression, Vancouver, 2005, vol. 2005, p. 4.

[26] Amir Berrezag, “US Patent 2017/0019008 A1: Vibrating Ac-
tuator,” Jan. 2017.

[27] Andrew McPherson and Victor Zappi, “An Environment for
Submillisecond-Latency Audio and Sensor Processing on Bea-
gleBone Black,” in Audio Engineering Society Convention 138,
Warsaw, May 2015.

[28] Andrew S. Allen, Ruratae: A physics-based audio engine,
Dissertation, University of California, San Diego, San Diego,
2014.

[29] David Wessel and Matthew Wright, “Problems and Prospects
for Intimate Musical Control of Computers,” Computer Music
Journal, vol. 26, no. 3, pp. 11–22, 2002.

93

94

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

GAME|LAN:CO-DESIGNING AND CO-CREATING AN ORCHESTRA OF DIGITAL MUSICAL
INSTRUMENTS WITHIN THE FAB LAB NETWORK

Alexandros Kontogeorgakopoulos

Cardiff Metropolitan University
Cardiff School of Art and Design

Cardiff, UK
akontogeorgakopoulos@cardiffmet.ac.uk

Olivia Kotsifa

Decode Fab Lab
Athens, GR

olivia@decodefablab.com

ABSTRACT

This paper presents an ongoing project focused on the co-design and
co-creation of a small orchestra of digitally fabricated digital mu-
sical instruments (DMIs) based on the Bela board, an open-source
embedded computing platform. The project took place in Fab Labs,
an international network of digital fabrication laboratories1. The or-
chestra, named Game|Lan, is inspired by the traditional Indonesian
Gamelan ensembles, their music and philosophy. The project aims
to explore the capabilities of the Fab Lab network which runs on an
open-access, open-source and open-hardware ethos, for a distributed
project of this type. The aspiration is to create an original orches-
tra for non-musicians, which offers the rich collective experience of
being in a music group and explore it as a medium for social inter-
action. This paper presents the first results of the research project
which took place is three Fab Labs in South America and it focuses
on the process and the development of the project.

1. INTRODUCTION

In the last two decades, a large number of digital musical instruments
have been developed by the sound and music computing community
[1],[2]. The international conference for New Interfaces for Musical
Expression 2, annually hosts numerous music technology research
projects related to musical expression and to digital luthiers. How-
ever, very few projects are designed and made by participatory meth-
ods and techniques. The Input Devices and Music Interaction Lab-
oratory at McGill University has co-developed the McGill Digital
Orchestra which involved collaboration between researchers, com-
posers and performers. More recently, the Augmented Instruments
Laboratory at Queen Mary University of London, has started devel-
oping a research trajectory related to participatory design and co-
design of digital musical instruments. [3],[4].

This paper presents the process of development of a digital musi-
cal instrument with participatory design and creation methods: brain-
storming sessions, workshops, hands-on experimentation etc. Differ-
ent approach has been adopted for each stage of the project depend-
ing on the resources and research area of each Lab. Focus was given
equally to the physical body of the instrument as well as its electronic
and digital component where an embedded computing platform for
low-latency audio was used and programmed. The sound synthesis
algorithms have been designed and developed as an iterative pro-
cess; it was not possible to employ true participatory techniques in
this case as the participants had no necessary experience or necessary
skills in music signal processing.

1https://fablabs.io/labs/map
2http://www.nime.org/

The first section of the paper gives and overview of the open
design, co-design and co-creation culture and the Fab Lab network.
Section two presents the concept behind this project and outlines
the basic idea behind the orchestra, the requirements and constraint
of the approach. Finally, section three focus on the design and the
making of the instrument during the residencies that the authors had
in three Fab Labs in South America.

2. CO-DESIGN AND DIGITAL FABRICATION

2.1. Fab Labs

In the recent years the maker movement has started emerging, in
part because of people’s need to engage passionately with objects in
ways that make them more than consumers [5],[6]. Particularly the
Digital Fabrication Laboratories, so called Fab Labs, form part of
a larger “maker movement” of high-tech do-it-yourselfers, who are
democratising access to the modern means to make things [7],[8].

Fab Labs are often seen as open-innovation contexts in which
lead users can develop innovation that may become commercial so-
lutions from which companies can profit. But they may also be seen
as platforms for broader participation and new ways of collaborative
engagement in design and innovation, pointing at alternative forms
of user-driven production [9].

The reason why Fab Labs were chosen over other type of mak-
erspaces is the fact that the philosophy of the Fab Lab Network is
the collaboration between its Labs. The fact that each Fab Lab has to
share same machines and processes allows for information, projects
and people to move freely between them. Also, fabricating the in-
strument with the principles and practices of a Fab Lab means that
anyone can download the open designs, customise them if they need
to and fabricate them in any Fab Lab around the world.

2.2. Co-Design and Co-Creation

Co-design is being used as an umbrella term for participatory de-
sign and collaborative design. Participatory Design, seen as design
of Things, has its roots in the movements toward democratisation of
work places in the Scandinavian countries. In the 1970s participation
and joint decision-making became important factors in relation to
workplaces and the introduction of new technology [10]. Co-design
breaks the rules between the traditional designer-client relationship
and allows for creative contribution to design decisions. Without
excluding the designers in the process, it recognises the important
role of the users’ participation in the design decisions, as experience
experts. This research uses the method of participatory design, a
human centered design approach that attempts to involve users and
experts to assist in the design process in order to ensure the usability

95

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

of the product design[11]. The authors have applied and adapted the
Participatory Design methods in the Fab Lab environment depend-
ing on each user group. Participatory research methods[12], [13]
that involve hands on processes and Fab Lab principles both take
the same approach of testing feasibility in all stages of work. The
authors followed the five stage design thinking model proposed by
the Hasso-Plattner Institute of Design at Stanford (d.school). The re-
search was therefore conducted in 5 steps: empathise, define, ideate,
prototype, test 3 4. For the first two steps a mind map was drawn on
a whiteboard, as qualitative data collection tool for generating ideas.

3. CONCEPT

The concept of the project was to co-design and co-fabricate locally
a series of elegant and simple to use embedded digital musical in-
struments for non-musicians. The aim is to create a small orchestra
similar to the philosophy of the Gamelan Orchestra [14] and explore
it as a medium for social interaction. The percussion-type instru-
ments would be plug-and-play and easy to perform creatively with-
out necessarily any musical background. It is worth mentioning that
most Gamelan ensembles, especially in the UK, allow people of all
ages and abilities to take part. Both authors of the paper were part
of the Cardiff Gamelan ensemble and found very inspiring this fact
which eventually constituted one of the main reason to approach the
Game|Lan project orchestra in a similar way 5.

A very important aspect of the project was its participatory char-
acter and ethos. The instruments had to be co-designed and co-
created locally, in Fab Labs. Each Fab Lab with its particular focus,
skills and expertise, would contribute to the project accordingly. The
authors planned to visit three to four Fab Labs in South America and
work for a short period of approximately one week with the makers,
engineers, entrepreneurs and designers in their premises.

Moreover, it is worth mentioning that this is a mobile project
and follows the authors’ idea of "how to make almost anything while
travelling". The authors wanted to test how feasible is to do creative
work while travelling, following a digital nomads lifestyle 6. Every
single destination would serve as a source of inspiration and every
Lab would contribute uniquely to the realisation of the project. Ide-
ally each Lab would develop its own instrument, aligned to its local
culture and geographical location. This idea was proven to be too
ambitious for the time spent in each Lab and although many proto-
types were fabricated in each place, one final instrument was pro-
duced at the very end of the trip.

Material and technical-wise, the project had to be digitally fabri-
cated, with open design files and with the machines and technologies
shared within the Fab Lab network: 3D printers, CNC machines,
laser cutters, high resolution milling machines for printed circuit
board milling, electronics and microprocessors. Since the majority
of the Fab Labs do not focus on DMIs, the authors had to provide
the necessary embedded computing platforms for the development
of low-latency audio applications. For that reason, the Bela board
has been chosen, an open-source embedded computing platform and
Pure Data visual programming language [15]. Other alternative plat-
forms more widespread in the Fab Lab community such as the Ar-
duino with the ATMega328 chip or the ATtiny microcontroller were

3http://www.nime.org/
4https://www.interaction-design.org/literature/article/5-stages-in-the-

design-thinking-process
5http://artsactive.org.uk/2018/02/09/cardiff-gamelan-community-group/
6https://nomadlist.com/

not appropriate even with extra boards to support audio input and
output. The Raspberry Pi could be an alternative but it would also
need other peripherals [16].

For the sound creation component of the instrument, the inten-
tion was to design and develop a simple sound synthesis system,
which would generate timbres and sequenced music material that
would be mapped intuitively to the physical interface. Since the per-
formers wouldn’t be musicians it was important to make it easy to
them to create quite rich musical output with simple gestures.

4. PROCESS

The co-design and co-fabrication sessions of the project were car-
ried out in three Fab Labs in South America: The Fab Lab in the
University of Chile in Santiago, the Fab Lab Lima in Peru and the
Fab Lab of the National University of Colombia Medellin. It is worth
noting that these three sessions, were very different in nature and ap-
proach. Furthermore, the participants were not researchers from the
DMI community nor were they professional instrument players or
digital luthiers, but mainly active members of the Fab Lab network
and the Maker movement. That was not necessary a complication
in the co-creation process since the instrument addressed this type
of performers. Below it is presented chronologically how each Fab
Lab contributed to the project and how the authors approached the
collaboration with the teams in each location.

Fab Lab - University of Chile

Fab Lab U. de Chile 7is housed in the Engineering School of Uni-
versidad de Chile in Santiago. The Fab Lab quickly embraced the
Game|Lan project idea and invited us to work with three of their
core team, to discuss our ideas on the physical and digital interac-
tion, form, fabrication method and electronic design.

After having presented the idea and discussed the available re-
sources, the authors collected the information from the mind-maps
and started drawing out all important points as discussed with the
team onto a whiteboard (see figure 1).The points proved to be our
compass for agreeing on a good size, form and interaction; deci-
sions that were made collectively. The figure below shows how the
team defined some parameters that would be followed throughout
the project. It was equally important to embed the Fab Lab ethos
into the project, the mobile nature of the instrument, the electronics
restrictions, the aesthetics and the Gamelan philosophy.

Further to the research and decisions taken by the team, the in-
strument had an approximate size of 250x150x150mm with an en-
closure that would fit the microcontroller, battery and sensors. The
first prototype was done on day three and from there on, we could
easily test the interaction. The decision taken was that different faces
would allow for a certain tilting of the instrument which would work
well with the physical and digital interaction.

The physical structure of the musical instrument embedded sen-
sors, very simple signal conditioning circuits and a small single-
board computer for audio and sensor signal processing. The Fab
Lab community commonly uses the Arduino board or directly its
ATMEGA single-chip microcontroller which unfortunately does not
allow on board audio processing. As mentioned on section 3, the
Bela board has been chosen for its audio specifications and because
it is very well integrated with Pure Data, a very well known open-
source programming language for computer music applications that

7http://www.fablab.uchile.cl/

96

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 1: Points to be considered during design decisions

is aligned with the open-source philosophy of the Fab Lab commu-
nity.

In our prototypes in Santiago, the team used a two-axis accelerom-
eter, a piezoelectric sensor and three reed switches. An algorithm
was developed in order to detect the active face of the polyhedron
from the readings of the accelerometer and accordingly influence the
signal processing algorithms. The piezoelectric sensor was measur-
ing pressure on the faces of the instrument which was used either as
an audio input or as trigger of samples. The reed switches and the
three magnets acted as a 3-bit digital input signal that affected the
settings of the instrument. All these electronic components were sol-
dered on a perforated board. An electronic engineer from the local
team helped with the electronic development and started program-
ming for the first time in Pure Data.

One of the concepts in Santiago that the team developed, was to
have an ensemble of maximum eight reconfigurable, modular and in-
terchangeable instruments. During the music performance, the play-
ers would mix the top with the bottom parts of their instrument in
order to increase the dramaturgy and the physicality of the perfor-
mance. This gesture would change the settings of the instrument
such as the timbre family or the sequenced music patterns triggered
by the performers. The reed sensors mentioned above where used
for that reason.

Figure 2: Co-design and prototyping in Fab Lab U.de Chile

In the first prototype, the instrument was sampled-based, playing
back randomly a collection of samples coming from the same family
of sounds. That was enough in order to test the interaction design
and study how feasible was for the performers to play the instrument
together. A simple score system was devised , similar to the Game-
lan Kepatihan notion, where the number would indicate the face to
be slapped. The first author was part of the Gamelan orchestra in
Cardiff in UK for five years and he was aware of the level of dif-
ficulty of performing music with this type of notation. As already
mentioned before, one of the main reason why the Gamelan philos-
ophy was adopted for this project was the quick access the beginner
performers have, to play notated music within the context of an or-
chestra. The score was briefly tested with non-musicians in Santiago
and was confirmed that learning curve is very smooth and beginners
could easily engage with that type of orchestra. More information
on the process can be found on the authors’ website 8

Fab Lab - Fab Lab Lima

Fab Lab Lima9 is a community Fab Lab therefore rather than work-
ing with the Fab Lab team, we organised a workshop open to the
public with knowledge in either a design related field or electronics,
programming or fabrication. We spent two days with a multidisci-
plinary group of participants with diverge backgrounds ranging from
architecture to mathematics, biology, art, electrical engineering, civil
engineering as well as members of the community interested in the
project. Each one chose to contribute to one of the three areas of in-
terest as designed by the authors: instrument form and design, elec-
tronics and programming and 3d prototyping in collaboration with
the design group. During the time in Fab Lab Lima the authors re-
peated the last 3 stages: ideate, prototype, test.

On the second day of the workshop we experimented with differ-
ent materials and processes as textiles and weaving, parametrically
designed forms and 3d printing etc. Moreover, the electronics were
further developed and a PCB board was designed according to the
circuit developed in Santiago, Chile. More information on the pro-
cess can be found on the authors’ website 10

The rest of the time we worked in the Lab refining the interaction
design and programming it in Pure Data. Different sound synthe-
sis algorithms where programmed there and presented to the partic-
ipants. One interesting one, passed the audio signal coming directly
from the piezoelectric sensor to a bank of parallel band-pass filters.
The central frequency and the Q factor of the filters was mapped to
the orientation of the body of the instrument and the performers by
tilting it could generate a variety of unexpected sonic textures such
as rain drops.

Fab Lab - National University of Colombia Medellin

Fab Lab UNAL 11 is in Medellin, in the Arts and Architecture School
of the National University of Colombia. During our week in the
Fab Lab, we worked with the Lab’s team to co-design a parametric
12shape for the instrument and fabricate the result in wood. Para-
metric design and CNC milling was this Lab’s strongest asset so we
experimented with both.

8https://www.stiwdioeverywhere.com/2018/04/20/making-in-fab-lab-u-
de-chile/

9https://www.fablabs.io/labs/fablablima
10https://stiwdioeverywhere.com/2018/05/09/making-in-fab-lab-lima/
11https://www.fablabs.io/labs/fablabUNmedellin
12https://www.grasshopper3d.com/

97

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 3: Co-design and prototyping in Fab Lab Lima

The team in Colombia had a particular interest in the digital fab-
rication aspect of the project, testing different types of wood for the
end result. Oak, eucalyptus and pine were available to use at the Lab,
and after testing the weight, acoustical properties and the milling bits
to be used in each case, the team decided to use pine for the two-part
instrument as illustrated in figure 5. We made three prototypes out of
pine wood to test the size, ergonomics and wood texture and acous-
tics. The authors decided to repeat stages 3,4 and 5 of the methodol-
ogy: ideation, prototype and testing. Without a major change in the
ergonomics of the instrument, the final result was slightly bigger than
the size agreed in Fab Lab U. de Chile, simply because the geometry
generated by the algorithm was more complicated. The bottom part
enclosed the electronics circuits and had 6 main faces that were used
to produce different sounds depending on which angle the performer
would decide to tilt it at. More information on the process can be
found on the authors’ website 13

The circuit diagram and PCB layout for through-hole compo-
nents designed in Peru was given to the team for milling. Unfortu-
nately due to software implications, the drivers of the milling ma-
chine were not working and there was no alternative way of produc-
ing the board with a process used by the Fab Lab community. The
widely known etching technique is not supported by the Fab Lab net-
work which is focused to more computer-aided-manufacturing ap-
proaches.

For the sound generation part of the instrument, a different ap-
proach closer to algorithmic composition has been explored and pro-
duced higher lever of musical material. A number of short musical
phrases were composed or generated algorithmically, which could
be repeated and triggered interactively by the performers. Each face
of the polyhedron triggered a different phrase randomly or in a pre-
defined order. Musical parameters of the phrase such as its tempo
and dynamics were mapped to the orientation of body. The perform-
ers could articulate the phrases, control how many times they are re-
peated and when they will start playing. This procedure was inspired
by In C by Terry Riley.

13https://stiwdioeverywhere.com/2018/05/21/making-in-fab-lab-unal-
medellin/

Figure 4: Making in Medellin

Figure 5: Two part CNC milled prototype in Medellin

5. CONCLUSIONS

The Game|Lan project was an interesting experiment, trying to match
the participatory approach in design and fabrication with the culture
of the digital nomads.The different teams have managed to develop
one finalised instrument and equally importantly to share knowledge,
skills and ideas beyond their cultural barriers. The authors were flex-
ible and worked with each Lab in a different way, respecting the
diversity within the Fab Lab network. Unfortunately, there was no
time left to experiment musically or perform with the instrument.
Upon reflection, there are a few areas for improvement and points to
consider for others who decide to do a similar project:

1. It was not an easy task to accomplish especially while trav-
elling. The authors spent 8 days working in Fab Lab U.de
Chile and managed to go through all stages of the design. In
the other two locations they had to spend less time.

2. An ambitious project that would normally take a certain of
amount of time in one’s local Fab Lab, may take up to three
times more time in other places especially when one is not fa-
miliar with the local settings. This does not apply for smaller
projects or projects in collaboration with university students.

98

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

3. The Fab Labs’ website that shows the location, machines and
activity of each Fab Lab in the world needs an update: not all
places were active or had the equipment needed and this cut
the project short.

Despite the points above, the authors managed to gather an im-
portant body of knowledge related to the project, a series of alter-
native design ideas fabrication methods. The important points high-
lighted during the first days of the project in Fab lab U. de Chile
set the rules, the design values to be followed. This part proved
to be vital to the project, not only during the first week in Chile,
but throughout the whole duration of the project. The participants
whether this was in Colombia or Peru, understood and respected the
decisions that were taken collectively by the first team in Chile. It
was difficult for the participants to make sure they would address
all the points when co-designing and prototyping the instruments in
each place, however they happily accepted the challenge. There were
always points where new decisions were discussed and tested; this
gave a sense of empowerment and ownership in each place.

The overall challenge of co-creation, especially when not all par-
ticipants have collaborated before, may delay the final result. How-
ever, each person’s knowledge, ideas, or experiences added signif-
icant value to the project. Co-creation in spaces like the Fab Labs
seems to come naturally by its members and the authors are opti-
mistic that there will be more examples in the future.

This is work in progress; future work includes improved, longer
in duration workshops where one instrument per location will be fab-
ricated. All designs and music scores are to be uploaded on a web-
based hosting service for version control such as GitHub so they are
accessible to the community and step by step instructions and docu-
mentation of the fabrication are to be shared on the authors’ website.
Moreover a series of concerts are envisaged that could take place
remotely as network performances or in the International Fab Lab
conferences.

6. ACKNOWLEDGEMENTS

We would like to thank the Fab Lat Network for facilitating our com-
munication with the regional Fab Labs. Special thanks to the man-
ager and team in Fab Lab U.de Chile Danisa Peric, Gonzalo Olave,
Joaquin Rosas, the manager of Fab Lab Lima Beno Juarez and the
participants of the Fab Lab Lima workshop, and the Fab Lab UNAL
manager and team Juan Gutierrez and Dani Asprilla.

7. REFERENCES

[1] Eduardo Reck Miranda and Marcelo M. Wanderley, New dig-
ital musical instruments: control and interaction beyond the
keyboard, vol. 21, AR Editions, Inc., 2006.

[2] Alexander Refsum Jensenius and Michael J. Lyons, Eds., A
NIME Reader: Fifteen Years of New Interfaces for Musi-
cal Expression, Current Research in Systematic Musicology.
Springer International Publishing, 2017.

[3] Luca Turchet, Andrew McPherson, and Mathieu Barthet, “Co-
design of a Smart Cajón,” Journal of the Audio Engineering
Society, vol. 66, no. 4, pp. 220–230, Apr. 2018.

[4] Jack Armitage and Andrew McPherson, “Crafting Digital Mu-
sical Instruments: An Exploratory Workshop Study,” in Pro-
ceedings of the 2018 conference on New Interfaces for Musical
Expression. 2018, New Interfaces for Musical Expression.

[5] Dale Dougherty, “The maker movement,” Innovations: Tech-
nology, Governance, Globalization, vol. 7, no. 3, pp. 11–14,
2012.

[6] Chris Anderson, Makers: The New Industrial Revolution, Ran-
dom House Business, London, Apr. 2013.

[7] Neil Gershenfeld, “How to Make Almost Anything,” Foreign
Affairs, , no. November/December 2012, Nov. 2012.

[8] Neil Gershenfeld, Fab: The Coming Revolution on Your
Desktop-from Personal Computers to Personal Fabrication,
Basic Books, New York, NY, new ed edition edition, Feb. 2007.

[9] Pelle Ehn, Elisabet Nilsson, Richard Topgaard, Anders Emil-
son, and Per-anders Hillgren, Making Futures: Marginal Notes
on Innovation, Design, and Democracy, MIT Press, 2014.

[10] Erling Bjögvinsson, Pelle Ehn, and Per-Anders Hillgren, “De-
sign things and design thinking: Contemporary participatory
design challenges,” Design Issues, vol. 28, no. 3, pp. 101–116,
2012.

[11] Mieke van der Bijl-Brouwer and Kees Dorst, “Advancing the
strategic impact of human-centred design,” Design Studies,
vol. 53, pp. 1–23, Nov. 2017.

[12] Clay Spinuzzi, “The methodology of participatory design,”
Technical communication, vol. 52, no. 2, pp. 163–174, 2005.

[13] Elizabeth B.-N. Sanders and Pieter Jan Stappers, “Probes,
toolkits and prototypes: three approaches to making in code-
signing,” CoDesign, vol. 10, no. 1, pp. 5–14, 2014.

[14] Richard Pickvance, A Gamelan Manual: A Player’s Guide to
the Central Javanese Gamelan, Jaman Mas Books, London,
May 2005.

[15] Giulio Moro, Astrid Bin, Robert H. Jack, Christian Heinrichs,
and Andrew P. McPherson, “Making high-performance em-
bedded instruments with Bela and Pure Data,” in Proceedings.
of the International Conference of Live Interfaces, 2016.

[16] Edgar Berdahl and Wendy Ju, “Satellite CCRMA: A Musical
Interaction and Sound Synthesis Platform.,” in NIME, 2011,
pp. 173–178.

99

100

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

FINDING SHIMI’S VOICE: FOSTERING HUMAN-ROBOT COMMUNICATION WITH MUSIC
AND A NVIDIA JETSON TX2

Richard Savery

GTCMT
Georgia Institute of Technology, USA

rsavery3@gatech.edu

Ryan Rose

GTCMT
Georgia Institute of Technology, USA

rrose37@gatech.edu

Gil Weinberg

GTCMT
Georgia Institute of Technology, USA

gilw@gatech.edu

ABSTRACT
We present a novel robotic implementation of an embedded linux
system in Shimi, a musical robot companion. We discuss the chal-
lenges and benefits of this transition as well as a system and techni-
cal overview. We also present a unique approach to robotic gesture
generation and a new voice generation system designed for robot au-
dio vocalization of any MIDI file. Our interactive system combines
NLP, audio capture and processing, and emotion and contour analy-
sis from human speech input. Shimi ultimately acts as an exploration
into how a robot can use music as a driver for human engagement.

1. INTRODUCTION

The field of robotics depends on embedded hardware and software
for real-time computational tasks such as kinematics, computer vi-
sion, and sensor data processing. For many of these tasks, state-of-
the-art performance depends on computationally heavy deep learn-
ing techniques. Embedded computing devices have only recently
been developed with the GPUs necessary to perform complex deep
learning inference in real-time. One such device is the NVIDIA
Jetson TX2, an embedded system-on-module that runs Linux on
a quad-core ARM processor, and features an 8GB GPU built on
NVIDIA’s Pascal architecture. This powerful and energy-efficient
device greatly expands the capabilities of robots and other embed-
ded applications alike through its ability to run both high CPU and
GPU tasks, such as artificial neural networks, deep learning, and sig-
nal processing.

This project uses the Jetson TX2 to run a musical robot com-
panion named Shimi (Figure 1). Shimi moves with five degrees of
freedom, and can play audio out of two speakers on either side of its
head. Additionally, Shimi features a 4-microphone array on its un-
derside. Prior to being run by the Jetson TX2, Shimi was controlled
with an Android smartphone and an Arduino Mega.

The purpose of Shimi is to explore novel ways in which humans
can communicate with artificial intelligence (AI) agents. Many mod-
ern AIs attempt to replicate communicative patterns of humans as
closely as possible, using state-of-the-art text-to-speech procedures
and complex mechanical operation to try and convince users that
they interact with a human-like device, not a computer or a robot.
This can quickly lead to the "uncanny valley" psychological phe-
nomenon, where the small differences between an AI and a real hu-
man evoke a deeply unsettling feeling. In this project, the authors
embrace the non-human robotic identity of Shimi and explore meth-
ods of communication using Shimi’s limited range of motion and
music, in place of verbal language. This is realized through a voice
generation system that utilizes deep learning to respond to human
speech in an emotionally relevant manner, and a gesture generation
system that uses both quantified emotion and Shimi’s musical voice
to craft robotic body language using Shimi’s five degrees of freedom.

Figure 1: The musical robot companion Shimi.

2. RELATED WORK

Prior work on Shimi focused first on utilizing the sensors and com-
putational power of a smartphone to explore the possibilities of per-
sonal robotics in a cost-effective way [1]. The research in this study
also provided inspiration for life-like gestures, taking cues from an-
imation. Other work on Shimi explored expressing emotion through
gesture, informed by observations of human movement and emotion
from Darwin [2, 3]. Others have used the Laban Effort System in
gesture generation, specifically in low degree of freedom robots such
as Shimi [4]. Additionally, speech analysis as input to gesture gen-
eration has been used for robot communication in many cases such
as Kismet [5].

Music as a vector for emotion has been demonstrated in numer-

101

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

ous studies, with comprehensive research exploring what emotions
can be perceived or induced through music, what musical features
encode emotion, and how music expresses or induces emotion [6].
Studies have shown clear correlations between musical features and
movement features, suggesting that a single model can be used to
express emotion through both music and movement [7]. Addition-
ally, humans demonstrate patterns in movement that is induced from
music [8].

3. TECHNICAL DESCRIPTION

3.1. Voice System

3.1.1. Input Analysis

Shimi analyzes incoming audio streams using a combination of nat-
ural language processing (NLP) and raw audio analysis. Shimi fea-
tures a Seeed Studio ReSpeaker Mic Array v2.0 1, a four-microphone
array with on-board processing that combines each microphone
stream and denoises the recording, emphasizing voice signals. No
additional processing of input signals was added after the ReSpeaker
processing, other than down-mixing to a single channel. Using the
open-source hotword detection library Snowboy2, Shimi responds
to the phrase "Hey Shimi," and begins recording input audio. The
Python phrase detection library speech_recognition3 is then
used to capture one phrase of raw audio.

Incoming audio is analyzed using the valence arousal model,
whereby valence is the measure of the positivity or negativity of an
emotion, and arousal is the measure of the energy of an emotion[9].
Raw audio analysis is used to find the arousal level, pitch, intensity
and onsets. To do this we utilized Parselmouth4, a Python library
built on Praat5. We created custom metrics to analyze the input
level based on analysis of the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS) data set [10]. RAVDESS
includes 7356 audio files by 24 actors, each rated with an emotion
independently validated by 10 participants. Our metrics were based
on pitch contours and intensity levels found in the recordings. Figure
2 and 3 show analysis of the phrase the dogs are sitting by the door
from the data set. Our metrics to measure arousal use the variety,
level and standard deviation in intensity and the range, contour and
standard deviation of pitch.

To measure valence we use the Natural Language Toolkit (NLTK)
[11], a suite of Python modules for NLP. We calculate valence us-
ing a built in naïve bayes classifier trained on the NLTK data set of
tagged phrases from social media. We also use the NLTK library for
statement classification.

3.1.2. Shimi’s Emotion

Shimi maintains its own emotional state through each communica-
tion, tracked through a position in valence and arousal. Valence and
arousal are both measured between -1 and 1. The current model
gradually shifts the valence level towards that of the user while mir-
roring the arousal of the user. A negative valence statement from the
user will cause Shimi to respond in a sad tone. Following positive

1http://wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/
2https://snowboy.kitt.ai/
3https://github.com/Uberi/speech_recognition
4https://github.com/YannickJadoul/Parselmouth
5http://www.fon.hum.uva.nl/praat/

statements from the user will gradually move Shimi towards posi-
tive responses. When starting Shimi begins with a valence of 0.5,
equating to slightly happy.

3.1.3. MIDI Dataset and Phrase Generation

To control Shimi’s vocalizations we generate MIDI phrases that then
drive the synthesis and audio generation described below and lead
the gesture generation. For this purpose we created our own data set
of MIDI files tagged with a valence and arousal quadrant. We col-
lected MIDI files from eleven improvisers around the United States.
Each was told to record MIDI phrases between 100ms and 6 sec-
onds with each phrase assigned one of the quadrants from the va-
lence/arousal model. They also recorded phrases that they believe
represented a question, an answer to a question, a greeting and a
farewell. Improvisers were told to record between 50 to 200 samples
of each category. To restrict the data each phrase could only contain
velocity values at the start of a note and no MIDI data outside pitch,
velocity and rhythms were included in training (i.e. no expressive
modulations).

As the data set was created by many improvisers we created a
second process to confirm the validity of the collected files. This
was done through a comparison of the pitch, velocity and contour
variation between the new MIDI data set and the RADVESS data
set. Figure 3 and Figure 4 present the an example of the variance
in the data-set between different emotions (blue is pitch, orange is
intensity, placed over a spectrogram). Any MIDI file that varied too
far from the features of RADVESS was removed from the data set.
Table 1 shows the final amount of files used for Shimi’s phrase gener-
ation. The RADVESS data set does not include greetings, farewells,
questions or answers and due to their limited use in Shimi’s interac-
tion we did not post process these phrases.

Table 1: Shimi Emotional MIDI Data set

PhraseType MIDI Samples Post Process
V A1(Happy) 895 400
V A2(Angry) 1042 621
V A3(Sad) 980 567
V A4(Calm) 700 385
Greetings 655 655
Farewell 895 895
Question 901 901
Answer 778 778

To generate phrases for Shimi vocalizations, we choose to use a
data driven generative method. We also considered using the samples
recorded by improvisers directly, however we wanted to aggregate
the features created by all improvisers and develop a system that
allowed limitless variability. Having chosen to use deep learning a
relatively simple Long short-term memory, recurrent neural network
(LSTM RNN) was implemented in Keras over Tensorflow as has
been previously presented [12][13]. This type of neural network is
useful for this task as it is sequential and considers parts of its input
as it creates output, encouraging the creation of musical phrases. The
data set was first transposed into all twelve keys, to avoid a need to
identify a key center. Eight different versions of the network were
trained, one for each tagged component of the data set. This was
done with the goal of a faster run time.

102

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 2: Shimi System Overview.

3.1.4. Audio Creation and Synthesis

MIDI phrases are fed to a new synthesis system created for Shimi. To
generate vocalizations that focuses on emotions devoid of all seman-
tic meaning, we chose to construct a new vocabulary. Shimi’s vo-
cabulary is built upon phonemes from the Australian Aboriginal lan-
guage Yuwaalaraay a dialect of the Gamilaraay language. Originally
ideas explored real-time implementations of deep learning raw audio
synthesis, however it quickly became apparent that this would add
unacceptable amount of latency to the system. In our testing even
with large compromises in bit rate we were never able to achieve
less than a 1 to 5 ratio of processing sound (1 second took 5 seconds
to process). Instead of real-time synthesis we compromised by inter-
polating 28 language samples with four different synthesizer sounds,
manually created by the authors. For each sound three different in-
tensity levels were recorded at two different octaves, giving a total
of 672 wave samples each 500 ms long. Our final interpolation was
done using a modified version of NSynth[14], trained on the NSynth
data set. Sounds are played back using a synthesis engine that time
stretches and pitch shifts the wave samples to match the incoming

MIDI file.

3.2. Gesture System

Much like in human communication, Shimi’s gestures are tightly
coupled with speech [15]. The voice system produces three outputs:
an audio file of Shimi’s speech, the MIDI musical representation of
the audio, and quantitative measures of Shimi’s current emotion. The
latter two outputs are the inputs to a rule-based generative gesture
system, which controls synchronized playback of gesture with the
generated audio.

The first step in gesture generation is musical feature extraction
from the MIDI representation of Shimi’s speech. Using the Python
libraries pretty_midi6 and music217, musical features such
as tempo, range, note contour, key, and rhythmic density are ob-
tained. These features are used to create mappings between Shimi’s
voice and movement; for instance, pitch contour is used to govern

6https://github.com/craffel/pretty-midi
7https://github.com/cuthbertLab/music21

103

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 3: Sad Speech Intensity and Pitch

Figure 4: Happy Speech Intensity and Pitch

Shimi’s torso forward-and backward movement. Other mappings in-
clude beat synchronization across multiple subdivisions of the beat
in Shimi’s foot, and note onset-based movements in Shimi’s up-and-
down neck movement. These mappings are based on research inves-
tigating correlative features in music and musically-induced move-
ment [8, 7, 16].

The next step uses the emotion state of Shimi to condition Shimi’s
movement. Emotion is provided to the system in the form of contin-
uous-valued valence and arousal. These values are then used to con-
dition the musical mappings formed previously. In general, arousal
is used to restrict or expand range of motion, and valence is used
to govern the amount of motion Shimi exhibits, though exact usage
varies for each degree of freedom.

In addition to musical and emotional mappings, some degrees
of freedom are interdependent. For example, as Shimi’s torso moves
forward, Shimi’s head naturally moves forward and toward the ground.
This affects where Shimi is looking, so it is important to consider
Shimi’s torso position when generating neck up-and-down move-
ment. To accommodate this, the movement paths of Shimi’s de-
grees of freedom are generated sequentially and in full, before be-
ing actuated together in synchronization with the audio of Shimi’s
speech. This is implemented using the built-in threading library
in Python, with each degree of freedom being associated with one

Python thread responsible for sending motor control commands across
the duration of the gesture.

The motors used in Shimi are Dynamixel MX-28 actuators pro-
duced by Robotis. They feature built-in controllers, allowing for
closed-loop control through half-duplex UART serial communica-
tion. While the MX-28 motors allow for both reading and writing
of position and speed, the half-duplex nature of their communication
introduces latency when reading and writing to multiple motors at
once, at a resolution high enough for smooth movement. To gener-
ate rigorously timed gestures, we do not read Shimi’s motors write
to them as infrequently as possible. This minimizes any latency in-
herent in the transmission of data to the motors. For smooth and
natural-looking movement, the velocity curve of a gesture is most
important. As such, position of Shimi’s motors is only ever set when
direction of movement changes, and velocity changes are set as fre-
quently as possible without accruing latency. Setting position once
and defining the velocity curve allows for control of both when Shimi
reaches a certain position, and how Shimi gets there.

Gestures, then, are defined as sequences of movements to a posi-
tion over a specified time. To facilitate programmatic gesture gener-
ation, a collection of velocity curves have been implemented to pro-
vide styles of movement. The simplest is a constant velocity, where
velocity is the distance of the movement over its duration (Figure 5).
This style looks the most stereotypically “robotic”, as the motors can
accelerate from rest to max velocity much faster than a human can.

Previous work on Shimi introduced a velocity curve that features
a constant acceleration until the midpoint of the gesture, then a con-
stant deceleration [1]. This works particularly well for single move-
ment or broad gestures, and looks the most realistic when compared
with human motion (Figure 5).

In the context of a multi-move gesture, however, accelerating
and decelerating every movement becomes unnatural, as multi-move-
ment human gestures do not come to rest bewteen each move. Thus,
a constant acceleration (or deceleration) and constant velocity curve
can cap both ends of a gesture. An example of the acceleration vari-
ety is shown in Figure 5.

Figure 5: Graphs of the velocity curves used for Shimi movements.

In addition to the movement sequencing method of gesture gen-
eration, a different method of recording and playing back gestures
is being explored. This method requires physically moving Shimi’s

104

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

limbs in a desired gesture while the motors continuously record po-
sition and speed as fast as possible. After recording, the captured
positions and speeds can be used to actuate the gesture on Shimi on
demand, resulting in a highly detailed and smooth gesture. While
this method results in the most nuanced and expressive gestures,
there are difficulties in playing back recorded gestures accurately
in time with the way they were recorded. The time taken to read
a motor’s position and speed varies, resulting in playback that is not
aligned with the recording. This timing behavior makes synchro-
nization with speech, which is a necessity for Shimi, very difficult.
More research on ways to align these types of gestures with audio is
being explored.

4. APPLICATIONS AND FUTURE WORK

This work has described Shimi’s ability to generate musical and ges-
tural responses to human speech input that attempts to replicate the
emotion conveyed in a spoken phrase. These short form interactions
provide insight into how robots can express emotion and communi-
cate with music. A next step in communication will be seeing how
accurately Shimi can imitate a phrase, both vocally and, more im-
portantly, emotionally. We are also interested in expanding Shimi’s
musical phrases to include more languages and improvisers of dif-
ferent origins.

Shimi originated as a musically-intelligent speaker dock, and the
work presented here can extend to more musical applications as well.
One possibility is as a nuanced music recommendation system. In
this system a human would ask Shimi if they would like a song, and
Shimi would reply with a vocalization and gesture demonstrating an
opinion of that song. This way of expressing opinion can be much
more detailed than the thumbs up/thumbs down of many music ser-
vice providers today. Another engaging musical experience furthers
a previous goal of the Shimi project: to enjoy one’s music alongside
a human listener. Now that Shimi has a voice, the ability to dance
along with one’s music can incorporate singing along as well. This
could also lead to Shimi as a robotic performer, listening to human
performers and improvising alongside as a vocalist.

5. ACKNOWLEDGMENTS

Thanks to Matthew Kaufer and Yashveer Singh.

6. REFERENCES

[1] Guy Hoffman, “Dumb robots, smart phones: A case study of
music listening companionship,” in2012 IEEE RO-MAN: The
21st IEEE International Symposium on Robot and Human In-
teractive Communication, Paris, sep 2012, pp. 358–363, IEEE

[2] Charles Darwin and Phillip Prodger, The expression of the
emotions in man and animals, Oxford University Press, USA,
1998.

[3] Mason Bretan, Guy Hoffman, and Gil Weinberg, “Emotionally
expressive dynamic physical behaviors in robots,”International
Journal of Human-Computer Studies, vol. 78, pp. 1–16,jun
2015

[4] Heather Knight, “Expressive motion for
low degree-of-freedom robots,” Jul 2018.
https://pdfs.semanticscholar.org/69e2/dc8eab578131a536396a
812a2306b6796477.pdf

[5] Cynthia Breazeal and Lijin Aryananda, “Recog-
nition of Affective Communicative Intent
in Robot-Directed Speech,” p. 20, 2002.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471
.7147rep=rep1type=pdf

[6] Patrik N. Juslin and John A. Sloboda, “15 - music and emo-
tion,” in The Psychology of Music (Third Edition), Diana
Deutsch, Ed., pp. 583 – 645. Academic Press, third edition,
2013

[7] Beau Sievers, Larry Polansky, Michael Casey, and Thalia
Wheatley, “Music and movement share a dynamic structure
that supports universal expressions of emotion,”Proceedings of
the National Academy of Sciences, vol. 110, no. 1, pp. 70–75,
jan 2013

[8] Petri Toiviainen, Geoff Luck, and Marc R Thompson, “Embod-
ied Meter: Hierarchical Eigenmodes in Music-Induced Move-
ment,”Music Perception: An Interdisciplinary Journal, vol.28,
no. 1, pp. 59–70, sep 2010.

[9] James A. Russell, “A circumplex model of affect,
”Journal of Personality and Social Psychology, 1980.
https://www.researchgate.net/publication/235361517_A
_Circumplex_Model_of_Affect

[10] Steven R Livingstone and Frank A Russo, “The Ry-
erson Audio-Visual Database of Emotional Speech and
Song(RAVDESS): A dynamic, multimodal set of facial and vo-
cal expressions in North American English, ”PLOS ONE, vol.
13,no. 5, pp. 1–35, 2018

[11] Steven Bird, Ewan Klein, and Edward Loper, Natural Lan-
guage Processing with Python, O’Reilly Media, Inc., 1st edi-
tion, 2009.

[12] Andrej Karpathy, “The Unreasonable Effectiveness of Recur-
rent Neural Networks,”Web Page, 2015

[13] Richard Savery and Gil Weinberg, "Shimon the Robot Film
Composer and DeepScore", “Proceedings of Computer Sim-
ulation of Musical Creativity, August 2018, Dublin, Ireland.
http://galapagos.ucd.ie/wiki/pub/OpenAccess/CSMC/Savery
.pdf

[14] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Diele-
man, Douglas Eck, Karen Simonyan, and Mohammad Norouzi,
“Neural Audio Synthesis of Musical Notes with WaveNet Au-
toencoders, ”CoRR, vol. abs/1704.0, 2017.

[15] David McNeill, How language began: Gesture and speech in
human evolution, Cambridge University Press, 2012.

[16] Birgitta Burger, Suvi Saarikallio, Geoff Luck, Marc R. Thomp-
son, and Petri Toiviainen, “Relationships Between Perceived
Emotions in Music and Music-induced Movement,”Music
Perception: An Interdisciplinary Journal, vol. 30, no. 5,
pp.517–533, June 2013.

105

106

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

A SCALABLE HAPTIC FLOOR DEDICATED TO LARGE IMMERSIVE SPACES

Nicolas Bouillot

Société des arts technologiques [SAT]∗

Montréal, Canada
nbouillot@sat.qc.ca

Michał Seta

Société des arts technologiques [SAT]
Montréal, Canada

mseta@sat.qc.ca

ABSTRACT

We present a haptic floor composed of tiles with independently con-
trollable vertices and designed to cover arbitrary large flat surfaces.
We describe the signal distribution architecture, based on SATIE,
our spatialization engine and SWITCHER, our low latency and mul-
tichannel streaming engine. The paper also provides a description
of several approaches of content authoring when such a floor is de-
ployed in an immersive space. These approaches emphasizes the
correlation among immersion modalities such as continuous local-
ization of sound from the speaker system to the floor and continuous
physical effect from the video projection to the floor.

1. HAPTIC FLOOR FOR LARGE IMMERSIVE SPACES

We question and experiment the extension of a large immersive space
with a haptic floor covering the entirety of the surface. Largely mo-
tivated by augmentation of artistic venues with audience, we are in-
terested in those with i) the ability to offer immersive listening for a
group of people, ii) visual immersion, and iii) floor space allowing
for a case-by-case configuration of audience position (sitting, stand-
ing, lying down) and along with configuration of performance space.

Not limited to the above characteristics, the haptic floor proto-
type we propose has a scalable design and a flexible authoring possi-
bility, targeting tight relation with the audiovisual effect in the venue.
Indeed, as demonstrated by the scientific literature, augmentation of
immersion with haptics could increase the perception of virtual en-
vironments by an audience, more specifically when combined with
immersive sounds and visuals. Vection1, for instance, when stim-
ulated by the actuators placed between the ground and the feet of
a sitting subject, is obtained in a shorter time and with more in-
tensity when the haptic feedback (constant frequency sinusoidal vi-
brations) is applied[1]. Similar results are obtained for a standing
posture, without any impact on the impression of presence[2]. Hap-
tic feedback can contribute to increased perceptive sensibility of an
individual[3, 4]. The above cited research, however concern experi-
ences involving individual users. From this point of view, developing
a floor simulating haptic feedback of walking on particular ground
textures[5], such as snow, offers an opportunity for a collective sen-
sory experience.

Unfortunately the above cited research does not apply directly
to our work. The devices employed in the previous research con-
sider pre-determined posture of the subject, particularly in the case
of walking. Other approaches and applications remain to be explored
that offer creators an immersive and flexible space where different
experiences can be quickly prototyped.

∗ Society for Art and Technology [SAT] is an artist center in Montreal spe-
cializing in dissemination of art made with new technologies with the focus
on immersive arts and experiences.

1Illusion of self-motion

As our primary source of inspiration, our immersive space called
the Satosphere (see figure 1) is a large dome-shaped audiovisual pro-
jection space offering the view of the horizon (floor to ceiling projec-
tion) and 360◦at the same time. Over 11 meters high and 18 meters in
diameter, the Satosphere is equipped with 157 loudspeakers grouped
into 31 adjacent clusters on the dome’s surface, and with 8 video
projectors that distribute the video image across the dome’s surface.
Other venues around the world provide a listening environment for
spatial audio, where our research could apply. The CUBE [6] of the
Virginia Tech is an immersive space dedicated to sound. It offers
a significant spatial resolution with its 124 audio channels and pro-
vides for audio spatialization techniques, including movement cap-
ture. The ALLOSPHERE [7] offers 360◦vertical and horizontal im-
mersion. The lack of a floor is compensated by a bridge, allowing
to go to the center and experiment with different data visualization
strategies and audio-visual immersive compositions. Unfortunately,
this constraints the viewer to assume standing position and move
only around the narrow bridge. Another example, in France, ESPACE
DE PROJECTION at IRCAM provides rotating panels to offer several
acoustic profiles[8]. It hosts 75 speakers arranged in a cube. Finally,
the team at the Center for Computer Research in Music and Acous-
tics at Stanford University has developed the GRAIL[9], a system
of 32 speakers and 8 subwoofers that can be deployed in different
locations, such as outdoors, concert halls or studios. There are other
venues equipped with speaker setups that accommodate listening to
spatial music, a non-exhaustive list provides[10]: the IEM-CUBE
and MUMUTH in Graz, the MULIT in Bergen, the MOTION LAB
in Oslo, the SPACE in Pesaro and the DIGITAL MEDIA CENTER
THEATRE in Bâton-Rouge.

Our work on the haptic floor is, to our knowledge, unique in
treating the question of creation and reproduction of content for hap-
tic feedback in the context of immersive space for groups of partici-
pants in non-specific postures (see figure 1). In this case, the device
is designed to cover arbitrarily large surfaces, its hexagonal shape
(see figure 2) allows for easy assembly and fitting into large, flat sur-
faces, such as the Satosphere’s floor.

In this paper, we present the prototype of a floor built to pro-
vide haptic feedback during experiences designed to posture agnostic
content created for large immersive spaces (Figure 1). Our prototype
represents one segment of a device that could cover arbitrarily large
floor surfaces and is driven by audio signals delivered via local net-
work. It is integrated into our spatialization software, SATIE[11],
therefore it is tightly coupled with the immersive content. This is
illustrated by our demonstration video showing our floor integrated
in an immersive space2.

2See our demonstration video (accessed Dec. 2018):
https://vimeo.com/290925507

107

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

(a) The audience can freely move around the space and interact with telep-
resent space or simply sit around the center (Miscible by Maotik and
Manuel Chantre

(b) The audience is lying down and fills most of the floor space (Plateaux
by Vincent Brault, Owen Kirby and Vincent Martin)

Figure 1: Examples of scenographies in our immersive space, illustrating the need for a haptic floor to be posture-agnostic, group-friendly and
correlated with audiovisual displays.

2. OUR HAPTIC FLOOR PROTOTYPE

As seen in Figure 2, the hardware prototype is only one portion of
the projected floor, consisting of a single hexagon divided in six tri-
angles forming a mesh. An actuator is placed at each of the 7 vertices
and is controlled individually with an audio signal ranging between
0 and 100 Hz for a height amplitude of 38.1 mm. The shape has
been designed to easily scale up to the surface of larger space by
multiplying the hexagonal components.

The signal distribution pipeline (Figure 3) consists of an audio
renderer (a computer with ubuntu Linux 18.04) equipped with an
appropriate audio I/O and a set of Raspberry Pis running Raspbian.
Each RasPi is required to control three actuators (the 250i model
from our partner D-Box3). The audio renderer is based on a Super-
Collider script combining specific signal processing and our spatial-
ization engine SATIE described in more detail in section 3.1.

The audio renderer runs SATIE4, our spatialization engine that
provides for use of multiple spatializers in parallel[12]. In this case,
one rendering is performed for entire haptic floor, along with the
existing 8-speaker audio display (or the dome). The coupling of the
haptic floor and speaker system allows for keeping some coherence
in experience design, thanks to an internal per-rendering handling of
the same OSC [13] message.

The audio renderer can handle a variety of inputs. Direct audio
signals correspond to sound objects in SATIE that can be spatial-
ized. OSC messages are interpreted in two possible ways, one with
the SATIE protocols that allows for sound object control (location,
spread, etc) and the other by controlling position of each actuator
independently.

Audio spatialization is handled via an audio interface wired to
the speaker setup. The haptic floor is handled via LAN connecting
Raspberry Pi devices, each talking to a custom USB audio interface

3D-Box is a company which designs, manufactures, and markets actua-
tors intended mainly for the entertainment and industrial simulation markets.
https://www.d-box.com/en, accessed Dec. 2018

4https://gitlab.com/sat-metalab/satie, accessed Dec.
2018

which controls up to 3 actuators (where one actuator affects one ver-
tex of the floor’s “mesh”). The latter allows for a flexible increase
in number of floor subparts, adding just more Raspberries in the net-
work.

On the software side, SATIE handles all input cases (audio and
control signals) and performs spatialization for both the physical
speaker system and the haptic floor. The audio signals destined for
the traditional speakers are handled directly with the audio interface.
The audio signals that control the haptic floor need to be sent over
network to the Raspberry Pis. Low latency streaming from the au-
dio renderer to the Raspberries is achieved using SWITCHER5, our
multichannel and low latency streaming engine. The transmission
of audio streams from SATIE to switcher is done through the jack
server.

3. AUTHORING FOR HAPTIC FLOOR

The challenge lies in designing haptic content that is appropriate to
the type of immersive experience, and more particularly when sound
and graphics are involved. Here follow some use cases where haptic
floor control can be correlated with immersive content:

• locate the sound in the floor in order to continue a sound tra-
jectory

• propagate waves from a sea displayed on screen to mechani-
cal waves on the floor

• ripple effect as well as delivering of different types of haptic
content to different areas of the floor at the same time, corre-
sponding to drops falling from the sky

• control vibration of the floor according to the sound played

3.1. Audio spatializer based rendering

SATIE [11, 14], written in the SuperCollider language [15], provides
rendering of virtual audio scenes spatialized over many audio chan-

5https://gitlab.com/sat-metalab/switcher, accessed
Dec. 2018

108

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

(a) Concept drawing of one subpart of a larger haptic floor. 7 actu-
ators (two of them, the black cylinders, can be seen on the left) are
controlling each vertices independently.

(b) Our haptic floor prototype with a cube shaped 8 speaker system. We use the SATIE dual
rendering feature in order to provide continuous spatialization among the speaker system and
the haptic floor.

Figure 2: Hardware design of a floor subpart. The current prototype is only one section of the target haptic floor and.

Haptic floor

(multichannel)
audio signal

audio renderer running
SATIE and switcher

low latency
audio streaming

8-speakers
audio display

OSC

Figure 3: Distribution pipeline. Our prototype, in addition to : use
three Raspberry Pis and three D-Box interfaces, each one controlling
three actuators.

nels. We were able to build upon our previous experience with near-
field/far-field audio rendering[12] and tackle the floor as another au-
dio display because the provided actuators transforms digital audio
signals to mechanical movement. This approach provides a few ben-
efits. First of all, the synchronization of audio signals, after compen-
sation for the delay between audio displays, is handled by SATIE and
does not require any other work. Secondly, haptic content creation
can be approached in parallel with audio creation and spatialization
design.

We have experimented with different approaches to spatial au-
dio such as VBAP, ambisonics and a crude equal power panning. All
types of audio spatialization work well and the choice of approach
will depend on the desired effect and audio content. We also applied
an envelope tracker filtering in order to convert audio signals into sig-
nals compatible with our actuators that respond well to frequencies
between 0 and 100 Hz.

Moreover, since SATIE can handle many types of control inputs
(audio, USB, network), it can still assist in delivering synchronized
audible and haptic audio signals. Additionally we can take advantage
of SuperCollider’s powerful synthesis and DSP capacity to experi-
ment and design audio signals suitable for the haptic floor with a lot
of flexibility. Finally, the spatialization of audible audio signals and
audio delivered to the haptic floor can be completely independent,
which also offers the necessary creative freedom.

As one of our first experiments, in collaboration with D. An-
drew Stewart6, we explored the use of the floor prototype driven by
8 discreet channels of analog audio from an electronic performance
instrument based on Omnisphere VST plugin, controlled by Karlax
controller. The audio channels were spatialized as 8 independent
sound objects on the octophonic, cube-shaped speaker layout, each
acting on the floor depending on the spatialization parameters. We
have experimented with OSC messages sent from Karlax directly
to SATIE as well as via our interactive creation tool for immersive
spaces, EIS[16]. Through this short experimentation with live per-
formance, we found that using the sound of the instrument to drive

6http://dandrewstewart.ca/, accessed Dec. 2018

109

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

(a) Live control from Ableton (concept and development from Mourad Bennacer). The
orientation from the device (left) is applied to the floor (right).

(b) Mapping with a 3D Mesh: the blue mesh (upper left) is a
virtual representation of the haptic floor and part of a larger
mesh. Here the hand detection with Leap motion (bottom)
allows for touching the floor (Concept and development from
Sébastien Gravel and Vincent Brault).

Figure 4: Authoring content for the haptic floor with other software (Ableton and Touch Designer) using an OSC protocol allowing real-time
control of each actuator independently.

the movement and the texture of the floor creates a deep sense of
coherence. In fact, placing performers on the floor can have its ben-
efits.

3.2. Other approaches

The other approaches we describe here are based on the control of
each actuator independently from Open Sound Control[17]. Mes-
sages from external software are composed of several float values
ranging from -1 to 1, each one being the desired height of the corre-
sponding actuator. Along with our audio spatializer based rendering,
they are illustrated in our demonstration video2.

The first one, illustrated in Figure 4a, is a live control from Able-
ton. The basic protocol has been implemented in Ableton where
Ableton specific creations can be used in order to create a tight rela-
tion between the sound and/or an Ableton controller with the haptic
floor. This allows, for instance, to program automated floor vibra-
tions synchronized with the audio track. In our demonstration video,
a simple mapping from the orientation of an accelerometer-equipped
device with the orientation of the haptic floor has been implemented.

The second approach is a mapping of the floor with a 3D Mesh
(Figure 4b) in a 3D software. Accordingly, any physics or interac-
tion applied in the virtual environment becomes a source of vibration
possibly applied to the floor. This provides the potential for strong
correlation of the visual with the floor. With this approach for in-
stance, sea waves from a simulation can be displayed from the screen
with a consistent continuity in the floor. In our demonstration video,
a hand tracking system, the Leap Motion, is used in order to move a
virtual hill along a planar mesh.

4. CONCLUSION & NEXT STEPS

This paper has presented our experience with distribution architec-
ture of a scalable haptic floor targeting posture-agnostic multi-person
immersive spaces. The floor is scalable in space thanks to its tri-
angular shape allowing for unlimited tiling. Its signal distribution

scalability is ensured using low latency multichannel streaming to
Raspberry Pis, each one dedicated to groups of three actuators.

Surprisingly, experiments with our prototype have pointed us to-
wards an uncharted territory of haptic feedback, both from techno-
logical and creative points of view. This led us to describe in this
paper a set of methods for authoring content for floor-involved im-
mersive content: i) using the floor as an additional “audio display”
driven by audio and/or using multi-speakers spatialization algorithm
and ii) producing content from other software, including 3D graphic
engine, with the help of a basic OSC protocol providing independent
control of each actuator height.

Our next steps will be targeting experiments with a larger scale
floor covering our dome with approximately 200 actuators. Along
with physical design and construction methods, we will go forward
with improvement of authoring methods for group of users and vali-
dation of the architecture scalability.

5. ACKNOWLEDGEMENTS

This project would not be possible without the support of the Min-
istère de l’Économie et de l’Innovation du Québec and D-Box. We
also wish to thank the following people who were involved in making
and documenting this prototype: Sebastien Gravel, Vincent Brault,
Mourad Bennacer, Generique Design, Louis-Philippe St-Arnault, Luc
Martinez, Jean-François Menard, Michel Paquette, Jérémie Soria
and Giacomo Ferron. We thank Sébastien Roy for the pictures in
Figures 1a and 1b.

6. REFERENCES

[1] I. Farkhatdinov, N. Ouarti, and V. Hayward, “Vibrotactile in-
puts to the feet can modulate vection,” in 2013 World Haptics
Conference (WHC), April 2013, pp. 677–681.

[2] Ernst Kruijff, Alexander Marquardt, Christina Trepkowski,
Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and
Bernhard E. Riecke, “On your feet!: Enhancing vection in

110

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

leaning-based interfaces through multisensory stimuli,” in Pro-
ceedings of the 2016 Symposium on Spatial User Interaction,
New York, NY, USA, 2016, SUI ’16, pp. 149–158, ACM.

[3] Alexandre Gardé, Pierre-Majorique Léger, Sylvain Sénécal,
Marc Fredette, Elise Labonté-Lemoyne, François Courte-
manche, and Jean-François Ménard, “The effects of a vibro-
kinetic multi-sensory experience in passive seated vehicular
movement in a virtual reality context,” in Extended Abstracts
of the 2018 CHI Conference on Human Factors in Comput-
ing Systems, New York, NY, USA, 2018, CHI EA ’18, pp.
LBW091:1–LBW091:6, ACM.

[4] J. Plouzeau, J. Dorado, D. Paillot, and F. Merienne, “Effect of
footstep vibrations and proprioceptive vibrations used with an
innovative navigation method,” in 2017 IEEE Symposium on
3D User Interfaces (3DUI), March 2017, pp. 241–242.

[5] Yon Visell, Bruno L. Giordano, Guillaume Millet, and
Jeremy R. Cooperstock, “Vibration influences haptic percep-
tion of surface compliance during walking,” PLOS ONE, vol.
6, no. 3, pp. 1–11, 03 2011.

[6] Eric Lyon, Terence Caulkins, Denis Blount, Ivica Ico Bukvic,
Charles Nichols, Michael Roan, and Tanner Upthegrove,
“Genesis of the cube: The design and deployment of an hdla-
based performance and research facility,” Computer Music
Journal, vol. 40, no. 4, pp. 62–78, 2016.

[7] A. Cabrera, J. Kuchera-Morin, and C. Roads, “The evolution
of spatial audio in the allosphere,” Computer Music Journal,
vol. 40, no. 4, pp. 47–61, Dec 2016.

[8] T. Carpentier, N. Barrett, R. Gottfried, and M. Noisternig,
“Holophonic sound in ircam’s concert hall: Technological and
aesthetic practices,” Computer Music Journal, vol. 40, no. 4,
pp. 14–34, Dec 2016.

[9] Fernando Lopez-Lezcano, “Searching for the grail,” Computer
Music Journal, vol. 40, no. 4, pp. 91–103, 2016.

[10] N. Barrett, “A musical journey towards permanent high-density

loudspeaker arrays,” Computer Music Journal, vol. 40, no. 4,
pp. 35–46, Dec 2016.

[11] Zack Settel, Nicolas Bouillot, and Michal Seta, “Volumet-
ric approach to sound design and composition using SATIE:
a high-density 3D audio scene rendering environment for large
multi-channel loudspeaker configurations,” in 15th Biennial
Symposium on Arts and Technology, Ammerman Center for
Arts and Technology at Connecticut College, New London, feb
2016, 8 pages.

[12] Zack Settel, Peter Otto, Michal Seta, and Nicolas Bouillot,
“Dual rendering of virtual audio scenes for far-field surround
multi-channel and near-field binaural audio displays,” in 16th
Biennial Symposium on Arts and Technology, Ammerman Cen-
ter for Arts and Technology at Connecticut College, New Lon-
don, February 2018, 5 pages.

[13] M. Wright, “Open sound control 1.0 specification,” Published
by the Center For New Music and Audio Technology (CN-
MAT), UC Berkeley, 2002.

[14] Nicolas Bouillot, Zack Settel, and Michal Seta, “SATIE: a live
and scalable 3d audio scene rendering environment for large
multi-channel loudspeaker configurations,” in New Interfaces
for Musical Expression (NIME’17), Copenhagen, Denmark,
2017.

[15] James McCartney, “Rethinking the computer music language:
SuperCollider,” Computer Music Journal, , no. 26, pp. 61–68,
2002.

[16] François U. Brien, Emmanuel Durand, Jérémie Soria, Michał
Seta, and Nicolas Bouillot, “In situ editing (EiS) for full-
domes,” in 23rd ACM Symposium on Virtual Reality Software
and Technology (VRST), Gothenburg, Sweden, nov 2017.

[17] Matthew Wright, Adrian Freed, et al., “Open soundcontrol: A
new protocol for communicating with sound synthesizers.,” in
ICMC, 1997.

111

112

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

MIDIZAP: CONTROLLING MULTIMEDIA APPLICATIONS WITH MIDI

Albert Gräf

IKM, Music-Informatics
Johannes Gutenberg University (JGU) Mainz, Germany

aggraef@gmail.com

ABSTRACT
The paper introduces midizap, a new Linux utility to interface MIDI
controllers with multimedia applications such as audio and video
editors or computer music programs. midizap is a heavily mod-
ified version of Eric Messick’s ShuttlePRO program. Its purpose
is to translate MIDI controller input to commands (either MIDI or
X11 keyboard and mouse events) which the application understands.
Configurations are simple text files, no programming skills are re-
quired. There’s also an Emacs mode to help creating and testing
these configurations. Jack session and MIDI patchbay functional-
ity is available as well, making it easy to manage separate midizap
instances for different controllers and applications.

1. INTRODUCTION

These days, MIDI controllers are typically USB class devices which
can be connected to a Linux computer without requiring any spe-
cial hardware or drivers. Also, they’re often much cheaper than spe-
cialized gear for specific uses such as photo and video editing. So
wouldn’t it be nice if we could just use whatever MIDI controller
we have for controlling our favorite multimedia applications? The
problem is, while DAW and DJ programs typically have extensive
and customizable MIDI interfaces built into them, other applications
may not offer any MIDI support at all, or only recognize a particular
set of MIDI messages. Thus we often have to translate the MIDI in-
put from the controller to whatever keyboard or MIDI commands the
application understands, and we’d like to be able to do this without
having to modify the target application.

I was surprised to find that on Linux apparently there’s no sim-
ple and practical solution for this problem yet. There is the Ctlra and
Mappa software from the OpenAV project [1], but it is still under
development and only readily supports a handful of devices and ap-
plications right now, which means that adding a new controller or ap-
plication likely requires a fair amount of C programming. A popular
commercial program in this realm is the Bome MIDI translator [2],
but it’s only available for Mac and Windows.

Another interesting utility is Eric Messick’s ShuttlePRO pro-
gram [3] which targets the Contour Design “Shuttle” devices [4]
designed for video editing. These devices don’t speak MIDI, but
Messick’s program is free (GPL) software, works on Linux, and in-
cludes the necessary code to recognize applications by their window
name and translate device input to X11 keyboard and mouse events.
Adding Jack MIDI support to it seemed to be a piece of cake, so
that’s what I set out to do. The first result of this side project was
a fork of the ShuttlePRO program which improves the original pro-
gram in some ways and adds Jack MIDI output [5]. The next obvious
step then was to replace the Shuttle input with Jack MIDI input, giv-
ing birth to the midizap program as it stands now [6].

In the following sections, we discuss midizap’s most important
features and some typical uses. For lack of space, this description

is necessarily somewhat terse and incomplete, but should give the
interested reader an idea of what capabilities the program offers and
when you might want to use it. More details can be found on the
Github project page or in midizap’s extensive manual.

2. TRANSLATION SYNTAX

As with the ShuttlePRO program, midizap’s configuration is a sim-
ple text file which is divided into sections for different applications.
A sample configuration is provided in /etc/midizaprc, you can copy
this to create a .midizaprc file in your home directory and edit it
there as needed. You can also run midizap with any other configu-
ration file by specifying the name of the file on the command line.
A collection of configurations for various purposes (mostly Mackie
emulations for different devices) can be found in the examples folder
in the sources.

The configuration language is line-oriented, each line is either a
section header or a translation rule. The hash sign # at the beginning
of a line or after whitespace starts a comment. Each section starts
with a header of the following form, specifying a section name and
a regular expression pattern:

[name] pattern
The section name is only used in diagnostic messages and can

essentially be chosen freely. It is the regular expression pattern which
actually determines whether the translations in the section are active
at any given time. To these ends, midizap matches the pattern against
the WM_CLASS and WM_NAME properties of the currently selected X ap-
plication window. The latter is what is actually visible in the window
title, while the former is an internal property which identifies the type
of application window.1 The regular expression pattern can also be
omitted, in which case the translations will always be active. Such
“default” sections are to be placed near the end of the file, and their
translation rules will be used as fallback translations when none of
the other translation sections in the configuration match the selected
application window.

The section header is followed by a list of (zero or more) trans-
lation rules describing the translations which should be active for
the given application. These just list MIDI messages and their trans-
lations in a human-readable symbolic format. Each translation rule
must be on a line by itself and consists of a single left-hand side
symbol denoting the MIDI message to be translated, followed by the
right-hand side which is a list of zero or more symbols specifying the
MIDI messages and/or keyboard and mouse commands to be output.
It thus takes the following general form:

input output1 output2 . . .

1You can find out about the WM_CLASS and WM_NAME properties of a win-
dow with the xprop program, or invoke midizap with the -dr debugging op-
tion to have it print this information. midizap will try to match both by de-
fault, but you can tell it explicitly to only match class or title by prefixing the
pattern with the CLASS or TITLE token, respectively.

113

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Here is a simple example:

[Terminal] CLASS ^(.*-terminal.*|konsole|xterm)$
F5 XK_Up
F#5 "pwd"
G5 XK_Down
G#5 "ls"
A5 XK_Return

This defines a list of translations for some common types of ter-
minal windows, as specified in the section header on the first line.
The input messages are listed on the left and the corresponding key-
board output on the right. Here we map a few notes in the middle
octave to the cursor up and down and return keys, as well as some
frequently used shell commands. The bindings above will let you
operate the shell from your MIDI keyboard when the keyboard fo-
cus is on a terminal window. To make this work, you’ll first have
to connect your MIDI controller to midizap’s MIDI input port, e.g.,
using a Jack MIDI patchbay program like QjackCtl. You then click
on the desired terminal window and start entering notes on the MIDI
keyboard to have the corresponding commands sent to the selected
window.

It is important to note here that, like the ShuttlePRO program,
midizap will only ever send keyboard and mouse commands to the
currently selected window or, more precisely, the window which has
the keyboard focus. The selected window also determines which sec-
tion of translation rules is currently active. Thus you have to make
sure that you first click on the right application window before you
can go on sending keyboard and mouse commands to it. (In con-
trast, MIDI commands can be sent to any application as long as it is
connected to midizap’s MIDI output, see below.)

Let’s now have a closer look at the syntax of translation rules.
The precise syntax is a bit intricate, so we have to refer the reader
to the EBNF grammar in Appendix A for details. But we will try
to at least sketch out the most important elements in what follows.
The first token of a translation rule (the left-hand side) denotes the
MIDI message to be translated, which is followed by an output se-
quence (the right-hand side) consisting of MIDI messages or X key
and mouse events. There can be any number of these, and you can
freely mix MIDI messages and X events on the output side.

The XK symbols indicate X key codes and must be denoted ex-
actly as they appear in the /usr/include/X11/keysymdef.h file. A
string enclosed in double quotes is simply a shorthand for a sequence
of X key events.2 Besides the key codes from the header file, there
are also some special tokens to denote mouse button and scroll wheel
events (XK_Button_1, XK_Scroll_Up, etc.).

MIDI note messages are denoted in a symbolic format that will
be familiar to musicians: a note letter (A to G) is followed by an
optional accidental (# or b) and an octave number. By default, C5
denotes middle C, but the octave numbering can be changed with a
directive in the configuration file. Other kinds of (non-system) MIDI
messages are denoted using short mnemonics: KP:note (aftertouch
a.k.a. key pressure for the given note); CCn (control change for the
given controller number); PCn (program change for the given pro-
gram number); CP (channel pressure); and PB (pitch bend). These
can all be followed by a dash and the MIDI channel (the default
MIDI channel being 1).

In the example above, all note messages are interpreted as key
events, having an “on” and “off” status: the key goes “down” when

2In the current implementation, this only works with printable ASCII
characters which can be mapped 1-1 to X11 key codes. Otherwise explicit
key codes must be used.

a note-on message is received, and goes “up” again when the corre-
sponding note-off message (or a note-on with zero velocity) arrives.
We also call this a key translation. These work in the same way as in
the ShuttlePRO program; e.g., in the above example, the XK_Up key
is pressed when the note-on for F5 is received, and won’t be released
until the corresponding note-off is detected. If there’s more than one
key in the output sequence, as with the double-quoted strings in the
example, each key will normally be released before the next one is
pressed, and only the last key in the sequence will be held until the
note-off is received. There are also some special suffixes for key
specifications (/D, /U, /H) which indicate keys to be held and re-
leased explicitly or at the end of the sequence; we refer the reader to
the documentation for details.

As another, more practical example, here are some bindings for
the Kdenlive and Shotcut video editors mapping some keys and the
big jog wheel on a Mackie-compatible device to some common video
editing functions:

[Kdenlive/Shotcut] CLASS ^(shotcut|kdenlive)$

playback controls
A#7 XK_space # Play/Pause
A7 "K" # Stop
G7 "J" # Rewind
G#7 "L" # Forward

replace/drop (sets in and out points)
D#7 "I" # Set In
E7 "O" # Set Out

left/right cursor movement
D8 XK_Home # Beginning
D#8 XK_End # End

the jog wheel moves left/right by single frames
CC60< XK_Left # Frame reverse
CC60> XK_Right # Frame forward

The last two rules for the jog wheel show an example of a data
translation which translates incremental changes in the extra data
byte of a message to corresponding X key presses. For ordinary
(absolute) control changes these take the form CCn- and CCn+, where
n denotes the controller number, and the - or + flag the direction of
the change. However, here we employed the special < and > suffixes
which indicate a relative change in “sign-bit” encoding [7], which is
commonly used with encoders (knobs or wheels which can be turned
endlessly in either direction). In either case, the up or down output
sequence is emitted for each unit change in the parameter. You can
also scale these responses by adding suitable step sizes on the left-
hand or right-hand side of the translation rules; again we refer the
reader to the documentation for details.

The rules we’ve seen so far all translate MIDI to X key events.
midizap can also work as a MIDI mapper which translates MIDI in-
put to MIDI output. This is useful if the target application supports
MIDI, but needs the controller input to be remapped to MIDI com-
mands it understands. The following example lets you play a little
drumkit on a General MIDI (GM) synthesizer like Fluidsynth, by
remapping some of the white keys in the 4th octave to a few drum
notes on MIDI channel 10 (the GM drum channel). We also threw in
a rule to remap the modulation wheel (CC1) to the volume controller
on MIDI channel 10 (CC7-10).3

3The notation CC1= being used here provides a shorthand for two data

114

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[MIDI]
C4 C3-10
D4 C#3-10
E4 D3-10
F4 D#3-10
CC1= CC7-10

Note that we placed the MIDI translations into a special [MIDI]
section here. This is a default section reserved for applications ac-
cepting MIDI input. To make this work, you will have to invoke the
midizap program with the -o option. This enables the [MIDI] sec-
tion and equips midizap with an additional MIDI output port which
can be connected to the target application (like Fluidsynth in this ex-
ample). As long as your translations only output MIDI messages,
you then don’t have to worry about keyboard focus, as the applica-
tion will receive all data from midizap through the MIDI connection
(in fact the application does not need to have any X window at all in
this case).

The above example does a simple 1-1 mapping of MIDI events,
but in general the output sequence may consist of as many MIDI
messages of as many different types as needed, and you can also mix
MIDI and X keyboard and mouse output if you want. An interest-
ing use case for MIDI translations is Mackie emulation which we’ll
discuss in Section 4.

3. GETTING STARTED

Before we explore some of midizap’s more advanced features, let
us quickly go over the mundane technicalities of using midizap.4

midizap is a command line application, so you typically run it from
the terminal. However, it is also possible to launch it from your Jack
session manager (see Section 5 below) or from your desktop envi-
ronment’s startup files once you’ve set up everything to your liking.
In addition, for Emacs users there’s a midizap mode which makes it
very easy to edit and test your midizap configurations. It does syntax
highlighting, auto-completion of keywords, and also lets you launch
midizap in an Emacs buffer; please check the midizap-mode.el file
in the sources for details.

midizap uses Jack for its MIDI input and output, so you’ll need
to be familiar with Jack. We recommend using a Jack front-end like
QjackCtl which makes setting up Jack and doing MIDI connections
much easier. You’ll also need an ALSA-Jack MIDI bridge in order
to expose the ALSA sequencer ports as Jack MIDI ports, so that the
MIDI inputs and outputs of your controller and other non-Jack MIDI
applications can be connected to midizap. Jack’s built-in bridge will
work for this purpose (in the QjackCtl setup, select seq as the MIDI
driver), or you can use Nedko Arnaudov’s a2jmidid utility [8]. The
latter is easier to use with Jack2, and will work with Jack1 as well.

Running just midizap without any arguments launches midizap
with the default configuration and a single Jack MIDI input port
which you’ll have to connect to your MIDI controller. To utilize
MIDI output, run midizap -o; as already mentioned, this equips
midizap with an additional Jack MIDI output port to be connected to
the MIDI application you wish to control. You can also run midizap
with any other configuration file by simply specifying the name of
the file on the command line. There are a number of other options
and configuration file directives which let you set the Jack client

translation rules CC1- and CC1+ with the same right-hand side CC7-10.
4We don’t discuss installation here, which is very easy and, besides the X

libraries, only needs very few dependencies which should be readily available
on all Linux distributions; details can be found in the README file.

name, number of input and output ports and the desired MIDI con-
nections; see Section 5.

Moreover, midizap offers a fair amount of debugging options
which will be very helpful when you start developing your own con-
figurations. A good set of options to start with is -drkm; r prints
the class names and titles of selected windows which is useful to de-
termine which regular expressions to use in the section headers; k
prints out recognized translations so that you can check that midizap
is actually picking the right translation rules for some given MIDI
input; and m activates midizap’s built-in MIDI monitor which prints
out recognizable MIDI input in the same syntax that’s used in the
configuration file, which makes it easy to figure out which MIDI
messages you may want to create translations for.

The default configuration is really just an example, to help you
get started. You can either edit that file or create your own config-
uration. To start from a clean slate, create an empty file in a text
editor, say myconfig.midizaprc, and invoke midizap on it. The file
will be reloaded whenever you save it, so you can just keep on adding
translation sections and rules and try them out immediately, without
having to restart the program. If you’re an Emacs user, you will find
midizap’s Emacs mode most convenient to do all this.

Let’s walk through a simple example to show how this works.
We’ll use the Shotcut video editor (https://www.shotcut.org/)
for illustration, so let’s assume that you’ve already launched Shotcut
and loaded a video file in it. Next, make sure that Jack is running,
create the myconfig.midizaprc file, run midizap -drkm myconfig
.midizaprc, and connect your controller to midizap’s MIDI input.
With the Shotcut window selected, wiggle one of the controls on
your MIDI gear; I’ll take the modulation wheel as an example. In
midizap’s output you should now see something like:

Loading configuration: myconfig.midizaprc
[0] CC1-1 value = 40
no translation found for Untitled - Shotcut
(class shotcut)

This tells you the class name (shotcut) of the application win-
dow, as well as the name of the incoming MIDI message (CC1-1,
which can also be abbreviated as CC1 in the configuration, as 1 is
the default MIDI channel). Having identified the application and
the MIDI message we’d like to translate, we can now edit our con-
figuration in the myconfig.midizaprc file accordingly. Let’s add the
following section header and translations, and save the file:

[Shotcut] CLASS ^shotcut$
CC1- XK_Left
CC1+ XK_Right

midizap should automatically reload the file. Moving the modu-
lation wheel again (with the Shotcut window still selected) will now
change the playback position in Shotcut, while the translations we
just added are printed by midizap.

4. ADVANCED USES

One particularly interesting use case for MIDI translations is the em-
ulation of Mackie controllers. The Mackie control protocol (MCP)
has become a de facto standard for DAW programs, because it allows
the various track parameters to be mapped without requiring any
manual setup.5 Also, many Mackie-compatible devices offer feed-

5Although MCP is widely used, there doesn’t seem to be a publicly ac-
cessible specification of the protocol anywhere. A partial description can be
found at http://www.jjlee.com/qlab/MackieControlMIDIMap.pdf.

115

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

back, i.e., the ability to display current parameter values and other
kinds of status information using LEDs, motor faders, scribble strips
and the like, which makes them very convenient to use.

Some MIDI controllers have a built-in MCP mode, but many
don’t. Thus it is tempting to employ midizap to emulate this mode.
Even if a device already offers MCP, it may be lacking some features;
this is true especially for some of the cheaper and/or smaller devices
like the Behringer X-Touch Mini. In such cases midizap may be used
to beef up the device’s capabilities and/or modify its bindings so that
they better suit your workflow.

Emulating MCP usually requires remapping some or all of the
MIDI messages of the device, on both input and output (if the de-
vice offers some feedback capabilities). Especially the feedback part
often poses some challenges. The purpose of this section is to dive
into some of midizap’s more advanced features catering to these use
cases, using MCP emulation as a running example. Of course, these
features may also be helpful in other situations calling for compli-
cated translations.

4.1. Shift State

One issue we often face right away when designing a Mackie emu-
lation is the number of available controls. For instance, your device
might only provide you with 8 faders which must then be used to
emulate both the volume and the panning controls of a Mackie con-
troller. Or it may not have enough buttons for all the special MCP
functions that you need. In such cases it is useful to designate a spe-
cial shift key on the device which lets you switch between different
functions of the available controls.

midizap provides a special SHIFT token for this purpose which
can be used anywhere on the right-hand side of a translation. This
token doesn’t produce any output, it merely toggles an internal bit
indicating the current shift status. This is often used in a key transla-
tion as follows:

D8 SHIFT

Now, midizap will go into shift mode whenever the device gen-
erates the note D8 (which happens to be the shift key on an AKAI
APCmini device, cf. Fig. 1(8); but any available button-like control
will do). Pressing the D8 key again disables shift mode. Thus the
above rule implements a “CapsLock”-style shift button. You can
also do an ordinary shift button as follows:

D8 SHIFT RELEASE SHIFT

Here, the RELEASE token indicates an explicit release sequence
which will be invoked as soon as the D8 key is released (i.e., the
corresponding note-off is received). Hence pressing this key now
toggles on the shift status, and releasing it immediately toggles it off
again, just like an ordinary shift key on a computer keyboard.

Having defined the shift key, we can now use its current status in
other translations. The ^ character, when used as a prefix on the left-
hand side of a translation, tells midizap that the translation should
only be valid in shifted state. Thus we can now have two different
rules associated with each incoming MIDI message, depending on
the current shift status, effectively giving us about twice as many
controls as we had before.

Let’s take the AKAI APCmini as an example again. We can map
the first eight faders CC48 to CC55 on this device, cf. Fig. 1(4), to the
MCP encoders CC16 to CC23 in shifted mode as follows:6

6Note that the MCP encoders use relative values in sign-bit encoding; the

Figure 1: AKAI APCmini [9, p. 5].

^CC48= CC16~
^CC49= CC17~
...
^CC55= CC23~

The above translations will only be executed in shifted mode
(i.e., by holding the designated shift key while operating the faders).
In unshifted mode, the faders are still available to be mapped, e.g.,
to the MCP volume controls (PB-1 to PB-8). For instance:7

CC48= PB[128]-1
CC49= PB[128]-2
...
CC55= PB[128]-8

You will find very similar rules in the APCmini.midizaprc ex-
ample distributed with midizap. We’ve only sketched out the use
of a single shift key here, but midizap actually supports up to four
different shift states, which are denoted SHIFT1 to SHIFT4, with the
corresponding prefixes being 1^ to 4^. The SHIFT token and ^ prefix
we’ve seen above are in fact just shortcuts for SHIFT1 and 1^, re-
spectively. Thus midizap lets you have up to five different “layers”
of MIDI assignments (1 unshifted and 4 shifted states), which will
hopefully be enough for most purposes.

4.2. Feedback

Some MIDI controllers have motor faders, LEDs, etc., requiring
feedback from the application. To accommodate these, you can
use the -o2 option of midizap (or the JACK_PORTS 2 directive in
the midizaprc file, cf. Section 5), to create a second pair of MIDI
input and output ports. Use of this option also activates a second
MIDI default section in the midizaprc file, labeled [MIDI2], which

~ suffix on the output CC messages indicates that these messages should be
converted to that special encoding.

7The [128] suffix on the PB output messages denotes a scale factor here,
which scales up the 7 bit CC range to the 14 bit range of a pitch bend.

116

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

is used exclusively for translating MIDI input from the second in-
put port and sending the resulting MIDI output to the second output
port. The control output from the application is then connected to
midizap’s second input port, and midizap’s second output port to
the input of the controller, so that the feedback from the application
passes through midizap on its way back to the controller.

If all this has been set up properly, MIDI feedback will eliminate
most problems with controls being out of sync with the application.
midizap has some built-in logic to help with this. Specifically, the
current state of controls received from the host application via the
second input port will be recorded, so that subsequent MIDI output
for data translations on the first output port will use the proper values
for determining the required relative changes. We refer to this as
automatic feedback. Some devices may provide you with sign-bit
encoders which don’t need any kind of feedback for themselves. In
this case the automatic feedback will be all that’s needed to keep
controller and application in sync, and you don’t even have to write
any translation rules for the feedback; just enabling the second input
port and hooking it up to the application will be enough.

Other controls such as motor faders will require explicit transla-
tion rules for the feedback in the [MIDI2] section, however. In the
simplest case these may just be the inverse of the rules in the [MIDI]
section. For instance, if the APCmini had motor faders (it doesn’t),
we might use rules like the following to translate MCP feedback
about the fader positions back to the device:

PB[128]-1= CC48
PB[128]-2= CC49
...
PB[128]-8= CC55

Translations can also generate their own feedback. To these
ends, any MIDI message on the right-hand side of a translation can
be prefixed with the ! character (or the ^ character, which works in
an analogous fashion, but has some special logic for dealing with
shift keys built into it). This outputs the message as usual, but flips
the output ports, so that the message will go to port 2 in a forward
translation destined for port 1, and vice versa to port 1 in a feedback
translation (in the [MIDI2] section) destined for port 2. We call this
direct feedback. For instance, we can equip the D8 shift key from the
previous subsection with direct feedback as follows:

D8 SHIFT ^D8 RELEASE SHIFT ^D8

This might then light up the LED of the corresponding button
when pressing and turn it off again when releasing the key.

Please note that any kind of controller feedback which goes be-
yond direct feedback requires that the target application already pro-
vides some level of MIDI feedback on its own. midizap is not capa-
ble of reading the internal state of a non-MIDI application by some
other magical means.

4.3. Mod Translations

Most of the time, MIDI feedback uses just the standard kinds of
MIDI messages readily supported by midizap, such as note messages
which make buttons light up in different colors, or control change
messages which set the positions of motor faders. However, there
are some encodings of feedback messages which combine different
bits of information in a single message, making them difficult or
even impossible to translate using the simple kinds of rules we’ve
seen so far. midizap offers a special variation of data translations to
help decoding such messages. We call them mod translations (a.k.a.

“modulus” translations), because they involve operations with inte-
ger moduli which enable you to both calculate output from input val-
ues in a direct fashion, and modify the output messages themselves
along the way.

One important task, which we’ll use as an example below, is the
decoding of meter (RMS level) data in the Mackie protocol. There,
each meter value is represented as a channel pressure (CP) message
whose value consists of a mixer channel index 0..7 in the “high nib-
ble” (bits 4..6) and the corresponding meter value in the “low nibble”
(bits 0..3). We will show how to map these values to notes indicat-
ing buttons on the AKAI APCmini (Fig. 1). Mod translations aren’t
limited to this specific use case, however; similar rules will apply to
other kinds of “scrambled” MIDI data.

In its simplest form, a mod translation looks as follows (taking
channel pressure as an example):

CP[16] C0

In contrast to the simple kinds of data translations we’ve seen so
far, there’s no increment (+ or -) flag here, so the translation does
not indicate an incremental change of the input value. Instead, mod
translations always work with absolute values, and the step size on
the left-hand side is treated as a modulus to decompose the input
value into two separate quantities, quotient and remainder. Only the
latter becomes the value of the output message, while the former is
used as an offset to modify the output message.

In order to describe more precisely how this works, let’s assume
an input value v and a modulus k. We divide v by k, yielding the
quotient (offset) q = v div k and the remainder (value) r = v mod
k. E.g., with k = 16 and v = 21, you’ll get q = 1 and r = 5 (21
divided by 16 yields 1 with a remainder of 5). The calculated offset
q is then applied to the note itself, and the remainder r becomes the
velocity of that note. So in the example above the output would be
the note C#0 (C0 offset by 1) with a velocity of 5. On the APCmini,
this message will light up the second button in the bottom row of the
8x8 grid in yellow.

Mod translations are midizap’s swiss army knife for dealing with
complicated translations. There are also some special elements in the
MIDI syntax which can be used in mod translations to make them
even more flexible:

• The empty modulus bracket, denoted [] on the left-hand side
of a mod translation, indicates a default modulus large enough
(16384 for PB, 128 for other messages) so that the offset q
always becomes zero and the translation passes on the entire
input value as is.

• The transposition flag, denoted with the ’ (apostrophe) suffix
on an output message, reverses the roles of q and r, so that
the remainder becomes the offset and the quotient the value
of the output message.

• The change flag, denoted with the ? suffix on an output mes-
sage, only outputs the message if there are any changes in
offset or value.

• Value lists, denoted as lists of numbers separated by commas
and enclosed in curly braces, provide a way to describe dis-
crete mappings of input to output values. The input value is
used as an index into the list to give the corresponding output
value, and the last value in the list will be used for any index
which runs past the end of the list. There are also some conve-
nient shortcuts which let you construct these lists more easily:
repetition a:b (denoting b consecutive a’s) and enumeration

117

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

a-b (denoting a,a± 1,. . .,b, which ramps either up or down
depending on whether a ≤ b or a > b, respectively).

We can’t go into all of this here, so we have to refer the reader
once again to the manual for details. But here’s how we can use a sin-
gle mod translation to map MCP meter feedback onto the APCmini’s
topmost five button rows, turning them into a colorful meter display:

CP[16] C2{0,1} G#2{0:3,1} E3{0:6,1} C4{0:9,5} G#4{0:12,3}

To understand how this works, one must know that the buttons of
the 8x8 grid, cf. Fig. 1(6), can be lit up by sending them the appropri-
ate note messages. Rows number 4 to 8 (counting from the bottom)
start at notes C2, G#2, E3, C4 and G#4, respectively. The velocities of
the notes indicate the colors (0 means off, 1 green, 5 yellow, and 3
red). The rule above will thus light up buttons in different rows in
different colors (depending on the low nibble of the channel pressure
value), and in different columns (depending on the high nibble of the
channel pressure value which ranges from 0 to 7 and indicates the
mixer channel).

Mod translations are surprisingly versatile and can be used for
various different purposes. In particular, they can also be called as
macros from other translations. This adds a (rather rudimentary) pro-
gramming facility to the configuration language, which isn’t needed
very often, but gives you some extra rope to tackle complicated trans-
lations. We won’t go into this here, so please check the manual for
details and many more examples.

4.4. Pass-Through

There are some situations in which it may be possible to keep most of
the controller input and pass it through unchanged. In particular, this
case arises in Mackie translations for devices which already support
MCP, but might need some minor touches here and there to make
them work exactly the way you want.

For instance, Behringer’s X-Touch Mini (Fig. 2) is a fairly nice
device with its eight encoders providing LED feedback, but its MCP
mode is somewhat lacking. One thing that many users of the device
complain about is that it doesn’t have any keys for changing mixer
banks. But in fact the device has two “layer” keys on the right which
seem ideal for that purpose; alas, the Behringer engineers decided
to have them assigned to some other less important MCP functions
instead. With midizap it’s very easy to fix this shortcoming, by just
reassigning the two keys to the much wanted bank change keys:

C7 A#3 # BANK LEFT
C#7 B3 # BANK RIGHT

We still need to make sure that everything else is passed through
unchanged. The most convenient way to do this is to just add the
PASSTHROUGH directive to the configuration. You can place this any-
where, but it’s most convenient to have this kind of stuff at the be-
ginning of the configuration file, before the first translation section.
The directive tells midizap to pass a message from the input to the
output port if it doesn’t have an explicit translation for that message.
So the final configuration will look like this:

PASSTHROUGH

[MIDI]
C7 A#3 # BANK LEFT
C#7 B3 # BANK RIGHT

[MIDI2]

Figure 2: X-Touch Mini [10, p. 16].

feedback for the BANK LEFT/RIGHT buttons
A#3 C7
B3 C#7

Here we also added two more translations in the [MIDI2] section
so that the feedback for the two remapped buttons works as expected.
To finish off that little example, you may want to add a few more di-
rectives, so that midizap automatically creates the feedback port and
auto-connects to the right device and applications; we will discuss
these in the next section. You can also find an enhanced version
of this example in the sources (XTouchMini.midizaprc), which adds
many other useful MCP functions.

Please note that the PASSTHROUGH directive only applies to nor-
mal (non-system) messages. In some cases it will be necessary to
also pass on system messages, such as system exclusive, which can
be done with the SYSTEM_PASSTHROUGH directive. System exclusive
messages are used in MCP to set the contents of the scribble strips.
The X-Touch Mini doesn’t have these, but other devices like the X-
Touch One do, and will thus need system pass-through to function
properly (see the XTouchONE.midizaprc example in the sources).

5. JACK INTERFACE

There are some additional directives and corresponding command
line options to configure midizap’s Jack setup in various ways. If
both the command line options and directives in the midizaprc file
are used, the former take priority, so that it’s possible to override the
configuration settings from the command line. Note that all these
options can only be set at program startup. If you later edit the corre-
sponding directives in the configuration file, the changes won’t take
effect until you restart the program.

5.1. Client Setup

The -j option and the JACK_NAME directive change the Jack client
name from the default (midizap) to whatever you want it to be.
To use this option, simply invoke midizap with -j followed by the
desired client name, or put a directive like the following into your
midizaprc file:

JACK_NAME "midizap-XTouchMini"

This option is useful, in particular, if you’re running multiple
instances of midizap with different configurations for different con-
trollers and/or target applications, and you want to have the corre-
sponding Jack clients named differently, so that they can be identi-
fied more easily.

118

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

We’ve already seen the -o option which is used to equip the Jack
client with an additional output port. This can also be achieved with
the JACK_PORTS directive in the midizaprc file, as follows:

JACK_PORTS 1

The given number of output ports must be 0, 1 or 2. Zero means
that MIDI output is disabled (which is the default). You may want
to use JACK_PORTS 1 if the configuration is primarily aimed at doing
MIDI translations, so you’d like to have MIDI output enabled by
default. JACK_PORTS 2 or the -o2 option indicates that two pairs of
input and output ports are to be created. As already discussed in
Section 4, the second port is typically used to deal with controller
feedback from the application.

Not very surprisingly, at least one output port is needed if you
want to output any MIDI at all; otherwise MIDI messages on the
right-hand side of translations will be silently ignored.

5.2. MIDI Connections

Setting up all the required connections for the Jack MIDI ports can
be a tedious and error-prone task, especially if you have to deal
with complex setups involving feedback and/or multiple midizap in-
stances. It’s possible to automatize the MIDI connections, e.g., with
QjackCtl’s persistent MIDI patchbay facility, but this is often incon-
venient if you need to accommodate multiple midizap configurations
and you already have a complicated studio setup (or indeed a bunch
of them) which you don’t want to mess with.

Therefore midizap offers its own built-in patchbay functionality
using the JACK_IN and JACK_OUT directives which let you specify the
required connections in the configuration itself. The port number is
tacked on to the directive, so, e.g., JACK_IN2 connects the second
input port. If the port number is omitted then it defaults to 1, so
both JACK_OUT1 and just JACK_OUT connect the first output port. The
directive is followed by a regular expression to be matched against
the Jack MIDI ports of your devices and applications. For instance,
the following lines connect midizap to an X-Touch Mini device on
one side and Ardour’s Mackie control port on the other. (This kind
of setup is rather typical for configurations involving feedback. For
simple setups just specifying the JACK_IN and JACK_OUT directives
is often sufficient, or even just JACK_IN if the target application isn’t
MIDI-capable.)

JACK_IN1 X-TOUCH MINI MIDI 1
JACK_OUT1 ardour:mackie control in
JACK_IN2 ardour:mackie control out
JACK_OUT2 X-TOUCH MINI MIDI 1

A connection will be established automatically by midizap when-
ever a MIDI port belonging to another Jack client matches the regu-
lar expression, as well as the port type and I/O direction. This also
works dynamically, as new devices get added and new applications
are launched at runtime. Only one directive can be specified for each
port, but since midizap will connect to all ports matching the given
regular expression, you can connect to more than one application
or device by just listing all the alternatives. For instance, to have
midizap’s output connected to both Ardour and Pd, you might use a
directive like:

JACK_OUT1 ardour:MIDI control in|Pure Data Midi-In 1

All matches are done against full port names including the client-
name: prefix, so you can specify exactly which ports of which clients
should be connected. However, note that in contrast to the QJackCtl

patchbay, midizap does substring matches by default, so that, e.g.,
just “MIDI control” would match any Ardour MIDI control port,
in any instance of the program (and also ports with the same name
in other programs). If you want to specify an exact match, you need
to use the ^ and $ anchors as follows:

JACK_OUT1 ^ardour:MIDI control in$

5.3. Jack Sessions

midizap also supports Jack session management which provides a
convenient alternative way to launch your midizap instances. Once
you’ve finished a configuration, instead of running midizap manually
each time you need it, you just invoke it once with the right command
line options, and use a Jack session management program to record
the session. The session manager can then be used to relaunch the
program with the same options later.

Various Jack session managers are available for Linux, but if
you’re running QjackCtl already, you might just as well use it to
record your sessions, too. QjackCtl’s session manager is available
in its Session dialog. To use it, launch midizap and any other Jack
applications you want to have in the session, and then hit the “Save”
button in the Session dialog to have the session recorded. Now, at any
later time you can rerun the recorded session with the “Load” button
in the same dialog, and your most recent sessions are available in the
“Recent” menu from where they can be launched quickly.

6. CONCLUSIONS

I hope that you’ll enjoy using midizap for your MIDI mapping needs
as much as I do. I’d like to emphasize, however, that midizap is noth-
ing more (and nothing less) than a simple and practical solution to a
nagging problem that I have run into time and again (as presumably
many Linux MIDI users do). midizap has its limitations, and it is
definitely not intended as a replacement for more ambitious projects.
Ctlra [1] along with its Mappa component takes a much higher-level
approach based on the idea of abstracting device interfaces so that
basically any Ctlra client can be used with any Ctlra-supported de-
vice. This promises to scale much more easily, but it will take its
time to gather a critical mass of supported devices and applications.

In the meantime we now have midizap which is a much more
modest design, but can make any MIDI controller work with pretty
much any application out there, as long as the application can be
controlled with keyboard and/or MIDI commands. And you don’t
need to be a computer expert to use it; if you know how to use Jack,
a text editor, and the command line, you’re good to go.

Contributions are welcome; in particular, we’re looking for in-
teresting configurations to be included in the distribution. I consider
midizap itself finished at this point (ports, bugfixes and feature creep
notwithstanding), but one area which could still be simplified is the
configuration process. While experienced Linux users may actually
prefer the textual interface that midizap provides (especially when
using midizap’s Emacs mode), editing configuration files and watch-
ing debugging output in a terminal can be a bit daunting. So a GUI-
based configuration front-end (maybe something along the lines of
existing MIDI learn facilities) might be in order here.

As Ctlra matures, another interesting possibility is to have a di-
rect interface between Ctlra and midizap at some point. It’s already
possible to run midizap and Ctlra’s daemon program in concert, but
tighter integration could be achieved, e.g., by adding a Ctlra back-
end to midizap.

119

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

7. ACKNOWLEDGMENTS

This program wouldn’t exist without Eric Messick’s prior work, so
a big thank you goes out to him. Thanks are also due to Harry van
Haaren for helping me with Ctlra, which is used in the NI Maschine
Mk3 Mackie emulation distributed with midizap. Last but not least,
I’d also like to thank the reviewers for helpful comments.

8. REFERENCES

[1] Harry van Haaren, “openAV-Ctlra: A plain C library to
program with hardware controllers,”
https://github.com/openAVproductions/openAV-Ctlra,
Sept. 2018.

[2] “MIDI Translator Pro | Bome Software,”
https://www.bome.com/products/miditranslator.

[3] Eric Messick, “ShuttlePRO: User program for interpreting
key, shuttle, and jog events from a Contour Design
ShuttlePRO v2,”
https://github.com/nanosyzygy/ShuttlePRO, Sept. 2018.

[4] Paul White, “Contour Designs Shuttle Pro v2,”
https://www.soundonsound.com/reviews/
contour-designs-shuttle-pro-v2, Oct. 2016.

[5] Albert Gräf, “ShuttlePRO fork,”
https://github.com/agraef/ShuttlePRO, Sept. 2018.

[6] Albert Gräf, “midizap: Control your multimedia applications
with MIDI,” https://github.com/agraef/midizap, Oct.
2018.

[7] “Binding Jump Prevention and Relative (Rotary) Encoder
Support - Cantabile - Software for Performing Musicians,”
https://www.cantabilesoftware.com/guides/
controllerEncoding.

[8] Nedko Arnaudov, “a2jmidid,”
https://repo.or.cz/a2jmidid.git.

[9] AKAI Professional, “APC mini - User Guide,” http://www.
akaipro.com/products/pad-controllers/apc-mini.

[10] Behringer, “X-TOUCH MINI Quick Start Guide,”
https://media.music-group.com/media/PLM/data/docs/
P0B3M/X-TOUCH%20MINI_QSG_WW.pdf.

A. CONFIGURATION SYNTAX

config ::= { directive | header | translation }
header ::= "[" name "]" ["CLASS" | "TITLE"] regex
translation::= midi-token { key-token | midi-token }

directive ::= "DEBUG_REGEX"|"DEBUG_STROKES"|"DEBUG_KEYS" |
"DEBUG_MIDI" | "MIDI_OCTAVE" number |
"JACK_NAME" string | "JACK_PORTS" number |
"JACK_IN" [number] regex |
"JACK_OUT" [number] regex |
"PASSTHROUGH" [number] |
"SYSTEM_PASSTHROUGH" [number]

midi-token ::= msg [mod] [steps] ["-" number] [flag]
msg ::= (note | other | "M") [number]
note ::= ("A" | ... | "G") ["#" | "b"]
other ::= "CH" | "PB" | "PC" | "CC" | "CP" | "KP:" note
mod ::= "[" [number] "]"
steps ::= "[" number "]" | "{" list "}"
list ::= number { "," number | ":" number | "-" number }
flag ::= "-" | "+" | "=" | "<" | ">" | "~" |

"’" | "?" | "’?" | "?’"

key-token ::= "RELEASE" | "SHIFT" [number] |
keycode ["/" keyflag] | string

keycode ::= "XK_Button_1" | "XK_Button_2" | "XK_Button_3" |
"XK_Scroll_Up" | "XK_Scroll_Down" |
"XK_..." (see /usr/include/X11/keysymdef.h)

keyflag ::= "U" | "D" | "H"
string ::= ’"’ { character } ’"’

120

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

SC-HACKS: A LIVE CODING FRAMEWORK FOR GESTURAL PERFORMANCE AND
ELECTRONIC MUSIC

Iannis Zannos

Department of Audiovisual Arts
Ionian University, Corfu, Greece

zannos@gmail.com

ABSTRACT

This paper presents a library for SuperCollider that enables live cod-
ing adapted to two domains of performance: telematic dance with
wireless sensors and electroacoustic music performance. The library
solves some fundamental issues of usability in SuperCollider which
have been also addressed by the established live-coding framework
JITLib, such as modifying synth and pattern processes while they
are working, linking control and audio i/o between synths, and gen-
eration of GUIs. It offers new implementations, which are more
compact and easy to use while emphasizing transparency and scal-
ability of code. It introduces binary operators which when coupled
to polymorphism facilitate live coding. Several foundation classes
are introduced whose purpose is to support programming patterns or
commonly used practices such as the observer pattern, function call-
backs and system-wide object messaging between language, server
processes and GUI.

The use of the library is demonstrated in two contexts: a telem-
atic dance project with custom low-cost movement sensors, and dig-
ital implementations of early electroacoustic music scores by J. Har-
vey and K. Stockhausen. The latter involves coding of a complex
score and generation of a GUI representation with time tracking and
live control.

1. BACKGROUND

1.1. Bridging Live Coding and Gestural Interaction

The performance practice known as live coding emerged from the
ability of software to modify state and behavior through the inter-
active evaluation of code fragments and to synthesize audio at run-
time. As a result, several programming environments and technolo-
gies supporting live coding have been developed in the past 20 years,
such as SuperCollider[1], Impromptu[2], ChucK[3] , Extempore[4],
Gibber[5], and others. It has been noted, however, that such envi-
ronments and practices suffer from a lack of immediacy and those
visible gestural elements that are traditionally associated with live
performance [6]. Recent research projects attempt to re-introduce
gestural aspects or to otherwise support social and interactive ele-
ments in musical performance using technologies associated with
live coding ([7], [8], [9], [10]). Amongst various types of gestural
interaction, dance is arguably the one least related to textual coding.
Few recent studies exist which prepare the field for bridging dance
with coding ([11]). The challenges in this domain can be summa-
rized as the problem of bridging the symbolic domains of dance and
music notation and the subsymbolic numerical domain of control
data streams input from sensors. This also implies translating be-
tween continuous streams of data and individual timed events, pos-
sibly tagged with symbolic values. This is a technologically higly

demanding task which is subject of research in various gestural in-
terface applications. The work related in the present paper repre-
sents an indirect and bottom-up approach to the topic, based on DIY
and open source components and emphasizing transparency and self-
sufficiency at each step. It does not address the task of gesture recog-
nition, but rather it aims at supporting live coding in conjunction with
dancers and instrumental performers. Ongoing experiments together
with such performers, are helping to identify low-level tasks and fea-
tures which are essential for practical work. This type of work is
purely empirical, and tries to identify useability criteria purely from
practice, rather than to develop features that are inferred from known
interaction paradigms in other related domains. At this stage of the
project it is still too early to formulate conclusions from these ex-
periments. Instead, this paper concentrates on the fundamentals of
the implemenation framework on which this work is based. These
are readily identifiable and their potential impact on further develop-
ment work as well as experiments are visible. This paper therefore
describes the basic principles and design strategy of the sc-hacks li-
brary, and discusses its perceived impact on performances. Finally,
it outlines some future perspectives for work involving data analysis
and machine learning.

1.2. Live Coding Frameworks in SuperCollider

1.2.1. Types of Live Coding Frameworks

Live Coding libraries can be divided into two main categories de-
pending on the level of generality of their implementation and their
application scope. First, there are libraries which extend Super-
Collider usage in order to simplify the coding of very behaviors
or features which are very common in performance, but are other-
wise inconvenient to code in SuperCollider. To this category be-
longs the JITLib framework. JITLib (Just-In-Time programming Li-
brary) has been around since at least August 2006, with an early
version since ca 2000 1 and is very widely used in the commu-
nity, being the de-facto go-to tool for live coding in SuperCollider.
The second category consists of libraries that concentrate on spe-
cialized usage scenarios and attempt to create domain-specific mini-
languages for those scenarios on top of SuperCollider. Such are:
IXI-Lang (a sequencer / sample playing mini-language by Thor Mag-
nusson [12]), SuperSampler (a polyphonic concatenative sampler
with automatic arrangement of sounds on a 2-dimensional plane,
by Shu-Cheng Allen Wu [13]), and Colliding (An "environment for
synthesis-oientd live coding", simplifying the coding of Unit Gen-
erator graphs, by Gerard Roma [14]). Finally, TidalCycles by Alex
McLean [15] should be mentioned, which develops its own live cod-
ing language based on Haskell and focussing on the coding of com-

1See https://swiki.hfbk-hamburg.de/
MusicTechnology/566 (accessed 20-December-2018)

121

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

plex layers of synchronized beat cycles with sample playback and
synthesis, and uses the SuperCollider synthesis server as audio en-
gine.

1.2.2. sc-hacks Objectives and Approach

sc-hacks belongs to the first category of frameworks, and its initial
motivation was partly to implement some of the solutions of JITLib
in more robust, simple, and general ways. In parallel, inspiration
from ChucK’s => operator led to the development of a minimal ex-
tension of the language based on 4 binary operators (+>, <+, *>

*<), which, coupled with polymorphism, permit simplified and com-
pact coding of several common sound-structure coding patterns. Fur-
thermore, the implementation of some basic programming patterns 2

opened new possibilities for the creation of GUI elements which up-
date their state. This led to a proliferation of GUI building and man-
agement facilities and resulted in several interfaces for live coding
tasks, such as a code browser based on the concept of code snippets,
a browser for editing and controlling the behavior of named players
holding synth or pattern items, and shortcuts for building GUI wid-
gets displaying values of parameters controlled by OSC, MIDI or al-
gorithmic processes. Finally, ongoing experiments with dancers and
instrumentalists are giving rise to new interface and notation ideas.
The current focus is on building tools for recording, visualising and
playback of data received from wireless sensors via OSC, in order
to experiment with the data in performance, and to apply machine-
learning algorithms on them.

2. APPROACH

2.1. Players and Player Environments

JITLib addresses four fundamental problems in coding for concur-
rent sound processes: (a) Use of named placeholders for sound gen-
erating processes, (b) managing the control parameters of processes
in separate namespaces, (c) modifying event-generating algorithmic
processes (known in SuperCollider as Patterns) on the fly and (d)
interconnecting audio signals between inputs and outputs of synth
processes. Sc-lib offers alternative solutions to these problems which
present advantages, described in the following sections:

2.1.1. Named placeholders: -def classes vs. Player class

To use a name as placeholder for a synth process in order to start,
stop or modify the process on the fly, JITLib introduces the [X-]def
convention, i.e. it defines a number of classes which act as named
containers for different types of processes (Synths: Ndef, Tasks:
Tdef, Patterns Pdef, etc.). Sc-hacks uses a single Player object
class instead. A Player instance can play a Synth or a Pattern de-
pending on the type of source which it is asked to play, i.e. synth
definition, synth function, or event-stream generating instance (see
for example code below 3). This provides greater flexibility and sim-
plicity in the coding of synth processes over JITLib.

2.1.2. Separate parameter namespaces: ProxySpace vs. Nevent

A significant innovation introduced by JITLib consisted in the con-
cept of a ProxySpace, that is, a namespace that can function as the
current environment. ProxySpace is based on EnvironmentRedirect,

2See for example the Observer pattern: https://en.wikipedia.
org/wiki/Observer_pattern (accessed 20-December-2018)

a Class which holds a Dictionary and ensures that a predefined cus-
tom function is executed each time that a value is stored in one of
the keys of the Dictionary. Sc-hacks defines a subclass of Environ-
mentRedirect similar to ProxySpace, but defines a custom function
that provides extra flexibility in setting values which is useful during
performance in accessing control parameters. This enables keeping
track of which parameter refers to which process, storing parameter
values between subsequent starts of a process belonging to a player,
and updating GUI elements to display values as these change. Ad-
ditionally, sc-hacks makes the environment of the player current af-
ter certain operations, in order to make the current context the one
normally expected by the performer. This however is not always a
secure solution. For this reason, the target environment can be pro-
vided as adjective argument in binary operators involving players,
which ensures that code will work as expected even when changing
the order of execution of code in irregular manner.

2.1.3. Modifying event generating processes on the fly

Event generating algorihm processes are implemented in SuperCol-
lider through class Pbind. Pbind takes an array of keys and associ-
ated streams as argument and creates a Routine that calculates pa-
rameters and event types for each set of keys and values obtained
from their associated streams, and schedules them according to the
duration obtained from the stream stored under the key dur. The im-
plementation of Pbind allows no access to the values of each event,
i.e. it is not possible to read or to modify the value of a key at any
moment. Furthermore, it is not possible to modify the structure of
the dictionary of keys and streams while its event-generating pro-
cess is playing. This means that Pbind processes cannot be modified
interactively while they are playing. In order to circumvent this lim-
itation, a number of techniques have been devised which require to
add code for any key that one wishes to read or to modify. JITLib
uses such techniques and also provides a way to substitute a Pbind
process while it is running with a new one, thereby indirectly al-
lowing modification of that process. Sc-hacks provides a new ap-
proach for playing event-generating processes, which uses the same
Event-playing mechanism as Pbind, but grants both read and write
access to the data which generate the event stream, and thus permits
modification of the generating key-stream collection on the fly. This
radically simplifies the task of modifying event generating processes
while they are playing. For example, adding or substituting key-
value stream pairs to a process while it is playing can be achieved
simply by sending the corresponding key-stream pairs as events to
the same player, as shown in the following code 1.

(dur: 0.1) +> \mystream;
// Substitute duration stream:
(dur: [0.1, 0.2].prand) +> \mystream;
// Add degree stream:
(degree: (-10..10).prand) +> \mystream;

Figure 1: Adding and substituting key streams to event generators.

2.1.4. Interconnecting audio signals

The task of connecting the output of one audio process with the input
of another audio process is complicated in SuperCollider by the
requirements (a) to specify the bus which will carry the signal to be
shared and (b) to ensure that the synth reading from the signal will
be placed after the bus which is writing to the signal in the execution

122

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

order of the synth engine (scsynth). The implementation of the
solution in JITLib involves several classes with several instance vari-
ables and hundreds of lines of code and defies description within the
scope of the present paper. Additionally, coding the configuration of
one-to-many or many-to-one interconnections of audio i/o between
synth processes can be both verbose and complex, as witnessed for
example in exchanges on the SuperCollider mailing list such as
this one: https://sc-users.bham.ac.narkive.com/
PAapaSaM/many-to-one-audio-routing-in-jitlib
(accessed 20-December-2018). Sc-hacks introduces a new solu-
tion which permits simpler coding and guarantees persistence of
established configurations even when the server is rebooted during
a work session. The implementation is based on mechanisms
for hierarchical namespaces and function callback implemented
in sc-hacks through two new classes discussed below: Registry
and Notification. The coding of one-to-many and many-to-one
connections is exemplified through the following code 2:

// many - to - one interconnection
\source1 *> \fx1;
\source2 *> \fx1;
// one - to - many interconnection
\source3 *< \fx2;
\source3 *< \fx3;

Figure 2: Interconnecting audio signals.

Note that no additional coding is required if using the default input
and output parameter names \in and \out and number of chan-
nels (1). PersistentBusProxy is used to specify custom parameter
names and channel numbers. The operator @ can optionally be used
as shortcut to create PersistentBusProxy instances.

2.2. Binary operators

The primary coding strategy of sc-hacks for sound processes is built
around a small number of binary operators. Each operator encapsu-
lates a group of actions on sound objects such as synthesis parame-
ters, player objects holding single synths or synth processes, busses,
buffers, midi or osc control instances. The operators are:

left operand operator right operand
source +> player
source *> player
parameter <+ value
parameter *< value

2.2.1. +> : Play source in player

The +> plays the source in the player. The source can be the name
of a synthesis definition as symbol, a synthesis function, or an event.
For example the code in 3 can be evaluated line-by-line to play in
the player named ’example’ in sequence a synth using SynthDef
named ’default’, a Unit Generator Synth Graph containing a
Sine Oscillator, an empty event with default parameters (degree: 0,
dur: 1), an event with duration 0.1, and an event with degree a pattern
using a brownian stream with values between -10 and 10 and max-
imum step 2. Sending different types of sources (synthdef names,
synth functions, events) to the same player will replace the previous
source with the newest one. Sending nil stops the player.

\default +> \example; // play synthdef
{ SinOsc.ar(440, 0, 0.1) } +> \example;
() +> \example; // play event
(dur: 0.1) +> \example; // modify event
(degree: [-10, 10, 2].pbrown) +> \example;
nil +> \example // stop player;

Figure 3: Player operator +>.

Additionally, sc-hacks permits one to browse the code executed for
each player on a dedicated GUI (similar to operations on Shreds in
the miniAudicle GUI of ChucK), to edit existing code and resend it
to the player, and to start or stop a player by clicking on its name in
the list of existing players, as shown in Figure 4. The list of evaluated
code strings is permanently saved on file for each session.

Figure 4: Player GUI.

2.2.2. *> : Advanced operations on player argument

The *> operator takes different meanings depending on the type of
the right operand, as follows:

type of left operand action
Event set parameter values without starting events
Function Play function as routine in environment
Symbol Add receiver as audio source to argument
PersistentBusProxy Add source with custom i/o mapping

2.2.3. <+ : Set or map parameter

The <+ operator acts on the parameter named by the receiver (left
operand) depending on the type of the argument (right operand), as
follows:

type of right operand action
Integer or Float Set parameter value
Symbol Map parameter to named control bus
Envelope Map parameter to envelope signal
Function Map parameter to Synth Function output
MIDI Bind parameter to MIDI input
OSC Bind parameter to OSC input

123

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

The parameter named by the left operand belongs by default to the
current environment. In order to specify a different environment, one
can name the environment as an adverb to the binary operator using
standard SuperCollider syntax, e.g.: \freq <+.myenvir 660.

2.2.4. *<+ : One-to-many audio i/o interconnections

The *< operator, in analogy to *>, is used to create one-to-many i/o
interconnections, that is, to connect the audio output from one Player
to the inputs of several different Players.

2.3. Fundamental Classes

To implement the above features, sc-hacks introduces classes which
implement pattern-language-like features that enable functionality
across a wide variety of tasks such as storing and retrieving single
instances in tree data structures (Registry Class), updating state of
concerned items in response to changes (Notification Class), and en-
forcing sequential order of execution in asynchronous calls to the
server when booting, loading synthdefs and loading or initializing
audio buffers (ActionSequence Class). These classes formed the
backbone for rapid creation of custom extensions to the library to
meet needs of performance requirements described in the next sec-
tion. These results are encouraging indications that the library will
serve as framework to develop more ambitious applications in the
next stages of this work.

3. APPLICATIONS

3.1. Telematic Dance

Sc-hacks was first used in a telematic dance project whose goal is
to enable dancers to perform together concurrently in different cities
by sharing data from motion sensors sent via OSC over the internet
[16]. Sensors were constructed using LSM9D0 motion sensor mod-
ules and Feather Huzzah ESP8266 wifi modules from Adafruit, and
connected to SuperCollider via micro-osc package on micropython.
Several sessions with dancers in Tokyo, Athens and Corfu served
to experiment with different sound synthesis algorithms and to test
the usabiity of the interface and algorithms for dance improvisation.
The results were generally more encouraging than expected, except
in Corfu where the dancers showed a more cerebral approach em-
phasizing control over the sound result rather than free exploration
of the sonic landscape through movement.
A significant new turn in the development of the library was
prompted during the initial tests for remote collaboration performed
during a workshop organized at the University of Manchester by
Prof. Ricardo Climent for the EASTN-DC EU-Culture program.
This showed the need for distributing versions of the library to differ-
ent remote partners, using different custom settings for each partner.
Opening files in the SuperCollider IDE in order to select and exe-
cute appropriate code segments was soon proven to be impractical
under the pressed time circumstances of preparing the test within a
large scale workshop and awkward time-zone difference between the
partners involved. Thus, a plug-and-play solution had to be devised,
or at least one that relied on selecting options from menus or lists
and clicking on buttons rather than opening files and executing code.
This gave rise to a new interface as a GUI for selecting and evaluating
snippets of code contained within files within subfolders of a global
"Snippets" folder 5. The scheme has since served for the archival of
experiments and performances, facilitating easy overview and reuse

of past code. It is furthermore integrated for use with EMACS as
primary IDE for SuperCollider, with automatic updates of code be-
tween EMACS and the SuperCollider based GUI.
Two further features were necessary for the experiments with
dancers. First, a GUI that displays OSC data as they are received,
and second a mechanism that scales and assigns incoming OSC data
to the desired parameters. The following code shows how to generate
a gui that displays data changes for a set of named parameters. Up-
dates are displayed whenever a parameter is changed, independently
of the source of the change (i.e. automated algorithm, evaluation of
code, MIDI or OSC input).

\lsm1.v(
\dur.slider([0.1, 12], \lsm1),
\pos.slider([0.0, 1.0], \lsm1),
\rate.slider([0.2, 15], \lsm1),
\gps.slider([0.5, 20.0], \lsm1),
\pan.slider([-1, 1.0], \lsm1),
\amp.slider(\amp, \lsm1)

);

The GUI in figure 6 was generated by the code above.
Following example shows how to scale data input from OSC mes-
sages and to assign them to named parameters in a specified envi-
ronment ’lsm1’.

\dur <+.lsm1
’/gyroscope1’.osc(0, [-40, 40], [0.01, 12.5]);

\pos <+.lsm1
’/gyroscope1’.osc(1, [-20, 40], [0.0, 1.0]);

\rate <+.lsm1
’/gyroscope1’.osc(2, [-20, 40], [0.1, 15]);

\gps <+.lsm1
’/magnetometer1’.osc(0, [-1.0, 0.5],

[0.2, 15]);
\pan <+.lsm1

’/magnetometer1’.osc(1, [-0.25, 0.25],
[-1, 1]);

\amp <+.lsm1
’/magnetometer1’.osc(2, [-0.05, 0.25],

\amp);

The above features are only the beginning. As experiments with
dancers have shown, other GUIs and coding schemes are needed to
facilitate adjustment of the responsiveness of the sensors and adap-
tation of their sound control aspects during performance. In this re-
spect a considerable amount of work is still required.

3.2. Coding Electroacoustic Music Performances

A second test scenario was provided through the collaboration with
Dan Weinstein, a concert cellist specializing in contemporary music
performance with good knowledge of contemporary audio tools in
Linux. Mr. Weinstein selected two pieces from the early repertory
of electroacoustic music scored for tape recorder: Jonathan Harvey’s
"Ricercare una melodia" and Karlheinz Stockhausen’s Solo 19. Both
pieces had to be coded in SuperCollider and rehearsed within one
week during a residency of Mr. Weinstein in Corfu, leading to a
public performance of the pieces. The time constraints were critical
because the pieces were both complex and demanding in terms of
score interpretation, following and coordination. The Stockhausen

124

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 5: Snippet List GUI.

Figure 6: Grain Control GUI.

piece proved to be especially difficult as it is initially scored for 4 as-
sistants in the electronic part, where each assistant is assigned control
of the recording, playback and feedback levels of two tape recording
channels with varying loop durations between sections, using two
potentiometers. To execute this with a single performer on the com-
puter, the slider actions as well as the loop duration changes had to
be automated according to the indications in the score. Even under
these circumstances, an ideal faithful performance was impossible,
because each of the 6 levels demanded constant adjustment accord-
ing to the actual level of the instrumental performer, and each transi-

tion had to be timed manually to prevent abrupt noticeable changes.
Still, this proved to be a fruitful exercise in creating a user inter-
face and coding the entire score, consisting of 6 different realization
versions. It resulted in a compact coding scheme for durations of
prescribed length (see 7 for the notation of the first version - Form-
schema I, and 8 for its translation into GUI and automated perfor-
mance). This notation mechanism can in the future be repurposed as
a type of beat sequencing notation similar to this found in ixilang or
TidalCycles (although the Cycle scheme of Tidal has other features
which go beyond the scope of the present discussion).

4. CONCLUSIONS AND FUTURE WORK

Sc-hacks is a general purpose extension to SuperCollider, and the
intense use of several binary operators may raise doubts about its
legibility or the general validity of its design priorities. However,
stress-testing sc-hacks through collaborations with dancers and in-
strumentalists has shown its strong potential to solve diverse and
demanding problems under time pressure, and furthermore has pro-
vided indications of its scalability in terms of coding various fea-
tures. This indicates that it is a suitable platform for further work,
and it is hoped that it will serve as a tool for addressing questions
of machine listening in live performance as well as other advanced
topics.

125

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 7: Code for Formschema I of Stockhausen Solo 19.

Recording data received from sensors is a first priority in the project.
A first prototype has been implemented using the built-in archival
facilities of SuperCollider. A second implementation is currently
under development, which will record data into multichannel audio
signal buffers, and employ an extra channel to record the time inter-
val between receipt of successive OSC messages. Based on this, and
using the existing graphic visualization facilities of SuperCollider
for audio signals, a functionality similar to the MuBu tools from IR-
CAM 3 is envisaged. In collaboration with PhD students working on
Machine Learning, it is planned to use this for further research.
In parallel, work is being done to connect data sent over the internet
in remote performances, and in developing a performance repertory
with instrumental soloists interested in improvisation with live elec-
tronics. In both these cases, the most serious challenge consists in
making the software stable and easy to use enough to be able to re-
lease it to non-specialist performers for work in real-world creative
events without the need of specialized technical assistance to run it.
This remains a major driving factor and design guideline in devel-
oping this software. At the same time it is expected that these re-
quirements will help create best practice solutions that constitute the
wider contribution of this project. In this sense, the present project is
placed within the scope of efforts for developing contemporary lan-
guages of notation for performance practice that have lasting impact
on the community and its aesthetics.

5. REFERENCES

[1] S. Wilson, D. Cottle, and N. Collins, Eds., The SuperCollider
Book, MIT Press, 2011.

[2] A. Sorensen, “Impromptu: An interactive programming envi-
ronment for composition and performance,” Proceedings of the
Australasian Computer Music Conference, 01 2005.

[3] A. Kapur, P. Cook, S. Salazar, and G. Wang, Creating music
with ChucK, Manning, 2015.

[4] A. Sorensen, Extempore: The design, implementation and ap-
plication of a cyber-physical programming language, Ph.D.
thesis, The Australian National University, 2018.

3http://forumnet.ircam.fr/product/mubu-en/ (accessed
20-December-2018)

[5] C. Roberts, M. Wright, and J. Kuchera-Morin, “Music pro-
gramming in gibber,” in Proceedings of the 2015 International
Computer Music Conference, pp. 50–57. 01 2015.

[6] D. Stowell and A. McLean, “Live music-making: A rich open
task requires a rich open interface,” in Music and Human-
Computer Interaction, pp. 139–152. Springer, 2013.

[7] S. Salazar, “Searching for gesture and embodiment in live cod-
ing,” in Proceedings of the International Conference on Live
Coding. 2017.

[8] G. Wang, G. Essl, J. Smith, S. Salazar, P. Cook, R. Hamilton,
and R. Fiebrink, “Smule= sonic media: An intersection of the
mobile, musical, and social,” in Proceedings of the Interna-
tional Computer Music Conference, p. 16–21. 2009.

[9] S. Salazar and J. Armitage, Re-engaging
the Body and Gesture in Musical Live Cod-
ing, 2018, [Online; accessed 20-December-2018],
https://embodiedlivecoding.github.io/
nime2018-workshop/workshop-paper.html.

[10] J. Armitage and A. McPherson, “The stenophone: live coding
on a chorded keyboard with continuous control,” in Proceed-
ings of the International Conference on Live Coding. 2017.

[11] K. Sicchio, “Hacking choreography: Dance and live coding,”
Computer Music Journal, vol. 38, no. 1, pp. 31–39, 2014.

[12] T. Magnusson, “The ixi lang: A supercollider parasite for live
coding,” in Proceedings of the International Computer Music
Conference, pp. 503–506. 2011.

[13] A. W. Shu-Cheng, “Supersampler: A new polyphonic concate-
native sampler synthesizeer in supercollider for sound motive
creating, live coding, and improvisation,” in Proceedings of the
International Computer Music Conference. 2017.

[14] G. Roma, “Colliding: a supercollider environment for
synthesis-oriented live coding,” in Proceedings of the 2016
International Conference on Live Interfaces. 2016.

[15] A. McLean and G. Wiggins, “Tidal – pattern language for the
live coding of music,” in Proceedings of the 7th Sound and
Music Computing Conference. 2010.

[16] I. Zannos and M. Carle, “Metric interweaving in networked
dance and music performance,” in Proceedings of the 15th
Sound and Music Computing Conference, pp. 524–529. 2018.

126

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 8: GUI for Formschema I of Stockhausen Solo 19.

127

128

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

BIPSCRIPT: A DOMAIN-SPECIFIC SCRIPTING LANGUAGE FOR INTERACTIVE MUSIC

John Hammen

bipscript.org
Berkeley, California, USA
jhammen@j2page.com

ABSTRACT

Bipscript is a domain-specific scripting language designed to make
it easier to create interactive music. The base language is the
Squirrel scripting language which has been complemented with a
standard class library containing audio-specific domain objects.
This API provides methods for creating, scheduling and handling
events of various types including MIDI, OSC and extracted
features of audio streams. A single-threaded programming model
with asynchronous event handling is familiar to web developers but
atypical in music DSLs. Scripts are executed by a command line
interpreter with tight integration to the audio system.

1. INTRODUCTION AND DESIGN GOALS

The Bipscript project began as an attempt to implement a musical
"bot" application, with the base functionality of existing auto-
accompaniment software augmented with a high degree of
interactive functionality. The goal was software that would output
appropriate MIDI sequences in real-time based on external inputs,
most notably data from human performers. The emphasis was on
tempo-driven music with tight integration to a local transport.

Design goals did not include specialization on any particular style
of music, nor any specific assumptions on how external inputs
would affect generation of MIDI sequences, leaving these
decisions to the configuration of a particular piece.

As the options for configuration grew it became clear the easiest
way to express the behavior of a particular musical part would be
via an imperative language with the abilities to directly receive
relevant input from external sources, and use this information
algorithmically to sequence MIDI notes.

2. FEATURES

2.1. Squirrel

The scripting language itself is the Squirrel language [1]. From the
Squirrel website:

"Squirrel is a high level imperative, object-oriented programming
language, designed to be a light-weight scripting language that fits
in the size, memory bandwidth, and real-time requirements of
applications like video games."

These attributes and the associated predictability in run-time behav-
ior make Squirrel an ideal language also for the real-time demands
of audio applications.

Bipscript builds on top of Squirrel by adding a class library API
containing audio domain-specific classes and a custom transport-
aware interpreter that allows for event handling.

2.2. Class Library

The Bipscript class library API features objects representing plug-
ins, mixers, and system inputs and outputs of various types, pre-
dominately audio, MIDI and OSC [2]. These objects can be con-
nected programmatically to create complex networks of the differ-
ent protocols (see Figure 1)

Events of any applicable type can be scheduled to occur on any
node in the network, in particular code can generate and output
timed MIDI and OSC sequences. Event handlers can be registered
to fire on particular events including features extracted from audio
streams.

Additional classes allow the use of textual specification of musical
score data in the scripts using ABC notation [3], Music Macro Lan-
guage [4] or a MIDI tablature format based on common drum tab-
lature.

Figure 1: Creating Connections.

2.3. Threading and Context Model

Scripts including event handlers run in a single execution thread
with a single global context. Instructions in a script will be exe-
cuted sequentially until the main body of the script completes. At
this point any event handlers that were registered by the script will
execute as needed in the same thread and scope with direct access
to all variables defined in the main body of the script.

This programming model is analogous to traditional JavaScript de-
velopment in a web browser where the main body of the script reg-
isters event handlers that are then executed in the same thread
within the same page context. In both cases execution is single-
threaded and non-blocking in favor of asynchronous event han-
dling.

129

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Although many objects such as plugins will participate in the audio
client’s process thread the script thread itself is separate from the
process thread and not subject to its programming limitations on
e.g. memory allocation and system I/O.

2.4. Transport-Aware Interpreter

The command-line interpreter is tightly integrated with the system
transport, on Linux provided by the Jack Audio Connect Kit [5].
Scripts can request to be the transport master via the API but are
not required to do so when there is an external master present to
provide position information.

Whether or not the script itself is the transport master, the inter-
preter will act as a sequencer for any events scheduled by the
script, playing them in time with the transport and reacting to any
arbitrary external transport position changes including looping.

3. COMPARISON WITH OTHER PROJECTS

3.1. Synthesis Languages

There exist several DSLs for music creation with large and active
communities, for instance Pure Data [6] and SuperCollider [7]
among others. These environments differ from each other, for in-
stance Supercollider is a traditional text-based programming lan-
guage while Pure Data is a visual language.

There is a however a common emphasis on sound design with code
libraries of elements representing oscillators, filters and other sig-
nal generation capabilities. Bipscript currently offers no such ob-
jects in its standard class library instead offering hosting capabili-
ties for 3rd party sound generation and effects plugins.

The emphasis instead is on timed music which has led to an API
built around handling events and just-in-time sequencing using data
structures representing e.g. MIDI notes and mutable patterns
(groups of notes). In contrast most music DSLs produce timed mu-
sic at a lower level by alternating between immediate sound-gener-
ation instructions and some variation of a system “sleep” com-
mand.

3.2. Other Open Source Projects

Other comparisons can be drawn to some of the many projects aris-
ing from the community of open source audio software on Linux
and elsewhere:

One of the most feature-rich open source audio applications is the
Ardour DAW [8], which in recent versions has a large number of
the C++ implementation classes exposed as Lua objects [9] giving
a scripting environment incorporating much of Ardour's MIDI and
DAW functionality. This differs from a more traditional script lan-
guage-plus-interpreter environment in that scripts are executed as
callbacks in application-specific contexts, each with their own
scope and applicable model objects.

Another project using Lua is the Moony Lv2 plugins [10]. Taking
advantage of Lua's real-time performance, scripts are run directly
in the process thread and thus allow manipulation of e.g. MIDI

messages as they pass through the plugin. but are bound by all the
standard real-time limitations of running in the process thread.

LuaJack is a Lua binding library for Jack [11]. Scripts written in
LuaJack and Bipscript have a visual similarity due to the similarity
between Lua and Squirrel and the fact the LuaJack and Bipscript
API are wrapping some of the same objects, e.g. system ports.
However as a language binding LuaJack does not include an inter-
preter nor an object API beyond directly exposing the Jack client
API.

4. IMPLEMENTATION

The command line executable that functions as an interpreter to ex-
ecute scripts was written in C++ and runs on the Linux operating
system with the Jack Audio Connection Kit as a run-time depen-
dency.

The standard Squirrel implementation is intended to be embedded
and was used as the basis of the command line interpreter.

The interpreter also acts as a standard audio client, opening and
connecting system audio and MIDI input/output ports and hosting
plugins as specified by the executing script.

Scripts are loaded and run in a dedicated execution thread separate
from the application’s audio process thread. Any event generated
by the script is appended to an applicable lock-free queue that is
consumed by the process thread.

Script objects that hold scheduled events will participate in the au-
dio process thread to pull events from the queues and emit them at
the appropriate position in a running transport with sample-level
accuracy. Synchronization between the script and process threads
allows the script execution to properly respond to arbitrary trans-
port location changes.

A set of bindings was created for the class library, generated from
a high level API description to interface the C++ implementations
of the standard library classes and methods to the Squirrel engine
via its stack-based API.

The object implementations make use of reliable third party code
where possible via both embedded code and dynamically linked li-
braries. The current implementation makes uses of popular
projects such as abcmidi, liblo and libsndfile.

5. USE CASES

Now existing in a basic implementation, Bipscript can be used for
the following use cases:

5.1. Dynamic Accompaniment

An example “Robot Jazz Band” was built [12], showing the script
implementation of 3 related bots (playing acoustic bass, piano and
trap drum samples) that play a dynamic sequence based on rhyth-
mic probabilities in a jazz “swing” pattern coupled with a given in-
put chord progression. All players take an input parameter of “in-
tensity” playing louder and busier vs. softer and sparser on a mea-
sure by measure basis. The main script connects an audio onset de-

130

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

tector to a system audio input and continuously updates this inten-
sity variable for all players based on the number of onsets received.

This example shows a standard programming model for creating a
script with this kind of interactive behavior:

• The main script instantiates plugins and needed audio and
MIDI connections (see Figure 1) and schedules any static
parts of the score

• Event handlers listen to human performers via e.g MIDI,
OSC and/or audio features and update an internal state
(see Figure 2)

• Scheduled methods read this state and use as input in cal-
culating a short output sequence (e.g. a beat or bar at a
time)

The result is a dynamic and reactive auto-accompaniment system
written in a relatively few lines of code compared to general pur-
pose programming or even other music DSLs. The simple example
works as expected in practice but leaves open many paths for future
development in creating more complex interactive scripts.

Figure 2: Sample Code from the Robot Jazz Band Demo.

5.2. Utility Scripts for Live Performers

In many traditional live musical projects there is no need for dy-
namically generated sequences, especially those where human per-
formers are playing from a static score. In such an environment
there is still a use for certain computer-aided functions such as trig-
gering samples in time or adding a “click track” or other timed au-
dio cues not heard by the audience. These functions can be built in
custom scripts with relatively few lines of code.

5.3. Live Coding

Another prospective use is that of live coding. Those functions of
the command line interpreter that allow for developer convenience

may also be useful in a live coding situation, e.g. the ability of the
script to be loaded and unloaded dynamically including while the
transport is running. This use case is as of yet mostly unexplored

6. FUTURE WORK

With the completion of a basic proof-of-concept interpreter and
class library the main focus of the project remains stabilizing the
standard API and improving the basic tool implementations espe-
cially with an eye to reliability in live settings. To this end recent
work has been done in the area of unit and functional testing for
testing scripts as well as the interpreter itself.

Much of the API design going forward should be based on feed-
back from those who use these tools in a live production setting.

7. REFERENCES

[1] Demichelis, A. 2016. Squirrel – The Programming Language.
http://www.squirrel-lang.org/

[2] Wright, M. 2002. Open sound control 1.0 specification.

[3] Walshaw, C. 2018. abc notation. http://abcnotation.com/

[4] Nakamura, S. 2015. A tiny MML parser. Cubeatsystems.com
https://www.cubeatsystems.com/tinymml/

[5] Davis, P. 2003. Jack audio connection kit. http://jackaudio.org/

[6] Puckette, M. 1970. Pure Data: another integrated computer
music environment.

[7] McCartney, J. 1996. SuperCollider. supercollider.github.io

[8] Davis, P. 2018. Ardour: the Digital Audio Workstation.
http://www.ardour.org

[9] Manual.ardour.org 2018. The Ardour Manual.
http://manual.ardour.org / lua-scripting /

[10] Portner, H. 2018. Moony - realtime Lua as programmable glue
in LV2. http://open-music-kontrollers.ch/lv2/moony/

[11] Trettel, S. 2018. LuaJack Reference Manual. Stetre.github.io,
https://stetre.github.io/luajack/doc/index.html

[12] Hammen, J. 2016. Robot Jazz Band Example. bipscript.org,
http://www.bipscript.org/en/examples/robotjazz

131

132

Sw
itc

hi
ng

“L
e

SC
R

IM
E”

ov
er

to
Li

nu
x

as
a

co
m

pl
et

e
no

vi
ce

Th
ib

au
d

Ke
lle

r1
Je

an
-M

ich
aë

lC
ele

rie
r1,

2

1 S
CR

IM
E

/
La

BR
I

2 O
SS

IA
Te

am

Fi
rs

t
st

ep
s

in
to

th
e

co
m

m
un

ity

SC
R

IM
E

:S
tu

di
o

fo
rC

re
at

io
n

an
d

Re
se

ar
ch

in
Co

m
pu

te
rS

cie
nc

e
an

d
Ex

pe
rim

en
ta

lM
us

ic.

Cr
ea

te
d

in
co

lla
bo

ra
tio

n
wi

th
th

e
La

BR
I(

Bo
rd

ea
ux

Co
m

pu
te

rS
cie

nc
e

la
b)

an
d

th
e

M
us

ic
Co

ns
er

va
to

ry
in

Bo
rd

ea
ux

in
19

96
.

M
ul

tim
ed

ia
to

ol
sP

io
ne

er
,S

CR
IM

E
pl

ay
ed

an
im

po
rt

an
tr

ol
e

in
th

e
de

ve
lo

pm
en

t
of

th
e

Le
m

ur
co

nt
ro

ls
ur

fa
ce

an
d

wh
at

be
ca

m
e

th
e

“m
et

a-
se

qu
en

ce
r”

os
si

a
sc

or
e

Re
ta

in
ed

un
til

no
w

a
“c

on
ve

nt
io

na
l”

se
to

ft
oo

ls
co

ns
ist

in
g

m
ai

nl
y

of
C

yc
lin

g
74

’
M

ax
/M

SP
,A

vi
d

Pr
o

To
ol

s
an

d
C

oc
ko

s
Re

ap
er

ru
nn

in
g

on
A

pp
le

m
ac

O
S

Th
e

de
cis

io
n

to
sw

itc
h

ov
er

to
Li

nu
x

wa
s

ta
ke

n
at

th
e

en
d

of
20

17
,s

ho
rt

ly
af

te
r

th
e

te
am

ch
an

ge
d

an
d

a
D

om
e

of
19

.2
sp

ea
ke

rs
fo

r3
D

so
un

d
re

nd
er

in
g

wa
ss

et
-u

p.
Ev

en
th

ou
gh

th
is

ta
sk

wa
su

nd
er

to
ok

by
so

m
eo

ne
ne

w
to

Li
nu

x,
th

e
fa

ct
th

at
th

es
e

va
rio

us
ch

an
ge

s
ha

pp
en

ed
al

la
t

on
ce

pr
ov

id
ed

th
e

in
te

rm
iss

io
n

ne
ce

ss
ar

y
to

fa
m

ili
ar

ize
wi

th
th

e
Li

nu
x

en
vi

ro
nm

en
ta

nd
re

ev
al

ua
te

th
e

st
ud

io
’s

m
ai

n
to

ol
s.

T
he

co
m

m
un

it
y

Th
e

U
bu

nt
u

St
ud

io
di

st
rib

ut
io

n
wa

s
ch

os
en

as
a

st
ar

tin
g

po
in

t
fo

r
th

e
ov

er
vi

ew
of

Li
nu

x
m

ul
tim

ed
ia

pr
od

uc
tio

n
it

off
er

s,
as

we
ll

as
its

ea
se

of
us

e.
O

n
to

p
of

th
eU

bu
nt

u
co

m
m

un
ity

be
in

g
ve

ry
he

lp
fu

l,
ad

di
tio

na
lo

nl
in

er
es

ou
rc

es
m

ad
ea

re
al

di
ffe

re
nc

ed
ur

in
g

th
e

ad
ju

st
m

en
tp

er
io

d:

li
nu

xm
ao

.o
rg

,a
fre

nc
h

fo
ru

m
fo

ra
ll

th
in

gs
m

us
ic

on
Li

nu
x,

cu
ra

te
d

by
m

an
y

Li
br

aZ
ik

co
nt

rib
ut

or
sa

sw
ell

as
U

bu
nt

u
St

ud
io

an
d

K
X

St
ud

io
us

er
s.

Ec
ho

pl
ex

M
ed

ia
ec

ho
pl

ex
me

di
a.

co
m,

re
co

rd
in

g
st

ud
io

an
d

po
dc

as
tp

ro
vi

di
ng

ba
sic

tu
to

ria
ls

fo
rU

bu
nt

u
in

st
al

la
tio

n,
so

un
d

an
d

ra
di

o
pr

od
uc

tio
n

wi
th

Li
nu

x
au

di
o

to
ol

s
Jo

e
Co

lli
ns

ez
ee

li
nu

x.
co

m,
ve

ry
he

lp
fu

la
nd

ac
ce

ss
ib

le
tu

to
ria

ls
an

d
sc

rip
ts

fo
r

di
ffe

re
nt

di
st

rib
ut

io
ns

.
Be

nj
am

in
Ca

cc
ia

bc
ac

ci
aa

ud
io

.c
om

,p
ra

ct
ica

lt
ip

sa
nd

tr
ick

sf
or

Li
nu

x
au

di
o

pr
od

uc
tio

n.
Th

e
A

rc
h

W
ik

iw
ik

i.
ar

ch
li

nu
x.

or
g,

fo
re

ve
ry

th
in

g
els

e,
an

ul
tim

at
e

re
so

ur
ce

if
on

ly
a

lit
tle

to
o

te
ch

ni
ca

la
tt

im
es

fo
rfi

rs
tt

im
e

Li
nu

x
us

er
s.

If
th

er
ea

di
ly

av
ai

la
bl

ea
lte

rn
at

iv
es

to
co

m
m

er
cia

ls
of

tw
ar

eh
av

ey
et

to
fin

d
to

ta
la

cc
ep

-
ta

nc
e

wi
th

lo
ca

lc
om

po
se

rs
,s

wi
tc

hi
ng

ov
er

to
Li

nu
x

pr
ov

ed
fru

itf
ul

wh
en

we
lco

m
in

g
co

m
pu

te
r-s

cie
nc

e
st

ud
en

ts
fo

re
ar

ly
20

18
in

te
rn

sh
ip

s.
Ea

ch
eit

he
rw

or
ki

ng
on

ou
rm

a-
ch

in
es

or
on

th
eir

pr
efe

rr
ed

D
eb

ia
n

fla
vo

rs
:t

he
se

few
m

on
th

sw
he

re
ric

h
in

ex
ch

an
ge

an
d

co
m

pa
tib

le
co

nt
rib

ut
io

ns
.

P
ut

tin
g

it
to

ge
th

er

Th
e

ha
rd

wa
re

us
ed

is
a

se
to

fo
ld

(2
00

9
-2

01
3)

M
ac

m
ac

hi
ne

s.
At

th
e

tim
e

of
th

e
fir

st
in

st
al

la
tio

n,
th

el
at

es
tU

bu
nt

u
St

ud
io

re
lea

se
wa

s1
7.

04
be

ta
.T

he
ab

ili
ty

to
st

ar
to

ve
r

fro
m

sc
ra

tc
h

an
d

re
-in

st
al

lt
he

sy
st

em
qu

ick
ly

pr
ov

ed
us

efu
l,

es
pe

cia
lly

wh
en

wo
rk

in
g

wi
th

a
di

st
rib

ut
io

n’
sb

et
a

re
lea

se
,b

et
a-

te
st

in
g

va
rio

us
so

ftw
ar

ea
nd

ha
vi

ng
to

re
pl

ica
te

th
e

ex
ac

ts
am

e
se

t-u
p

on
m

ul
tip

le
co

m
pu

te
rs

.

A
fte

re
xp

er
im

en
tin

g
wi

th
C

lo
ne

Zi
lla

,t
he

be
st

so
lu

tio
n

tu
rn

ed
ou

tt
o

be
th

e
co

m
bi

na
tio

n
of

ap
t-

cl
on

e
(t

o
sa

ve
an

d
re

-in
st

al
la

ll
in

st
al

led
pa

ck
ag

es
)a

nd
ar

ch
iv

es
of

th
e

ho
m

e
di

re
ct

or
y

co
m

pr
es

se
d

wi
th

ta
r.

Th
is

m
et

ho
d

off
er

st
he

co
m

fo
rt

to
ex

pe
rim

en
tw

ith
su

cc
es

siv
e

“b
re

ak
in

gs
”

an
d

re
st

or
in

g
of

th
e

co
nfi

gu
ra

tio
n.

W
e

we
re

ab
le

to
re

co
ve

rv
er

y
qu

ick
ly

an
d

id
en

tif
y

cu
lp

rit
si

n
sc

rip
ts

in
st

al
lin

g
fa

ul
ty

he
ad

er
s.

Au
di

bl
e

xr
un

sa
cc

um
ul

at
e

co
ns

ta
nt

ly
if

W
ifi

co
nn

ec
tio

n
isn

’t
di

sa
bl

ed
.B

ro
ad

co
m

ca
rd

ss
ee

m
to

be
re

gu
la

rly
ca

us
in

g
CP

U
in

te
rr

up
tio

ns
an

d
to

th
is

da
y,

no
so

lu
tio

n
ha

ve
be

en
fo

un
d.

Id
en

tif
yi

ng
th

is
iss

ue
ac

tu
al

ly
to

ok
so

m
e

tim
e

as
W

iF
is

ee
m

ed
a

ve
ry

un
ex

pe
ct

ed
so

ur
ce

of
xr

un
s.

T
he

O
SS

IA
pr

oj
ec

t

O
SS

IA
:O

pe
n

So
ftw

ar
e

Sy
st

em
fo

rI
nt

er
ac

tiv
e

A
pp

lic
at

io
ns

(o
ss

ia
.i

o)
.

Bi
nd

in
gs

fo
ra

nu
m

be
ro

fo
pe

n
so

ur
ce

en
vi

ro
nm

en
t(

Su
pe

rC
ol

lid
er

,P
ur

e
D

at
a,

O
pe

nF
ra

m
ew

or
ks

...
).

Fa
us

t,
V

ST
an

d
LV

2
su

pp
or

t.
O

SC
Q

ue
ry

,d
ev

elo
pe

d
in

co
lla

bo
ra

tio
n

wi
th

V
D

M
X

,V
ez

ér
an

d
M

ad
M

ap
pe

r,
al

lo
ws

fo
ra

ut
om

at
ic

de
te

ct
io

n
of

O
SC

na
m

es
pa

ce
s.

Im
pl

em
en

te
d

wi
th

W
eb

So
ck

et
s,

an
O

SC
Q

ue
ry

se
rv

er
ca

n
co

m
m

un
ica

te
na

tiv
ely

wi
th

a
we

b
pa

ge
.

Sc
rip

ta
bl

e
pr

ot
oc

ol
sw

ith
Ja

va
sc

rip
t:

H
TT

P,
W

eb
So

ck
et

s,
M

ap
pe

r,
Se

ria
lp

or
t.

Pr
ot

oc
ol

si
n

th
e

wo
rk

sa
tt

he
m

om
en

ti
nc

lu
de

A
rt

ne
t,

W
iim

ot
e

an
d

ga
m

ep
ad

su
pp

or
t.

T
he

M
os

ca
ca

se

M
ul

tim
ed

ia
pr

od
uc

tio
n

on
Li

nu
x

di
ffe

rs
m

ai
nl

y
wi

th
co

m
m

er
cia

lo
pe

ra
tin

g
sy

st
em

s
by

its
“d

ec
en

tr
al

ize
d”

as
pe

ct
.

W
he

re
as

co
m

m
er

cia
le

nv
iro

nm
en

ts
at

te
m

pt
to

be
al

l-
en

co
m

pa
ss

in
g

wh
ile

re
m

ai
ni

ng
clo

se
d

bl
ac

k
bo

xe
s,

th
e

gr
ea

t
nu

m
be

r
of

in
de

pe
nd

en
t

m
od

ul
es

an
d

th
e

fre
ed

om
to

ha
ve

th
em

in
te

ra
ct

en
co

ur
ag

es
a

m
or

e
sp

ec
ia

liz
ed

an
d

di
st

rib
ut

ed
ap

pr
oa

ch
.

Fu
rt

he
r

de
ve

lo
pm

en
t

of
th

e
M

os
ca

pr
oj

ec
t

at
SC

RI
M

E
ex

em
pl

ifi
es

th
is

pr
ac

tic
e.

In
i-

tia
lly

cr
ea

te
d

by
Ia

in
M

ot
t,

M
os

ca
is

a
Su

pe
rC

ol
lid

er
cla

ss
fo

r
re

al
tim

e
3D

so
un

d
pr

oc
es

sin
g.

It’
s

m
an

y
fea

tu
re

s
re

ly
on

th
e

in
te

rc
on

ne
ct

io
n

be
tw

ee
n

se
ve

ra
ld

iff
er

en
t

en
vi

ro
nm

en
ts

:
os

si
a

sc
or

e
[2

]f
or

in
te

ra
ct

iv
e

se
qu

en
cin

g
an

d
co

nt
ro

l
A

m
bi

D
ec

od
er

T
oo

lB
ox

[4
]f

or
di

re
ct

re
nd

er
in

g
on

sp
ea

ke
rA

rr
ay

s
A

rd
ou

r
[3

]f
or

ed
iti

ng
an

d
pr

ot
ot

yp
in

g
(c

on
ne

ct
ed

th
ro

ug
h

M
M

C)
A

lik
i[

1]
fo

rc
re

at
in

g
an

d
ed

iti
ng

ro
om

im
pu

lse
re

sp
on

se
s

A
rd

ui
no

fo
rh

ea
d

tr
ac

ki
ng

an
d

co
nt

ro
lw

ith
ge

st
ur

e

C
om

pa
tib

ili
ty

Fo
cu

sr
ite

,M
O

TU
an

d
RM

E
su

po
rt

wi
th

eit
he

rU
SB

or
Fi

re
W

ire
A

LS
A

dr
iv

er
sf

or
M

A
D

IF
ac

e
Pr

o,
Fi

re
fa

ce
U

FX
,S

ca
rle

tt
2i

2.
..

FF
A

D
O

dr
iv

er
sf

or
82

8
M

k2
,U

ltr
al

ig
ht

M
k3

,F
ire

fa
ce

80
0.

..
D

ig
id

es
ig

n
C2

4
co

nt
ro

lt
hr

ou
gh

O
SC

Q
ue

rr
y.

D
ig

id
es

ig
n

00
2

an
d

M
bo

x
su

po
rt

(o
rig

in
al

y
re

st
ric

te
d

Pr
o

To
ol

s)
.

A
ck

no
w

le
dg

em
en

ts

M
an

y
th

an
ks

to
Si

m
on

A
rc

hi
po

ff
an

d
Ra

ph
ae

lM
ar

cz
ak

fo
rt

he
ir

su
pp

or
ta

nd
su

gg
es

-
tio

ns
,a

nd
to

A
rt

hu
rL

ief
ho

og
he

fo
rh

is
co

nt
rib

ut
io

ns
!

[1
]

Fo
ns

Ad
ria

en
se

n.
“A

co
us

tic
al

im
pu

lse
re

sp
on

se
m

ea
su

re
m

en
t

wi
th

A
LI

K
I”.

In
:

Li
nu

x
Au

di
o

C
on

fe
re

nc
e

Pr
oc

ee
di

ng
s.

20
06

,p
.9

.
[2

]
Je

an
-M

ich
ae

l
Ce

ler
ier

.
“A

ut
ho

rin
g

in
te

ra
ct

iv
e

m
ed

ia
:

a
lo

gi
ca

l
&

te
m

po
ra

l
ap

-
pr

oa
ch

”.
Ph

D
th

es
is.

Bo
rd

ea
ux

,2
01

8.
[3

]
Pa

ul
D

av
is

et
al

.A
rd

ou
r

di
gi

ta
la

ud
io

wo
rk

st
at

io
n.

20
12

.
[4

]
A

K
H

ell
er

an
d

EM
Be

nj
am

in
.“

Th
ea

m
bi

so
ni

cd
ec

od
er

to
ol

bo
x”

.
In

:L
in

ux
Au

di
o

C
on

fe
re

nc
e,

(K
ar

lsr
uh

e)
.2

01
4.

134

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 16–19, 2019

SOUNDPRISM: A REAL-TIME SOUND ANALYSIS SERVER AND DASHBOARD

Michael Simpson

ITP
New York University

michael.simpson@nyu.edu

ABSTRACT

The paper presents SoundPrism1, a real-time sound analysis server
and dashboard. SoundPrism collects real-time sound data from a
microphone or PCM and performs analysis which can be broadcast
in near real-time for use by external applications. A dashboard
interface visualizes the collected data in a matrix allowing more
useful streams to be easily identified. This is useful in applications
where mapping higher level sound events to another form of output
desired. The tool offers particularly interesting new possibilities for
musicians and audio-visual artists. The design, implementation, and
conclusions will be discussed within this paper.

1. INTRODUCTION

SoundPrism is a software project that aims to simplify and expand
the ways that real-time signal analysis and music information
retrieval can be used in creative applications.

This project is intended for providing simpler access to near real-
time MIR data as it is captured. The author’s interest in this project
relates to music visualization, composition, and the creation of
audio-visual performances, installations, and experiences.
However, the author believes the technique has vast applications
across disciplines.

SoundPrism is made of three components: a real-time database, a
graphical dashboard, and a domain specific language for
composing data flows out of signal analysis and music infortmation
retrieval algorithms.

SoundPrism was built using OpenFrameworks, a creative coding
toolkit for C++, and the Essentia Project, a collection of signal
analysis and music infortmation retrieval algorithms. Both software
have cross-platform compatibility. SoundPrism was developed
using Linux using the Linux-rt kernel and JACK.

1.1. Domain Specific Language

SoundPrism offers a domain specific language for composing
analysis chains out of Essentia’s algorithms. These chains are then
available to be visualized, stored, or broadcasted by the graphical
dashboard. This allows new analysis chains to be designed without
having to delve into all the related scaffolding.

1.2. Graphical Dashboard

As a graphical dashboard, SoundPrism serves as a tool for thought
by providing a simultaneous view of up to 16 different data

1https://mgs.nyc/projects/2018/SoundPrism

streams. This format amplifies the user’s ability to quickly discern
the usefulness of a certain analysis in a certain context.

The dashboard offers multiple visual styles for rendering the data,
for example: line graphs, histograms, and 3d cascading waterfalls.
The 3D visualizations use historical data to offer context of time.
The dashboard allows the user to select the most useful algorithms
to either store their data, broadcast it to the network, or both.

Figure 1: SoundPrism Showing a 4x4 Dashboard

1.3. Data Server

SoundPrism broadcast selected streams so external applications are
able to use them. This allows existing applications to take full
advantage of the real-time signal analysis and music information
retrieval capabilities offered by SoundPrism. Furthermore, the data
can be accessed remotely which allows for decoupling of
applications from the audio’s physical location.

2. IMPLEMENTATION

SoundPrism was built in C++ using OpenFrameworks, for
graphical visualization and i/o, and the Essentia Project is
leveraged for its signal processing and music information retrieval
capabilities. For broadcasting of data, SoundPrism uses
OpenSoundControl (OSC) which makes the data available for use
by any other OSC-enabled application.

SoundPrism’s dashboard uses OpenGL and provides each cell of
the matrix with its own framebuffer object containing a unique
camera and solitary planar mesh. This allows the cameras for each
cell to be controlled manually or snapped to common orientations.
Data is streamed into these mesh through the use of textures which
are then sent into a vertex shader responsible for deforming the
subsequent meshes. This allows for fast simultaneous rendering of
up to 16 different graphs.

135

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 16–19, 2019

The Domain Specific Language is implemented as a series of
macros which parse contents of the user’s DSL coded files and
transpiles them into the syntax used by Essentia.

2.1. Algorithms Provided By Essentia2

FFT, DCT, frame cutter, windowing, envelope, smoothing,
low/high/band pass, band reject, DC removal, equal loudness,
median, mean, variance, power means, raw and central moments,
spread, kurtosis, skewness, flatness, duration, loudness, LARM,
Leq, Vickers' loudness, zero-crossing-rate, log attack time and
other signal envelope descriptors, Bark/Mel/ERB bands, MFCC,
GFCC, LPC, spectral peaks, complexity, rolloff, contrast, HFC,
inharmonicity and dissonance, Pitch salience function, predominant
melody and pitch, HPCP (chroma) related features, chords, key and
scale, tuning frequency, beat detection, BPM, onset detection,
rhythm transform, beat loudness, danceability, dynamic complexity,
audio segmentation, SVM classifier

2.2. DSL Example: MFCC

Mel-frequency cepstral coefficients (MFCCs) are particularly
useful. Here’s how an MFCC data flow would look using
SoundPrism’s DSL.

 // File: mfcc.mdf

 audio{source: PCM}
 fc{algo: FrameCutter
 size: 2048}
 win(algo: Window}
 spec{algo: Spectrum}
 mfcc(algo: MFCC)

 audio → fc → win → spec → data:mfcc

The code above sets up a data flow that begins from the PCM, is
cut into a frame of data, windowed, spectrum analyzed, and then
MFCC is calculated. The output of the MFCC calculation is stored
in a thread-safe database under the id of “mfcc”. By adding these
files, custom data flows become available to be placed within the
dashboard and the data outputs are available for broadcasting via
OSC.

3. CONCLUSIONS

SoundPrism demonstrates the usefulness of a robust platform for
collecting, analyzing, and visualizing signal analysis and music
information retrieval data. By making the data available to external
applications, a tremendous number of potential applications are
enabled but the following two are particularly interesting:

2https://essentia.upf.edu/documentation/documentation.html

3.1. Music Visualization

By allowing for more intelligent understanding of the audio signal,
more meaningful ways of relating audio and visual outputs can be
created. This can be used as a basis for a more sophisticated
platform for music visualizations.

3.2. Machine Listening

Tools like SoundPrism may prove useful as a component or
prototyping tool for the design and implementation of Machine
Listening systems. Machine Listening takes several techniques and
technologies, like signal analysis, music information retrieval, and
machine learning, and then fuses them with contemporary
knowledge of cognitive science in efforts to simulate the human
ear-brain system. A software like SoundPrism could prove to be a
useful tool for generating datasets for the training of neural
networks. It would also be useful as a platform for quickly
experimenting with chains of signal analysis.

3.3. Sound Events

By providing the user with simplified access to the multiplicity of
sound they are able to begin using sound in more intelligent ways.
This opens the possibility for radical new forms of creativity and
composition where sound features could be used as hooks caught
by an event handler.

4. ACKNOWLEDGMENTS

Many thanks to my family, Yeseul Song, Roy MacDonald, Luke
DuBois, Juan Bello, Zach Lieberman, Kyle McDonald, Dan
Shiffman, Danny Rozin, Nick Montfort, Ramsey Nasser, Allison
Parrish, Taeyoon Choi, Nancy Hechinger, Kathy Wilson, Dan
O’Sullivan, Katherine Dillon, Gene Kogan, and all the other
wonderful people who offered support and guidance along the
way.

5. REFERENCES

[1] Bogdanov, D., Wack N., Gómez E., Gulati S., Herrera P., Mayor
O., et al. (2013). ESSENTIA: an Audio Analysis Library for Music
Information Retrieval. International Society for Music Information
Retrieval Conference (ISMIR'13). 493-498.

136

