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Foreword

Welcome everyone to LAC 2019 at CCRMA!

For the second time in its seventeen year history, the Linux Audio Conference (LAC)
is hosted in the United Stated of America by the Center for Computer Research in Mu-
sic and Acoustics (CCRMA) at Stanford University. With its informal workshop-like at-
mosphere, LAC is a blend of scientific and technical papers, tutorials, sound installations,
and concerts centered on the free GNU/Linux operating system and open-source free soft-
ware for audio, multimedia, and musical applications. LAC is a unique platform during
which members of this community gather to exchange ideas, draft new projects, and see
old friends.

In these times of increasing political tensions and of rising extremism throughout the
world, we believe that emphasizing and promoting the universality of this type of event
is of the utmost importance. The Linux audio community exists worldwide; we believe it
should remain a priority to diversify LAC’s geographical location from year to year for the
benefit of those who can't afford to travel to the other side of the world.

This year, a large portion of presenters and performers is coming from the Americas
and Asia. LAC-19 features six paper sessions, five concerts, four workshops, one keynote, as
well as various posters, demos, and side events happening in various locations on Stanford
University campus.

We wish you a pleasant stay at Stanford and we hope that you will enjoy the conference!

Romain Michon (LAC-19 Co-Chair)
CCRMA, Stanford University (USA) & GRAME-CNCM, Lyon (France)
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CREATING A SONIFIED SPACECRAFT GAME USING HAPPYBRACKETS AND
STELLARIUM

Angelo Fraietta

UNSW Art and Design
University of New South Wales, Australia
a.fraietta@unsw.edu.au

ABSTRACT

This paper presents the development of a virtual spacecraft simula-
tor game, where the goal for the player is to navigate their way to
various planetary or stellar objects in the sky with a sonified poi.
The project utilises various open source hardware and software plat-
forms including Stellarium, Raspberry Pi, HappyBrackets and the
Azul Zulu Java Virtual Machine. The resulting research could be
used as a springboard for developing an interactive science game
to facilitate the understanding of the cosmos for children. We will
describe the challenges related to hardware, software and network
integration and the strategies we employed to overcome them.

1. INTRODUCTION

HappyBrackets is an open source Java based programming environ-
ment for creative coding of multimedia systems using Internet of
Things (IoT) technologies [1]. Although HappyBrackets has focused
primarily on audio digital signal processing—including synthesis,
sampling, granular sample playback, and a suite of basic effects—we
created a virtual spacecraft game that added the functionality of con-
trolling a planetarium display through the use of WiFi enabled Rasp-
berry Pis. The player manoeuvres the spacecraft by manipulating a
sonic poi!, which is usually played in the manner shown in Figure 1.
The poi contains an inertial measurement unit (IMU), consisting of
an accelerometer and gyroscope; and a single button. The goal of the

Figure 1: The conventional way of playing a sonic poi.

game is for a player to choose an astronomical object, for example a
planet or star, and to fly towards that object. This enables the player
to view other objects, including planets, moons, stars and galaxies in

1"Poi spinning is a performance art, related to juggling, where weights on
the ends of short chains are swung to make interesting patterns." [2, p. 173]

Ollie Bown

UNSW Art and Design
University of New South Wales, Australia
o.bown@unsw.edu.au

the field of view. For example, Figure 2 shows how the player might
view Saturn from Earth, while Figure 3 shows how the player may
view Saturn from their spacecraft. The sonic poi generates sound
that is indicative of the player’s field of view. Additionally, the poi
provides audible feedback when the player zooms in or out.

Figure 2: Saturn viewed from the ground from Stellarium.

Figure 3: A closer view of Saturn from Stellarium.

The University of New South Wales required a display for their
open day to showcase some of the work conducted in the Interactive
Media Lab. The opportunity to develop an environment whereby vis-
itors could engage with the technology we were developing would
not only facilitate attracting possible future students, it was also a
way to develop and test the integration of various research compo-
nents we were conducting. Many managers and business seek to en-
gage new customers through gamification [3]—in this case, prospec-
tive customers were potential students. Furthermore, research indi-
cates that visualisation and interpretation of software behaviour de-
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veloped as part of a game is more memorable, which facilitates locat-
ing errors or developing methods for improvement [4]. Developing
a game, therefore, would not only engage the visitors, it would pro-
vide us with a more memorable way of seeing how our system was
behaving.

The technology to develop the game required two different ver-
sions of Raspberry Pi, installation of planetarium software onto one
of the Pis, and the creation of a Java API to join the different sys-
tems. This paper details the strategies and techniques to integrate the
different technologies and describes some of the workarounds for
unresolved issues. We also discuss the goals, rules and rewards used
to define the game and the methods we used to entice prospective
players. Finally, we lists areas where the research can be extended.

2. BACKGROUND TO RESEARCH

The research was inspired by a previous project developed by one of
the authors that correlated what a viewer saw in the night sky through
binoculars with data obtained from on-line astronomical data cata-
logues [5]. One installation, which was conducted in conjunction
with the Newcastle Astronomical Society on one of their field view-
ing nights, was particularly successful [6]. More than twenty mem-
bers of the public were enticed into viewing the night sky through
high powered binoculars while sound that was based on data from
the stars they were viewing was playing through loudspeakers on the
field.

Another set of performances was conducted with an improvis-
ing ensemble that featured various astronomical photos displayed as
a slide show [7]. The stellar data was mapped as MIDI and success-
fully functioned as inspirational impetus for the performers, but was
unsuccessful from an astronomical point of view. First, the ability
for viewers to look through the equipment was directly dependant
upon the weather. One performance, for example, had a night sky
complete with thick black cloud, heavy rain and lightning. More-
over, when the weather was favourable for viewing, the audience
were often content to just watch the performers rather than venture
out of their chairs to view through the binoculars [5]. The audience
feedback from the was that although they really liked the slide show,
many were unaware that the binoculars were even there for view-
ing. Instead of providing a slide show at the next performance, an
improvisation using Stellarium from a laptop computer was used on
the screen. The audience’s response was extremely favourable, in-
spiring the idea of using Stellarium as a visual stimulus instead of
binoculars.

2.1. Raspberry Pi

The Raspberry Pi was originally developed in 2011 [8] for educa-
tion by the Raspberry Pi Foundation, a UK based educational charity
[9]1[10]. The Raspberry PI has a very large user base and a signifi-
cant number of plug in sensors available for it [11], and supports a
128GB SD card, which can be used to store more than 200 hours of
high-quality audio. The Raspberry Pi foundation officially supports a
derivative of the Linux distribution Debian known as Raspbian [12].
Raspbian’s inclusion of compilers, support for multiple coding lan-
guages, and the ability to run multiple programs provides the flexi-
bility that enables a system to expand as an interactive platform as
newer technologies become available. The game project used two
different versions of Raspberry Pi and Raspbian. The sonic poi re-
quired a small form factor, low power consumption but did not re-
quire a GUI, and consequently, Pi Zero running Raspbian Stretch

Lite was selected. The device used to display the graphics required
significantly more power but did not have size restrictions, so a Rasp-
berry Pi B+ running the desktop version of Stretch was selected for
this.

2.2. HappyBrackets

HappyBrackets commenced as "A Java-Based remote live coding
system for controlling multiple Raspberry Pi units" [13] where a
master controller computer sent pre-compiled Java classes to selected
Raspberry Pi devices on a network. Unlike the Arduino sketch,
which is effectively a single program [14], the HappyBrackets com-
position is not a standalone executable program. The HappyBrackets
core has a thread that listens for incoming bytecode classes, and after
receiving the class, executes the new class’s functionality through a
Java interface. This allows for multiple concurrent compositions that
can be easily created or updated during composition or the creative
coding performance [1]. This research was extended with the de-
velopment of the Distributed Interactive Audio Device (DIAD) [15],
which contained an IMU consisting of an accelerometer, gyroscope
and compass. The devices were handled by the audience and incor-
porated into the environment. The DIADS not only responded to
user manipulation, they also responded to one another. Furthermore,
DIADS were configured to automatically connect to the wireless net-
work, and once a DIAD came into range of the network, became a
part of the DIAD multiplicity. The main focus of this development
was the implementation of a reusable platform that allowed creators
to easily develop interactive audio and easily deploy it to other de-
vices. Although HappyBrackets runs on many embedded platforms,
the main research has been with the Raspberry Pi, primarily due to
the availability and low cost of the devices. HappyBrackets is li-
censsd under the Apache License 2.0° and is available through Git
Hub-.

A prebuilt disk image—which contains the Java Virtual Machine
(JVM), the 12C drivers to enable access to the IMU, and libraries to
access the GPIO—enables users to flash an SD card and start us-
ing HappyBrackets without ever having to connect their device to
the Internet. The licence for the Oracle JVM, however, appeared to
prohibit embedding the Oracle JVM into a prebuilt image and was
therefore legally problematic. We found that the AZUL Zulu JVM
was available under the GNU GPLv?2 licence®, enabling an embed-
ded distribution within an image. Medromi et al. conducted a study
that compared the two JVMs [16]. Their tests revealed that Zulu
created more threads and classes than Oracle, indicating that Zulu
probably used more memory, making it more susceptible to garbage
collection issues. Furthermore, their tests showed that Zulu also used
a greater percentage of CPU, indicating greater power consumption.
The report, however, did not detail the difference in performance
speed between the two JVMs. Our own initial tests did not show
any difference between the two JVMs and there was no noticeable
performance degradation, however, this is an area we still need to
research. It is possible to change the default JVM used in the Rasp-
berry Pi from the terminal, which would make switching between
JVMs when performing comparative tests relatively easy.

2 www.apache.org/licenses/ [accessed November 2018]

3 github.com/orsjb/HappyBrackets [accessed November 2018]
4www.gnu.org/licenses/old-licenses/gpl-2.0.txt  [accessed November
2018]
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2.3. Stellarium

The advancement of computing power over the last two decades
has made the availability of planetarium software available on both
desktop computers and mobile devices commonplace. Moreover,
many of these software packages—including RedShift’, SkySafari®,
StarMap’, The SkyX®, and Stellarium®—have become valuable tools
for astronomers. They facilitate the identification of objects and in
the planning of viewing and astro-photography sessions by enabling
sky simulation for any particular location, date and time [17].
Stellarium is an open source software project distributed under
the GNU General Public Licence with the source code available
through Git Hub'® . Stellarium functions as a virtual planetarium;
calculating positions of the Sun, moon, stars and planets based on
the time and location defined by the user. Moreover, the viewing
location does not even need to be on Earth. For example, Figure 4
displays Stellarium rendering Jupiter viewed from its moon Io.

Figure 4: A simulation of Jupiter viewed from lo.

Stellarium is used by both amateur and professional astronomers,
and is used by the European Organisation for Astronomical Research
in the Southern Hemisphere to facilitate distribution and sharing of
visual data among scientists [18]. Stellarium has a very high quality
graphical display, supporting spherical mirror projection that can be
used with a dome [19]. Stellarium is used in many schools and mu-
seums because it is both scientifically accurate and visually engaging
[18]. Moreover, it is suitable for demonstrating basic through to ad-
vanced astronomy concepts [18]. Stellarium has a built in library of
600 000 stars, with the ability to add an additional 210 million [19].
Moreover, Stellarium can display constellations from several differ-
ent cultures and has labels translated to more than 40 languages,
making Stellarium both culturally aware and inclusive [18].

Although it is quite straightforward to control Stellarium using
a keyboard and mouse, there are many plugins that allow third party
integration with the software. The plugin we were particularly in-
terested in to control Stellarium was the Remote Control, which en-
abled control of Stellarium through HTTP [21]. Stellarium also con-
tains a powerful scripting engine that enables one to program and
run complete astronomy shows. The scripts, written in JavaScript,

www.redshift-live.com [accessed November 2018]
www.southernstars.com [accessed November 2018]
www.star-map.fr [accessed November 2018]
www.bisque.com [accessed November 2018]

9stellarium.org [accessed November 2018]

10 github.com/Stellarium/stellarium [accessed November 2018]

5
6
7
8

control Stellarium through a series of objects that represent the Stel-
larium application components [20].

3. RELATED WORK

Video games rose from obscurity in the 1970s, into a video arcade
industry grossing $8 billion dollars in 1982 [22, p. 88]. The video
game moved from the arcade into the home with Nintendo and Atari
game consoles [22, 23]. Iconography games like Space Invaders,
Defender, Spaceward HO! and Star Wars were often replaced with
interactive games that became more realistic [23]. Wolf suggests
that there are more than forty different genres of video games [23],
however, we were only particularly interested in the "Training Sim-
ulation" genre.

One study showed that video game expertise developed over
long-term playing had a beneficial effect on the spatial skills in the
player, supporting the hypothesis that "video expertise could func-
tion as informal education for the development of skill in manipu-
lating two-dimensional representations of three dimensional space”
[22, p. 93]. The aerospace industry has employed training simulators
for many years, with the advancement in virtual reality environments
leading to the availability of a new technology known as "serious
gaming" [24, p. 655]. This technology exploits popular high-quality
computer games, making it available via Software Development Kits
(SDKs) to developers of "serious"[sic] applications such as defence,
surgery, education and aerospace [24, p. 686].

One particularly interesting training simulation project was a
prototype environment for training astronauts in a simulated zero
gravity environment for the purpose of controlling and handling ob-
jects [25]. Ronkko et al. noted that astronauts discovered using a
laptop in a zero gravity environment was completely different to us-
ing it on Earth, and that the whole concept of a laptop computer in a
zero gravity environment was questionable [25, p. 183].

There have been various implementations of third party integra-
tion with Stellarium. Although it is possible to remotely control a
telescope using Stellarium as the master controller [26], some re-
searchers have developed projects whereby Stellarium becomes the
slave. Tuveri et al. developed two planetarium control systems
for driving Stellarium on a Laptop computer [27]. They extended
the Stellarium code in order to send it application messages before
the Remote Control plugin was available in the standard Stellarium
distribution. One interaction implementation was through a touch
screen, while the other was through a Kinect gesture controller [27].

The Remote Control Stellarium plugin was developed by "Flo-
rian Schaukowitsch in the 2015 campaign of the ESA Summer of
Code in Space programme" [20, p. 110], and was used for a vi-
sual art installation in the MAMUZ museum for pre-history [21].
The installation, STONEHENGE. A Hidden Landscape, consisted
of a single computer driving five projections onto a 15x4m curved
screen.The presentation was automated with a Raspberry Pi that trig-
gered a script via an HTTP request every twenty-five minutes via a
cron job. This Remote Control plugin is now a standard part of the
Stellarium installation. This use of both scripting and HTTP control
was the mechanism we employed in our game.

4. DEFINING THE GAMIFIED EXPERIENCE

One of the intentions of creating the gamified environment was to en-
gage visitors. In the gamified experience, four parties are involved:
players, designers, spectators, and observers [28]. The key to a de-
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veloping successful gamified experience is to identify who the par-
ties are and how to engage them for the purpose of creating a positive
and memorable experience [3], each with different levels of involve-
ment or immersion [28]. Players were the visitors who physically
controlled the virtual spacecraft, and in a sense, were the competi-
tors and highly immersed in the experience. Spectators were people
who do not directly compete in the game, but instead, influenced the
game indirectly by encouraging the player and were also highly im-
mersed in the experience. Observers were other visitors in the space
that were passively involved and had no direct impact on the game.
They were, however, mildly involved and often moved to become
players or spectators [28].

Research indicates that the three main factors in developing an
enjoyable game were challenge, fantasy and curiosity [29]. We pro-
vided challenge in that we set a goal that had increasing levels of
difficulty. As the user was closer to the planet, the spacecraft be-
came more difficult to control.

We utilised fantasy in that we implement two modes of play:
terrestrial and spaceship. Terrestrial mode allowed the player to use
gravity in a familiar way, provided wide fields of view that showed
large amounts of sky and provided course control. Spaceship mode
showed less fields of view, displaying significantly less sky and pro-
vided finer control; however, the player was not allowed to use grav-
ity in their control. We enabled the player to zoom in and out by per-
forming a quick twist action of the ball around the string. If the gyro-
scope pitch value exceeded the set threshold, the field of view would
change, simulating a zoom in or out. When the user changed their
field of view to less than 30 degrees, the play mode went from ter-
restrial to spaceship. We provided an audible feedback that sounded
like a zipper when the level of zoom was changed.

The only controls available at the time on the poi were accelerom-
eter and gyroscope !, while the only feedback was audio generated
by the poi and the Stellarium display. In the same way that a laptop
could not be used conventionally in a zero gravity environment [25],
a player would be unlikely to control the game successfully using
the poi by spinning it around their body [2]. Figure 5 shows the poi
with three axes of accelerometer and gyroscope on the left and right
respectively.

Figure 5: Sonic Poi accelerometer and gyroscope input.

In terrestrial mode, we wanted to simulate a viewer on the ground
lifting and turning their head to view the sky as one would on Earth,
which is essentially increasing the altitude and rotating the azimuth.
The player "lifts their head" by raising the ball of the poi in an arc,
using the point where the player holds the rope as the centre, and
measuring Y axis acceleration through the IMU in the poi. Rotating
the viewer’s head was simulated by detecting the pitch value of the

"'The button control was added to the poi later.

gyroscope, as shown on the right side of Figure 5. Gyroscope val-
ues only change while the object is rotating, whereas gravitational
accelerometer values are maintained when the object is stationary.

In the spaceship mode, we wanted to simulate the player nav-
igating through space in a zero-gravity environment. The yaw and
the pitch were used as input, whereby the user had to roll the ball
in their hands to move the display. This was completely foreign to
users at first because there was no haptic feedback, nor any sense
of grounding for the user or the control. In a sense, it was similar
to balancing on a ball in space because you could not fall off—you
would just float in an unintentional direction. Furthermore, it was
not easy to detect which axis was which because the poi was a ball
shape. Furthermore, rotating one axis would affect the cognition of
the other axis. Consider a player in Figure 5 rotating the ball for-
ward around the X axis with the poi producing a positive yaw. If
the player then turned the poi 180 degrees around the string, rotat-
ing the ball forward again would now produce a negative yaw, which
would mean the screen would start moving in the opposite direction
to what they experience a moment earlier. The result was that con-
trolling the display required constant mental adjustment, which we
suggested might simulate to some degree the sense of strangeness an
astronaut may feel controlling objects in outer space [25, p. 183].

In order to run an attractive and engaging display that would trig-
ger the visitors’ curiosity when they entered the room, we ran Stel-
larium scripts that functioned as standalone astronomy shows. We
invited visitors to manipulate the poi and watch the display move
while the script was running. When we saw they were interested
and enjoyed the novelty of interacting with the display through the
poi, we offered them the opportunity to start from Earth and navi-
gate to one of the planets in our solar system. As they zoomed in
closer to Saturn, they became quite excited when they saw the rings
and realised that they could also see Saturn’s moons. For those who
were particularly enthusiastic, we suggested finding Jupiter next, in-
forming them that they would also be able to see the four Galilean
moons that night at home with a standard pair of binoculars. We also
asked them to imagine that rolling the ball to control their movement
might be as strange as moving about in a zero gravity environment.
Although a few of the players gave up after a few minutes, the ma-
jority of players continued for more than ten minutes, had a lot of
fun, and exhibited a sense of achievement in being able to navigate
into outer space.

5. DEVELOPMENT

The system was originally developed as a tool for evaluating the per-
formance, behaviour and suitability of networked control of Stellar-
ium as part of a potential interactive audio visual artwork. We in-
tended to calculate the azimuth and altitude position in space calcu-
lated from the rotation and manipulation of poi. These values would
be used as input to Stellarium on another device, sent via the net-
work, which would then display the sky based on those values. Ad-
ditionally, we sent commands to change the field of view on Stel-
larium, which effectively acted as a zoom function. The poi also
played audio as a series of ten uniformly distributed pseudorandom
sine waves between 500 and 550Hz, giving a sense of cosmic back-
ground microwave noise.

float freq = hb.rng.nextFloat () *= 50 + 500;
Envelope envelope = new Envelope(l);
WaveModule soundGenerator = new WaveModule () ;
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soundGenerator.setFequency (freq) ;
soundGenerator.setGain (envelope) ;
soundGenerator.connectTo (masterGain) ;
return envelope;

A metronome iterates though each of the envelopes, adding segments
that cause each frequency to momentarily pop out of the background
as a beep.

hb.createClock (5000) .addClockTickListener ((
offset, this_clock) -> {

Envelope e = envelopes.get (envelopIndex++ %
TOTAL_OSCILLATORS) ;

final float LOUD_VOL = 20;

final float LOUD_SLOPE = 20;

final float LOUD_DURATION = 200;

e.addSegment (LOUD_VOL, LOUD_SLOPE) ;
e.addSegment (LOUD_VOL, LOUD_DURATION) ;
e.addSegment (1, LOUD_SLOPE) ;

1) i

As the user zooms in, the metronome becomes faster, increasing
the beep rate, generating a sense of sonic tension.

5.0.1. Starting Stellarium

The first challenge was starting Stellarium on the Pi from within
HappyBrackets. HappyBrackets has a simple facility to execute shell
commands or create processes through both the Java Runtime exec
and the ProcessBuilder [30]. We attempted a script to run Stellar-
ium from a process command, which ran successfully when executed
from a terminal; however, we could not get HappyBrackets to run
the script after each fresh reboot of the device—the program was un-
able to access the display. Interestingly, If we killed the JVM and the
started HappyBrackets again from a terminal, then Stellarium started
from within HappyBrackets with no problem. The problem was that
the HappyBrackets installation script had configured the Raspberry
Pi to automatically start the Java application when the device first
boots by executing a script in /etc/local.rc as defined in the Raspberry
Pi documentation'®. In order to run GUI programs from Java, the
Java program needs to be started when the desktop starts, which was
effected by moving the script command to /.config/Ixsession/LXDE-
pi/autostart'®. The HappyBrackets installation scripts were conse-
quently modified to detect whether a desktop version was used, and
added the HappyBrackets start-up script command accordingly.

5.0.2. Controlling Stellarium

Examples of controlling Stellarium through the Remote Control API
were provided on the plugin developer page'®, which made use of
the cURL [sic]"® command line utility'6 and executed via an SSH
terminal connection to the Pi. Although we did not intend to use curl
in our actual program because Java has its own networking interface,
curl was extremely useful for examining and diagnosing through the

12ww.raspberrypi.org/documentation/linux/usage/rc-local.md [accessed
November 2018]

13www.raspberrypi.org/forums/viewtopic.php?t=139224
November 2018]

14stellarium.org/doc/head/remoteControl Api.html

Bcurl.haxx.se

16¢cURL should not be confused with the curl programming language.
ec.haxx.se/curl-name.html [accessed November 2018].

[accessed

terminal. Querying the state of Stellarium was performed by issu-
ing a curl GET command. For example, executing the following
command in the SSH terminal retrieves the current view direction of
Stellarium as a JSON encoded string.

curl -G http://localhost:8090/api/main/view

{"altAz":"[0.954175, 9.54175e-06,
0.299249]1","j2000":"[0.240925, 0.147495,
-0.959271]1","jNow":"[0.241334, 0.148053,
-0.959082]"}

Setting the position of Stellarium is executed with the curl POST
command, with the parameters added as JSON parameters. Execut-
ing the following command would set the display to horizontal by
setting the altitude to zero.

curl -d "alt=0’ http://localhost:8090/api
/main/view

Having tested the functionality using curl through the terminal, we
implemented calls using the standard Java URL connections [31].
We sent control message from the poi via UDP to the slave using
HappyBrackets and then immediately sent the HTTP message on the
slave to Stellarium. We found that although the message arrived from
the poi to the slave in less than a few milliseconds, the time to execute
the post message on localhost, be actioned by Stellarium, and then
return typically took between 80 and 120 milliseconds. This pro-
duced accumulative latency when the player continually moved the
poi. The accelerometer and gyroscope typically update every 10ms,
so constantly rotating the device for two seconds would generate
approximately 200 messages. These values would become queued
inside the slave and sequentially executed, which would result in an
accumulating latency over a twenty second period. A method was re-
quired that would immediately send the last received position change
when the last message was complete, but would discard previous
values that were not yet actioned. We accomplished this through
an independent thread for executing the post command. This thread
would be effectively dormant while waiting for an event. When a
message arrives on a different thread, the event is triggered, at which
point the thread wakes and sends the message. We effected this
through the use of Java synchronisation objects. The functionality
that sends the post messages to Stellarium executes in an indefinite
loop, laying dormant through the altAzSynchroniser.wait
() call.

new Thread(() —-> {
while (!exitThread) {
synchronized (altAzSynchroniser) {
try {
altAzSynchroniser.wait ();
} catch (InterruptedException e)
{

e.printStackTrace();

}

sendAltAz (currentAz, currentAlt);

}
}) .start ();

The thread will wait indefinitely until it receives a signal from
variable altAzSynchroniser. When a message to change the
altitude arrives from the poi, the class variable currentAlt is set
and the altAzSynchroniser object is notified, which in turn
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causes the thread shown above to wake and then call sendAltAz
with the new azimuth and altitude to the localhost.

public void changeAltitude (double
control_val) {
synchronized (altAzSynchroniser) {
currentAlt = control_val / 2 %= Math.PI;
altAzSynchroniser.notify(); }
}

We found that modifying the azimuth and altitude directly often
produced a jittery display due to the 100ms latency coupled with
discarding of values that were not actioned while waiting for the
sendPostMessage call to return. We reduced this problem sig-
nificantly by sending arrow key messages and moved the display left
and right instead of sending an azimuth. This produced a smooth
display rotation when rotating the ball. It was not possible to use
this for the altitude in the terrestrial mode because we were using the
accelerometer value to determine the height. In the spaceship mode,
however, this proved very effective as we were able to just send up,
down, left and right messages based on gyroscope action.

6. FUTURE WORK

There were several issues that we discovered through running the
game. The first problem was that the Raspberry Pi would often crash
when running the display after a certain period of intense manipula-
tion, however, we were able to run it for several days if we did not de-
mand too many rapid changes from Stellarium. We substituted the Pi
with a Mac Mini in order to determine where the problems were. We
found that we were able to reproduce an error in Stellarium on the
Raspberry Pi when running the script double_stars.ssc that comes
with Stellarium, however, the Mac ran with no errors. Running the
kernel journal showed errors indicating an inability to allocate mem-
ory within the GPU'”. The VC4 OpenGL driver required to run Stel-
larium is still experimental, and it is probably that this is where the
error lies. Research and development in this area is still required to
make a stable Raspberry Pi installation of Stellarium.

We found that when the player started rotating the ball fast, the
zoom would activate, requiring them to stay within certain rotation
rates. We modified the game so changing zoom required the player
to hold the button down when performing a zoom action.

Messages are sometimes lost over UDP, which became evident
when a zoom message was sometimes not delivered to the slave.
We have performed some tests comparing different routers and dif-
ferent Raspberry Pis for packet loss. Additionally, we tested code
in both Java and C++. We discovered that as packet intervals ex-
ceeded 10ms, the percentage of packet loss increased. Interestingly,
we found that there was less packet loss using Java than C++ using
the standard compilers distributed with Raspbian. Furthermore, the
quality of router had a significant impact. Some routers, although
supporting multicasting, stopped sending multicast messages to de-
vices after about ten minutes. We intend to perform more tests re-
garding the packet loss, however, the real concern is that broadcast-
ing and multicastling of OSC over UDP is not satisfactory [33].

We found that the Just In Time (JIT) compiler took time to con-
vert the downloaded Java byte code into machine code [34], produc-
ing a brief stuttering effect when executed for the first time. The
problem became exacerbated when using the Pi Zero with ten os-
cillators running simultaneously due to the limited power of the Pi

17 github.com/Stellarium/stellarium/issues/550 [accessed November 2018]

Zero. Once the JIT compiler had converted the code, subsequent
code changes were not affected. Although only an issue when the
program starts, we need to examine strategies to overcome this.

7. CONCLUSIONS

During our research we were able to integrate various open source
programs to create a system where we could develop and evaluate
Stellarium as a controllable display element, create inter process
and device communication using the HappyBrackets Java environ-
ment, and to experiment with the use of the sonic poi as a per-
formance tool. We used this system to create a gamified environ-
ment where visitors were engaged with our technology, providing
them with a positive and memorable experience. We capitalised on
this opportunity to observe and evaluate how our system was behav-
ing, which was more memorable to us by virtue of it being part of
a game that was played repeatedly. We leveraged the quality the
Stellarium display coupled with a wireless control device to create
a game that was challenging, fun, engaging and educational. More-
over, the technical goal was to be able to control Stellarium during
a performance with HappyBrackets, with an example available at
https://youtu.be/NhXRdd-MNoo

The research obtained from developing this game can be used
as a starting point for the development of an interactive educational
installation. Furthermore, we found a way to expose issues with
OpenGL driver on the Raspberry Pi, Java JIT, and UDP packet loss
and performance using both Java and C++.
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ABSTRACT

TimeWorkers is a programming framework for coding sonification
projects in JavaScript using the Web Audio API. It is being used for
sonification workshops with scientists, doctors, and others to facil-
itate ease of use and cross-platform deployment. Only a browser
and text editor are needed. Using Free and Open-source Software
(FOSS) the system can run standalone since No Internet is Required
for Development (NIRD). Workshop participants rapidly master prin-
ciples of sonification through examples and are encouraged to bring
their own datasets. All mapping code is contained in a project’s
.html landing page. A single generator function iterates over the
project’s data series and provides a fine-grained interface to time-
varying sound parameters. This loop and its internals are patterned
after similar constructions in the Chuck language used by the author
in earlier sonification tutorials.

1. INTRODUCTION

Sonification shares much with other kinds of computer music mak-
ing including the wide range of programming tools which can be
used. Sonification also shares in the kinds of decisions found in pho-
tography and soundscape recording. Gathering, selecting, framing
and contrast enhancement are a part of working with material from
the (outside of music) outside world. On the other hand, another
key part of creating a sonfication, mapping, has affinities with al-
gorithmic composition. TimeWorkers is a browser-based software
framework described in this paper which, while not limited to sonifi-
cation, provides in it’s initial rollout functional support for decisions
specific to such work.

Specialized programming languages have evolved and continue
to evolve which are custom-designed to express musical relation-
ships, especially timing and concurrency. I've used several over the
course of composing computer music with succeeding generations
of hardware platforms, for example, Pla[1], MIDILisp[2], Common
Music[3] and Chuck[4], all of which are examples of computer mu-
sic languages with ways of programmatically expressing organiza-
tion of sound in time.

TimeWorkers is written in JavaScript and provides a readily avail-
able computation environment for my sonification workshops. To
give a glimpse of what will be explained later in detail, the name
comes from its use of the Web Worker API[5] for composing musical
layers or voices which unfold in time. The software uses browsers’
existing means for sound generation, in this case the built-in com-
puter music capabilities of the Web Audio API[6]. The added func-
tionality provided by TimeWorkers provides ways to compose higher-
level aspects of musical timing and texture.

Stepping back for a moment, it’s worth reflecting on how com-
puters and music have been mingling their intimate secrets for over
50 years. These two worlds evolve in tandem and where they in-
tersect they spawn practices that are entirely novel. One of these is

sonification, the practice of turning raw data into sounds and sonic
streams to discover new relationships within the dataset by listening
with a musical ear. This is similar to exploring data visualization
with strategies made for the eye to reveal new insights from data
using graphs or animations. A key advantage with sonification is
sound’s ability to present trends and details simultaneously at multi-
ple time scales, allowing us to absorb and integrate this information
the same way we listen to music.

Kramer, et al.’s prescient Sonification Report [7] (2010) merits
quoting here at length and will be revisited in the conclusion sec-
tion. The paper identified “three major issues in the tool develop-
ment area that must be tackled to create appropriate synthesis tools
developed for use by interdisciplinary sonification researchers.” The
TimeWorkers framework addresses some (but not all) of the follow-
ing points.

“Portability: Sonification scale places demands on audio hard-
ware, on signal processing and sound synthesis software, and on
computer operating systems. These demands may be more stringent
than the requirements for consumer multimedia. Researchers deal-
ing with problems that go beyond the limits of one system should be
able to easily move their sonification data and tools onto a more pow-
erful system. Thus, tools must be consistent, reliable, and portable
across various computer platforms. Similarly, tools should be capa-
ble of moving flexibly between real- time and nonreal-time sound
production.”

“Flexibility: We need to develop synthesis controls that are spe-
cific and sophisticated enough to shape sounds in ways that take ad-
vantage of new findings from perceptual research on complex sounds
and multimodal displays and that suit the data being sonified. In ad-
dition to flexibility of synthesis techniques, simple controls for alter-
ing the data-to-sound mappings or other aspects of the sonification
design are also necessary. However, there should be simple ‘default’
methods of sonification that allow novices to sonify their data quick
and easily.”

“Integrability: Tools are needed that afford easy connections to
visualization programs, spreadsheets, laboratory equipment, and so
forth. Combined with the need for portability, this requirement sug-
gests that we need a standardized software layer that is integrated
with data input, sound synthesis, and mapping software and that fa-
cilitates the evaluation of displays from perceptual and human fac-
tors standpoints.”

2. USING THE FRAMEWORK

Meant to be very hands-on, my 2-hour workshops ask the partici-
pants to bring their own laptop and headphones. I first take them
through a simple example which has a been an early “etude” assign-
ment in my course, “Computer Music Fundamentals [8], taught at
Stanford’s CCRMA. The goal is to get students to start working with
their own datasets as soon as possible and get them exploring a range
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of sonifications through experimentation.

A dataset to play with can be scouted out by searching the web
and copied or exported from a spreadsheet or other format. For
starters, it’s simply a single column of numbers in plain text. The

range of values doesn’t matter because it will be automatically rescaled

when read by the framework’s file input layer. In my own develop-
ment work, examples and code repository are all linux-based and
other operating systems work equally well.

2.1. Basic Sonfication How-to
2.1.1. What you’ll need

The browser can be a recent version of Firefox, Chromium, Chrome,
or Edge. A simple text editor like Gedit is all that’s required for
developing the code and preparing an ASCII data file.

2.1.2. Testing the demo

Open the demo URL https://ccrma.stanford.edu/~cc/
sonify to see a page that looks like Figure 1. There’s a default
time series “fides.dat” that can be played by clicking on the demo
icon (the small globe is a button).

[l basic sonification example X | +

< c @ ]

stanford.edu

Drag a data file from
your desktop here to
play it in the browser

tides demo w
click to play data/tides.dat

Figure 1: An example page with options for playing a default time
series or dragging in a data file.

Alternatively, a data file can be dragged from the desktop onto
the page to sound it with the same preset sonification parameters.

The demo was created by Chris Hartley, a biologist who par-
ticipated in the first workshop (in 2016) at the University of British
Columbia. In it, “You can hear the rising and then falling chirp-
chirp-chirp of the major high tides, which get highest at the new
and full moons, and then the slightly lower trill of two roughly equal
high tides per day, which occurs during the quarter moons.” Hart-
ley’s sonfication plays a year’s worth of tidal data at a fast rate using
a sine tone.

After starting the demo or after loading a data file the stop and
play buttons on the web page become activated, Figure 2.

2.1.3. Modifying the demo

To practice modifying the demo, a good first goal is to make the rate
of running through the data much slower. To accomplish this, we’ll
make a local copy of the demo, test it and then edit it.

Gotoits repository https://cm-gitlab.stanford.edu/

cc/sonify and download a snapshot. The downloaded .zip file

M basic sonification example X | +

stanford.edu

Inumber-of-earthquakes-
per-year-m.dat

T !

Figure 2: Stop and play buttons become activated after starting the
demo or dragging in a data file.

will have a long name that depends on the version. Extract the con-
tents of the .zip file and open its index.html file in a browser (use
Firefox because it will allow the demo to run as a local file without
manual intervention).

This will allow you to test the local copy of the landing page in
a browser and make sure it’s working identically to the version on
the workshop’s web server. If it’s all good, then the local copy of the
landing page can be opened in a text editor. Search for the line

let dur = 0.005
and assign a new value, for example:

function* sonify(data) {
let dur = 0.05
// duration between data points in seconds

Save the modification in the text editor and then refresh the browser

page to load the changed file. The example can then be played as be-
fore but the rate will now be 10z slower.
Further modifications are quickly explored with the same work
flow of edit-save-refresh-play. For example, in the mapping function
map (v)
where, for a given value of v, sound parameters are determined for
pitch and loudness (respectively, kn in MIDI key number units and
db in a decibel range from —100 to 0). These in turn are used to
calculate values which will be applied to the sine tone’s frequency
(H z) and amplitude (range 0.0 to 1.0):

function map (v) {
let kn = 60 + v * 40
let £ = mtof (kn)
let db = =30 + v » 10
let a = dbtolin (db)
return {pit: £, amp: a}

map (v) returns pitch frequency and loudness amplitude in an
object created by an object initializer. Its argument, v, is expected
to lie in the range 0.0 to 1.0. In a hidden step which happens when
the data is loaded, the data series has been automatically normalized
to this range. map (v) 1is set so that the lowest data value will be
sounded at Middle-C (MIDI key number 60) and the highest will be
3 Octaves and a Major Third above. Intermediate values will be lin-
early interpolated across key number values (using fractional quanti-
ties, in other words, not quantized to integer key numbers). Code for
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the utility functions mtof and dbtolin, respectively for conver-
sion from MIDI key number to frequency in H z and d B loudness to
amplitude, have been borrowed from Hongchan Choi’s Web Audio
API Extension (WAAX) project [9].

The sonify generator function sets a new target pitch when pro-
cessing each new data value and starts a glissando (a smooth fre-
quency ramp) to reach the target pitch in the length of time specified
by the data update period, dur. The ramp is a linear function which
updates the sine tone’s frequency each audio sample. Amplitude is
smoothly modulated in the same way.

The complete sonify generator function for this example is listed
below and includes a definition of the sound source along with a
mechanism for applying updates to its parameters. The new func-
tion Sin (timeWorker) instantiates a SinOsc and several meth-
ods which start the oscillator, apply parameter updates to it and stop
it. After instantiation as a local object s, it is initiated with the first
values from the mapping function and a gain of 0. Ramps are set
in motion and the process pauses until they reach their targets with
yield dur after which the loop continues and cyclically churns
through each data point until all have been “performed.” The last
few lines ramp the oscillator to 0 and then stop and finish.

function* sonify(data) {

let dur = 0.005
let datum = data.next ()
function map (v) {
let kn = 60 + v = 40
let £ = mtof (kn)
let db = =30 + v » 10
let a = dbtolin (db)
return {pit: £, amp: a}

}

function Sin (timeWorker) {

let s = new SinOsc (timeWorker)

s.start ()

this.setPit = function(freq) { s.freqg(
freq ) }

this.setAmp = function(gain) { s.gain(
gain ) }

this.rampPit = function(freqg,dur) { s.
fregTarget ( freqg,dur ) }
this.rampAmp = function(gain,dur) { s.
gainTarget ( gain,dur ) }
this.stop = function() { s.stop() }
this.ramps = function (f,a,d) {
this.rampPit (£, d)
this.rampAmp (a, d)

}

let sin = new Sin(this)

if (withFFT) postMessage ("makeFFT ()")
let params = map (datum.value)
sin.setPit (params.pit)

sin.setAmp (0)

while (!datum.done) {
sin.ramps (params.pit, params.amp, dur)
yield dur
if (withSliderDisplay) postMessage ("

movelD ("+datum.value+™) ")
if (withChart) postMessage ("move2D ()")
datum = data.next ()

11

params =
}
sin.rampAmp (0,0.1)
yield 0.1

sin.stop ()

postMessage ("finish () ")

map (datum.value)

Workshop discussions are mostly focused on customizing the
above code and demonstrating extensions described later in this re-
port. What follows in the next section is a discussion of the Time-
Workers framework “under the hood.” This can be skipped if one’s
main interest is in customizing sonifications rather than digging into
the underlying system.

3. PROGRAMMING STRUCTURE AND SUPPORTING
FUNCTIONS

The framework has no dependencies. It is a lightweight project
which is Free Open-source Software (FOSS) and has the additional
feature of No Internet Required for Development (NIRD). Work-
shops and individual work are equally possible online and offline, for
example, during field work with no connectivity. A project’s .html
landing page loads a single associated script file, engine.js, which
contains all supporting functions. Files and modules are shown schemat-
ically in Figure 3.

index.html engine.js
landing page supporting functions
defines sonify
loop
sine J
generator
Ul elements Audio context

S nd

Worker thread
runs sonify loop

data file

Figure 3: Structure and modules.

The project landing page sets up web-related configurations, spec-
ifies the user interface (Ul), loads the script file, engine.js, and is
where the sonification is “composed.” Various “hardwired” globals
need to be declared which will be communicated to the script file, in-
cluding a default value for dataFileName. Likwise, the script file
expects a “hardwired” generator function with the name sonify
(which should be defined using JavaScript’s function* syntax [10]).
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Table 1: project files

web landing page

supporting script

index.html

engine.js

Table 2: index.html elements

| <head> [ <body> [ <script> ]
<meta> specifies metadata configures Ul elements sets global and local variables
(optional) <script> loads any auxiliary script files | (options to hide or expose) loads engine.js
e.g., graphing library e.g., drag and drop must define function* sonify(data)

Table 3: engine.js tasks, classes (and optional functionality)

[ setlocals | polish UI [ specify web worker(s) | set up spork mechanism | define DSP ugens
audio context | check browser capabilities WorkerThread Timelterator e.g., SinOsc
data source get Ul elements uses inline definitions play / stop e.g.,FM
timing cushion set UI element states (add graphing capability) nextEventAt uses setValueAtTime,
worker arrays (add drag and drop) (connect real-time Ul elements) uses async / await linearRampToValueAtTime

This function instantiates any unit generators (ugens) it will be us-
ing, for example with

new SinOsc (timeWorker)
as shown above, and specifies data-to-sound parameter mappings
which unfold through time.

For brevity’s sake the script file, engine.js, is not reproduced here
but can be found in js/ subdirectory of the project repository[11].
This script provides the TimeWorkers structure through its class def-
initions, functions and own variable settings. Any special tokens
which are referenced by the sonify generator function, e.g. SinOsc
will be resolved against what is defined or declared in the global
scope after engine.js has been loaded.

The script file contains several parts. Setting local variables, pol-
ishing the Ul and a system for “performing” sonifications composed
with the sonify generator function.

A WorkerThread interface sets up and runs this time-sensitive
apparatus in separate threads. The Timelterator class provides a
mechanism which waits between events in the sonify generator’s
loop and compensates for timing jitter. It uses the performance
.now () clock to compare real time with expected logical time. Fi-
nally, the ugen part of the script file defines any synthesis or DSP
patches which are used.

var context

is declared to hold the window.AudioContext which gets instantiated
at sound start and closed at sound stop,

var workerThreads = []
is the array containing the pool of WorkerThread instances and
var uwta = []

is a multi-dimensional array (whose name is shorthand for “ugen-
WorkerThreadsArrays”) that contains the set of all ugens in all Work-
erThreads.

A programming pattern often used in sonification in the Chuck
language [4] has two aspects. The first is the spork function which
calls a given function in a parallel, separate thread with its own
logical timebase. (A child process spawned by a sporked function
can also spork its own child processes.) The second construct is a
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means for looping over data, in Chuck this is usually a while loop
where event time advances each iteration. The loop executes in its
own thread. The present framework supports both features using its
WorkerThread and Timelterator constructs.

When makeWorkerThread (Table 1) creates a new instance,
the spawned JavaScript Worker [12] is of a special inline type (as op-
posed to the more common type which is usually created by loading
a dedicated script file).

var blob = new Blob ([script])
var worker = new Worker (URL.createObjectURL (
blob))

The script passed into the new Blob sets up a mechanism for dynamic
object definition. It calls addEventListener on the new worker
and sets how the worker will handle incoming messages. By telling
it to handle them with an eval (in the global scope), the worker’s
set of variables and functions is literally “grown” by posting message
strings to be evaluated which contain the desired definitions and set-
tings. One of these, for example, is the sonify function defined back
in the landing page. Dynamically defining timeWorkers in this way
allows the sonify function to also spork processes which will become
its own new child workers each of which runs in a separate thread.

The spork function itself instantiates a time-sensitive data iter-
ator with makeTimeIterator. A Timelterator will pause a gen-
erator for a given duration with its method nextEventAt () which
is an async function utilizing JavaScript’s async / await ([13]) paus-
ing functionality. When sporked, a sonify generator’s loop is started
with nextEventAt ("start™) that executes its first cycle. A
subsequent yield in the sonification loop will set the amount of
time to pause on the next call to nextEventAt (which calls itself
recursively) and the loop continues.

In the definition below, £star is the sonify generator defined in
the landing page and args contains a data iterator with the provided
data series (which has had its range normalized).

function spork (fstar, ...args) {
let ti = makeTimeIterator ()
ti.sporkScript = fstar.apply( ti, args )
ti.nextEventAt ("start")
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To reiterate, calling spork with both a sonify generator and a
Timelterator containing the data as shown

spork (sonify, data)

will create a pattern comparable to a Chuck-based sonification which
consists of essentially the same parts: spork a new thread which sets
up a sound source and mapping strategy, and then loops through a
conditioned data series, pausing after each data point.

In Chuck, pausing is written using the syntax

dur => now;
whereas the TimeWorkers equivalent uses
yield dur

A yieldinthe sonify generator loop invokes a JavaScript Promise
in the Timelterator object whose set Timeout is set to the duration
to await.

3.1. SinOsc ugen example

Custom ugens comprise patch definitions made with the Web Audio
APT’s audio nodes. The makeSinOsc example shown here instanti-
ates an oscillator with gain control using the API’s createOscillator()
and createGain() methods[6].

function makeSinOsc ()

{

let o = context.createOscillator ()
let g = context.createGain()
o.type = "sine"

o.frequency.value = 440
g.gain.value = 0.1

o.connect (g)

g.connect (context.destination)
g.connect (dac)

return { osc:o0, gain:g }

The object gets instantiated in a wrapper called SinOsc which
when instantiated itself with new also includes methods to alter its
parameters, for example, by changing its frequency with the follow-
ing custom freq () method:

freq: function (hz) {
let n = this.dsp
postMessage (ugens+" ["+n+"] .0oscC.
frequency.setValueAtTime ("+hz+",
"+ (myThread.now+cushion)+") ")

}

this.dsp refers to the ugen itself which is held in the main
thread’s array ugens[]. The message posted to the main thread
looks up the osc field of the ugen and changes its frequency using
the Web Audio API’s setValueAtTime (which corresponds to
the worker thread’s “now” plus a constant offset). A full ugen def-
inition comprises instantaneous setters for all parameters, as well
as custom time-varying envelopes, for example made with the Web
Audio API's 1inearRampToValueAtTime. Note that the patch
code also includes a connection from the patch’s summing point to a
global summing point called dac.

Different sound sources can be made available by expanding the
library of ugens defined in engine.js. Each would comprise a “make
the patch” portion and a wrapper (with the ugen name) which in-
cludes the set of parameter altering methods.
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3.2. FM patch

For example, a simple two-oscillator FM patch could look like the
following:

function makeFM()

{

let mod = context.createOscillator ()
let modGain = context.createGain ()
mod.type = "sine"

mod.connect (modGain)

let car = context.createOscillator ()
let g = context.createGain()
car.type = "sine"

modGain.connect (car.frequency)
car.connect (g)

g.connect (context.destination)
g.connect (dac)

let cFreq = 2200

let index = 33

let mRatio = .1
modGain.gain.value =
mod. frequency.value =

cFreq x index
cFreqg » mRatio

car.frequency.value = cFreq
g.gain.value = 0.1
return { osc:car, gain:g, mod:mod, modGain:

modGain }

All ugens need to be accessible in the timeWorker thread in
which the sonify loop is running. A last step, then, in ugen creation
is to add the ugen wrapper, for example FM, to the list of functions
which gets dynamically installed inline when a new WorkerThread
is instantiated.

4. EXTENSIONS

Changing the sound source, sounding multiple time series and adding
graphing capabilities are extensions which complement the basic ex-
ample described above 2.

4.1. Voicing

Changing to a more interesting sound source is possible in the sonify
generator itself. This approach relies on combinations of ugens de-
fined in the engine.js script. Where the basic example uses a single
SinOsc ugen as its instrument, the example here demonstrates ad-
ditive synthesis built by summing multiple sines which are harmon-
ically tuned. The new instrument Harmonics is defined directy
within the sonify generator.

function Harmonics (nSins, timeWorker) {
this.sins = new Array
for (let i = 0; i < nSins; i++) this.sins.
push ( new SinOsc(timeWorker) )
this.sins.forEach (function(x) { x.start ()
})

function fi(f,1i) { return f£x(i+1l) }

function ai(a,i) { let h = (i+1); let odd =
(h%2) ? a ax0.1; return odd/h }

this.setPitch = function(freq) { this.sins.
forEach (function(x,i) {x.freq( fi(freq,
i) )1}
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this.setGains = function(gain) { this.sins.
forEach (function(x,i) {x.gain( ai(gain,
i) )1}

this.freqTarget = function(freq,dur) { this
.sins.forEach (function(x,1i) {x.
freqTarget ( fi(freq,i),dur) }) }

this.gainTarget = function(gain,dur) { this

.sins.forEach (function (x,1i)
gainTarget ( ai(gain,i),dur) }) }
this.stop = function() { this.sins.forEach/(
function(x) {x.stop()}) }
this.ramps = function (f,a,d) {
this.freqgTarget (£,d)
this.gainTarget (a, d)

{x.

}

One of these instruments is then instantiated in the sonfication loop,
for example, with

let vox = new Harmonics (8, this)

to create an harmonic series of 8 SinOscs. Given a pitch frequency f
function f£i(f,1i) sets their tunings. Amplitude relationships
in function ai (a,i) create a clarinet-like structure favoring
odd harmonics. A convenience function ramps is provided which
applies frequency and amplitude updates to the entire additive syn-
thesis patch.

The following set of extensions are turned on or off with flags in
the index.html file. By default, the withDemo flag is set. Only one
option is allowed at a time, so remember to set

withDemo = 0

before exploring these others.

4.2. Polyphony from multiple data series

Multiple time series are interesting to sonify at the same time, for
example, to hear correlations by ear. Data can be input from two or
more separate data files as in this example which combines monthly
USA gross domestic product (GDP) from 1969 to 2016 and global
CO; level for the same period. The curves shown in Figure 4 have
been normalized to the same range.

en)

0P (red), CO2 (g

oL
1970 1975 1980 1985 190 1995 2000 2005 2010 2015

year

Figure 4: GDP and CO>.

The example landing page, index.html, has a provision for hear-
ing these two playing together, as two independent musical voices.
Change the state of withDemo and this flag for this to take effect:

withTwoFiles = 1

Two data files will now be specified and will spawn two Time-
Worker threads both using the single sonify generator as defined. In
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this example, one can hear details like the 2008 financial downturn
and the seasonal flux in global CO,. Overall, the two quantities fol-
low a coincident rising trend.

4.3. Animated Chart

Similar to the interest in multi-modal data presentation described in
[14], sonification in the present framework can be combined with
graphing. Chart.js is a FOSS project for interactive plotting in the
browser and is integrated into the project by loading a single script
file (which can be locally sourced for creating a NIRD environment).

Again, the example landing page, index.html, has a provision for
demonstrating this extension by changing withDemo and this flag:

withChart = 1

c @

Sound and Animation (15 seconds)
Running

imation e n o«

Arctic Sea ce Minkmum

Sea Ice Concentrations from
NSIDC Passive Microwave Data
(1979 - 2015)

Figure 5: Simultaneous sound and graph of Arctic Sea Ice Minimum
per year.

Playing the sonification in Figure 5 animates the black dot on
the curve. Syncronized sound and animation is accomplished with
postMessage ("moveGraph () ") inside the loop in the sonify
generator. Each successive call advances the black dot to the next
data point in an array of 2D data points that was input from a multi-
column data file (columns are year and value).

4.4. Real-time FFT display

Likewise, change withDemo and the following flag in the example
landing page, index.html, and the sonification’s audio output will be
displayed as a time-varying spectrum.

withFFT = 1

An FFT analyzer computes the spectrum of the global summing
point dac in real time.

5. CONCLUSIONS

A 40+ year tradition has evolved a well-known pattern for sequenc-
ing scores and real-time synthesis in languages like Pla[1], Com-
mon Music[3], Chuck[4] and others. The sonify generator’s loop is
a descendant written in JavaScript. Running in the browser, it al-
lows flexible programming using the full power of the language and
can be rapidly experimented with on any browser-equipped system.
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Table 4: TimeWorkers framework in terms of goals suggested by Sonification Report [7]

| attribute [ goal [ now [ soon [ never ‘

Portability | consistent X

Portability | reliable X

Portability | portable across various computer platforms X

Portability | moving between real-time and non-real-time sound production X

Flexibility | simple controls for altering the data-to-sound mappings X

Flexibility | simple “default” methods of sonification that allow novices to sonify their data quick and easily X

Integrability | easy connections to visualization
Integrability | easy connections to visualization programs, spreadsheets, laboratory equipment ?
Integrability | standardized software layer ?

Sonifications created using the framwork run equally well on mobile
and other smaller systems.

Pla’s voices are analogous to sonify generator loops because they
constitute groups of time-ordered events which can themselves be
voices (recall that spork-ed child threads can spork their own chil-
dren). Other pertinent features of Pla also have bearing on the present
framework (these are distilled a 1983 description): “Higher levels of
musical control are implemented as voices and sections ...” *“...notes
that somehow belong together are grouped under the rubric of a
voice.” “Arbitrarily large groups of voices can be organized into a
section, which then becomes nearly equivalent to a voice.” “Another
kind of grouping is based on voices... voices can create other voices
to any level of nesting.”

Common Music’s similar features involve multiple types: “Thread
— A collection that represents sequential aggregation. A single time-
line of events is produced by processing substructure in sequential,
depth-first order.” “Merge — A collection that represents parallel ag-
gregation, or multiple timelines. A single timeline of events is pro-
ducted by processing substructure in a scheduling queue.” “Algo-
rithm — A collection that represents programmatic description. In-
stead of maintaining explicit substructure, a single timeline of events
is produced by calling a user-specified program to create new events.”

The TimeWorkers framework described here offers a way to con-
struct the above relationships in browser-based platforms and offers
solutions for some, but not all of the goals cited in Sonification Re-
port [7]. Table 4 lists the boxes it checks off.

In the future, faster-than-sound soundfile writing will be directly
supported though for now, file output is only by browser sound cap-
ture plug-ins (which run in real time). Faster-than-sound is a highly-
desirable feature and is something that’s been supported in both Com-
mon Music and Chuck. Regarding the former, “Realization in Com-
mon Music can occur in one of two possible modes: run time and
real time. In run-time mode, realized events receive their proper
’performance time stamp,” but the performance clock runs as fast
as possible. In real-time mode, realized events are stamped at their
appropriate real-world clock time.” For the latter, Chuck’s “silent
mode” is the equivalent.

The recently standardized AudioWorklet [15]" will be integrated
into the framework in the coming months. Of particular interest is
another recently proposed enhancement to Web Audio to support
multi-channel output.

Also for the future, direct real-time sonification from live sensor
data can be contemplated. This important feature opens up appli-

! As of this writing, only the Chromium browser family supports Au-
dioWorklet. It is expected soon in Firefox at which point the integration work
will commence.
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cations such as bio-feedback [16] or other kinds of feedback such
as providing real-time “cracking” sounds to operators of fracking
pumps (where presently feedback is provided after the fact and one
can imagine the problems resulting from the over-stimulation of shale
gas wells). It has become vital in medical applications, even making
inroads on traditional treatment practices in cases where listening
to data provides equal or better sensitivity and specificity compared
to visual means. The brain stethoscope, for example, allows rapid
detection of non-convulsive seizures by non-specialists. [17]
Interest in sonification is burgeoning as sensors and data collec-
tions become an increasingly ubiquitous part of daily life. Employ-
ing well-known sound generation techniques from computer music,
sonification can play a role in the work of domain experts and stu-
dents in sciences and arts, as well as for general communication.
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ABSTRACT

Sequoia is a new software library for musical sequencing, with gen-
erative capabilities and sample-accurate timing. The architecture
supports a variety of techniques, including polymetric sequencing,
clock division, probability, and other parameters which can be ma-
nipulated in real time — or even sequenced themselves. The core
library is written in C and supports JACK MIDI; Python bindings
are also available.

1. MOTIVATION

In recent years, the electronic music community has shown a grow-
ing interest in the use of standalone hardware units, both for studio
production and live performance [1]. Among their many appeals,
these devices have the advantage of being modular - drum machines,
synthesizers, samplers, sequencers, mixers, and effects units can be
connected and re-connected in myriad ways to accomodate a variety
of workflows. Each component serves a unique role and interfaces
with other components through well-defined interfaces: line-level
audio, and control signals typically in the form of MIDI or CV (con-
trol voltage).

The Linux audio ecosystem is well-poised to emulate this paradigm

in software; audio routing libraries like JACK, and control signal
protocols like MIDI and Open Sound Control (OSC) provide a frame-
work for connecting standalone applications into software “rigs” suit-
able for composition and performance alike. Indeed, such modular-
ity is central to the Unix philosophy: programs should “do one thing
and do it well” [2]. True to form, numerous drum machines (e.g.
hydrogen, drumkv1), synthesizers (zynaddsubfx, amsynth, dexed),
samplers (shuriken, gsampler, petri-foo, sooperlooper), mixers (jack-
mixer, non-mixer), and effects (calf-plugins, guitarix) are available
from popular Linux repositories. Additional utilities exist for manag-
ing audio/MIDI connections (qjacketl, catia/claudia/carla) and sav-
ing/restoring sessions (lash/ladish/nsm/aj-snapshot).

Sequencers, however, are comparatively absent from this ecosys-
tem. Perhaps the best-established example is seq24 [3], which, albeit
stable and relatively comprehensive, has not been significantly up-
dated since 2010, and suffers from usability issues which hinder on-
the-fly composition. Various sequencers exist within larger DAW ap-
plications like Ardour [4], LMMS [5], Qtractor [6], Rosegarden [7],
and Muse [8], but these don’t fit into the modular paradigm described
here. Furthermore, the predominant interface for these software se-
quencers is the piano roll, which is well suited for editing live data
captured from a MIDI controller, but less appropriate for the quick
manipulation of drum patterns and arpeggios typical of dance music.
For this task, a traditional step sequencer is desired.

But step sequencers can be quite complex. They typically fea-
ture live sequence composition, real-time manipulation, and chain-
ing of sequences. More advanced examples include generative prop-
erties like probability, ratcheting, and meta-sequencing, in addition
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to step-wise parameters like microtiming and control variable modu-
lation. With such a wide variety of features, it can be challenging to
design applications which cover all the bases — but this is primarily
a problem of interface design. The essentials of modern sequencing
— timing, synchronization, live manipulation, etc. — can be separated
from the problem of application design, and distilled into a general-
purpose library, as in the “model-view-controller” paradigm [9] This
is the motivation for Sequoia.

UL UUUUN UL

Figure 1: A Sequoia session is connected to two different client appli-
cations using JACK. Here ZynAddSubFX (zyn-fusion) and drumkv1
are being used to create a simple beat. Carla is used to manage
audio and MIDI connections.

2. DESIGN

The architecture of Sequoia is based on four object classes: session,
sequence, trigger, and port.

A sequence is a discrete series of events which steps in time
with a metronome. In this sense, Sequoia is a “step sequencer”, but
events are not required to be evenly spaced in time (see Section 4.1).
The length of a sequence is the number of steps that the sequence
contains. There is no limit (aside from memory) to the length of a
sequence, but once specified (via instantiation), it is fixed. This is
less of a constraint than it may seem, however, as sequences can be
chained together and “meta-sequenced” dynamically 5.3. Sequences
have several dynamic parameters: the mute state, transpose, clock
division, playhead position, playhead direction, and loop boundaries
can all be modified live during playback.

Triggers (or “trigs” for short) are the event objects which may
populate the steps of a sequence. They store information depending
on their type; the current trigger types are:

e Null: (an empty trig)

e Note: note value, velocity, length
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o CC: number, value

Each trigger also carries a channel number, a probability and a mi-
crotime. Microtime is a floating-point value in the range [—0.5, 0.5),
where the units are in steps. Thus a trigger can be placed half a step
before or after its nomimal timing, allowing for irregular rhythms,
“humanization”, and swing.

Sequences run within a Sequoia session, which controls the tempo

and transport (start/stop/pause) state applied to all contained sequences.

A session can have a number of ports for communicating with other
applications — including other Sequoia sessions. The ports can be
input (“inports”) or output (“outports”), have descriptive names, and
can be assigned to sequences individually, or on a many-to-one ba-
sis. For example, we may have 4 sequences (kick, snare, closed hat,
open hat) feeding into a single outport called “drums”, while another
melodic sequence feeds into an outport called “synth” — all sequenc-
ing in time within the same session.

3. API

Sequoia is implemented as a C library in the “object-oriented” style:
data structures are presented as custom types with associated meth-
ods for instantiation and mutation. All library functions and data
types are prefixed with sq_x. The full API is documented on the
associated GitHub wiki; here we present a simple example which
constructs and plays a 2-note sequence:

#include "sequoia.h"

#define STEP_RES 256

int main(void) {
sg_session_t sesh;

sg_session_init (&sesh,
STEP_RES) ;

"My Session",

sg_sequence_t seq;

sg_sequence_init (&seq, 16, STEP_RES);

jack_port_t *port;

port = sqg_session_create_outport (&sesh,
"My Port");
sg_sequence_set_outport (&seq, port);
sq_trigger_t trig;
sg_trigger_init (&trigqg);
sq_trigger_set_note(&trig, 60, 100, 4);
sg_sequence_set_trig(&seq, 0, &trig);
sq_trigger_set_note(&trig, 67, 100, 4);
sg_sequence_set_trig(&seq, 8, &trig);
sg_session_add_sequence (&sesh, &seq);
sg_session_set_bpm(&sesh, 120);

sg_session_start (&sesh);

return 0;
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Here, STEP_RES is the step resolution, in ticks per step. This needs
to be the same for all sequences in the session — attempting to add
a sequence with incompatible step resolution will result in an error.
We create an outport for the session called “My Port” and set the
sequence to output events through it. We then create a placeholder
trigger object t rig and use it to populate the sequence. Finally, we
add the sequence to the session, set the BPM, and start sequencing.

3.1. Python Bindings

The main C library is augmented with Python bindings which obey
a direct mapping between classes and methods. In Python, the ex-
ample above could be written as:

import sequoia as sg

STEP_RES = 256

sesh = sg.session("My Session", STEP_RES)
seqg = sqg.sequence(l6, STEP_RES)

port = sesh.create_outport ("My Port")

seqg.set_outport (port)

trig = sqg.trig()
trig.set_note (60, 100, 4)
seqg.set_trig (0, trig)
trig.set_note (67, 100, 4)
seqg.set_trig(8, trig)

sesh.add_sequence (seq)
sesh.set_bpm(120)
sesh.start ()

4. IMPLEMENTATION

A Sequoia session registers as a JACK external client whose name
is the session name (specified during instantiation). Input and output
ports are created as JACK MIDI ports (also named) which are served
by the JACK processing callback. The API is compiled into a shared
library plus header files, and can be installed e.g. in /ust/local/ for
dynamic linking across multiple applications.

4.1. Timing

Timing is managed by the JACK processing thread as it executes
within the context of the Sequoia session. The session keeps track
of the frame count as it works to fill the JACK buffer with time-
stamped MIDI events. Events are managed by the sequences which
handle time as a grid of microticks — intervals of time much shorter
than the step length which enable the microtiming functionality of
the sequencer. In the code example in Section 3, the mictrotiming
resolution is set to 256 ticks per step. In theory, this resolution can
be set much higher, though in practice, it will be limited by CPU
performance. The number of frames per tick (fpt) is:

NIy

fpt = 15 (1)

. —_
tps * bpm
where sr is the sample rate, tps is the step resolution (ticks per step),

and bpm is the tempo in beats per minute. At 48 kHz with 256
ticks-per-step, there are 23 frames-per-tick at 120 BPM. At 4096
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Figure 2: Diagram visualizing the 3-tiered timing scheme used by Sequoia. At the highest level there are steps: 4 steps per beat (in the sense
of “beats per minute”), and one trig per step. Going down one level, each step is composed of several “microticks” which comprise the grid
for microtiming events. Here, only 8 microticks per step are shown for clarity, but a typical sequence may have 256 (or more) ticks per step.
Finally, there is the frame counter, which sweeps between the microticks until it reaches a tick boundary, at which point a trigger may be fired.

ticks-per-step, this becomes 1 frame-per-tick, which is the theoretical
maximum resolution for this tempo and sample rate.

4.2. Trig-to-Microtick Translation

Although the fundamental timing grid is managed at microtick reso-
lution, this implementation detail is hidden from the user by the trig
interface. The user manages the sequence data by setting its trigs
(one for each step); these trigs are then placed on the microgrid ac-
cording to their microtiming. The formula is:

tick index = (step + utime) * tps 2)
At this tick index, we place a pointer to the trig, which allows us to
look up both the trig parameters (e.g. probability, length) and the
sequence parameters (e.g. mute, transpose) at trig time, to ensure
that we send the correct MIDI event at the correct time.

4.3. Note-Off

While note-on and control change events are recorded in the micro-
grid at composition time (i.e. when the wuser calls
sq_sequence_set_trig()), note-off events are managed dif-
ferently. To see why, consider what would happen if a C note of
length 4 steps was recorded in the microgrid as a C-note-on plus a
C-note-off 4 steps later. Now imagine if the sequence transpose pa-
rameter were changed in the middle of that note. The note-off would
be delivered for the wrong note value, and the synthesizer down-
stream would be left with a hanging note. The same applies for play-
head manipulation, or any number of the other sequence parameters
which support live control.

The solution is to implement for each sequence a separate ring
buffer, specifically for note-offs, which is always running forward.
The length of this buffer is the maximum note length, which is also
the length of the sequence. The buffer gets populated with a note-
off (at the appropriate delay) whenever a note-on fires. When the
note-off is reached by the advancing buffer pointer, it is fired, and
then removed from the buffer. When a sequence (or the session) is
stopped, we can optionally call a “clean” command, which sweeps
through the off-buffer as quickly as possibly, delivering all remaining
note-offs.
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4.4. Lock-Free Parameter Control

In a running Sequoia session, the JACK thread needs immediate ac-
cess to data that other threads (e.g. the UI thread) can manipulate
during playback. In a non-realtime application, this would be ac-
complished with mutex locks [10], but in realtime audio, this is un-
acceptable — the audio callback must never execute code that could
block for an indeterminate amount of time [11]. In lieu of mutex
locks, we synchronize data between threads via lock-free message
queues. For this, we use jack_ringbuffer_t as offered by the
JACK API. We then implement a simple messaging protocol that al-
lows for the UI thread to “set” or “get” critical data when the audio
thread enters the processing callback. This allows both threads to
access the data while avoiding any race conditions.

Message queuing offers a clean solution when the audio thread
is running, but it can present problems when the system is in a dor-
mant state. In this situation, for example, a queueing “getter” method
would block indefinitely, waiting for the processing callback to serve
the request. As another example, a user will commonly populate a
sequence with trigs before adding it to a running session. If the se-
quence length is longer than the message queue, this would overflow
the buffer and cause an error.

Ideally, the getters and setters would access data directly when
operating on a dormant structure, and use message queues when the
sequencer is running. In Sequoia, this branching behavior is handled
automatically — the data access methods are polymorphic according
to the running state of the system.

5. GENERATIVE TECHNIQUES

In addition to serving as a streamlined API for general-purpose, time-
critical sequencing with real-time control, Sequoia has been designed
from the ground-up with generative music techniques in mind. Here,
we describe just a few of these possibilities which Sequoia enables.

5.1. Polymeter

Since there’s no concept of a global step counter in Sequoia (only the
per-tick frame counter managed by the session), sequences are free
to run in and out of phase with each other, according to the least-
common-multiple of their lengths. For example, a 16-step sequence
played against a 15-step sequence will evolve through 240 steps of
variation before syncing back up and repeating itself.



Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

5.2. Probability

Trig parameters include probability, a floating-point value in the
range [0, 1] which determines what fraction of the time a trig actually
fires. This applies to both note-type and CC-type triggers.

@ synthvl
in_1 out_1
input synth in 2 out 2

€ modulation
—

i [93] system

in w: playback 1

@ melody
‘: playback_2

input synth

Figure 3: Meta-sequencing. A Carla patch showing a slow mod-
ulation sequence controlling the transpose parameter of a melody
sequence, which is driving the synthvl synthesizer.

5.3. Meta-sequencing

Meta-sequencing, simply put, is “sequences sequencing sequences”.
Any of the sequence parameters — playhead, loop start, loop stop,
playback mode, transpose, mute state, clock divide — can be con-
trolled live from Sequoia’s MIDI-in ports. The way MIDI events
map to parameter controls is determined by a mapping defined by
the user upon sequence creation.

Combined with the concepts described above, this technique can
be very powerful — a single, monophonic sequence can be manipu-
lated by another (perhaps employing polymeter, probability, or clock
division) to generate a much longer, stochastically evolving sequence
(see Figure 3). Sequences can even be looped back into themselves
to give surprising results (Figure 4) — although care must be taken in
this case to avoid runaway conditions.

9 synthvl
in_1 out 1
in_2 out 2
- [ﬂl system
© melody i

input synth

playback 1
playback 2

Figure 4: Auto-sequencing. A melody sequence is fed back into itself

(notice the looped-back red line from synth to input on the melody
client), and the result is used to drive synthvl. Depending on the
melody and the input mapping, this situation can “run away” to infi-
nite pitch. If it doesn’t, the results can be a surprising transformation
of the original melody.

5.4. Algorithmic Control

Obviously, the facility of inports and controller mappings allows for
external clients (e.g. Python scripts, Pure Data patches, Geiger coun-
ters with USB connections...) to control sequence parameters in any
way one might wish, thus allowing a huge variety of algorithmic
methods to modulate the sequencer.

6. STATUS

Sequoia is currently in active development. The core library (libse-
quoia) is in a viable state, and the source code is available on GitHub
under the GPL license (v3) [12]. We are also in the process of em-
bedding the library within Ziggurat, an existing GUI sequencer ap-
plication [13]. Future work will focus on developing bindings to
other languages, and improving documentation.
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ABSTRACT

This paper presents the evaluation of a media clocking scheme in
an AVB network segment. The JACK audio connection kit on each
AVB processing server is synchronized to an IEEE 1722 media clock
stream, as well as each UDP Soundjack receiver on each AVB proxy
server. Thus, the transmission of each packet of an audio stream
is bound to the transmission interval of the media clock stream and
each participant is able to recover the same media clock. In this
paper we present the evaluation of this media clocking scheme and
the JACK client synchronization with the AVB network segment at
hand.

1. INTRODUCTION

Soundjack [1] is a real-time communication software using peer to
peer connections, to connect up to five participants to each other.
This software was designed as a tool for musicians and was first
published in 2006 [2]. The interaction with live music over the pub-
lic Internet is very sensitive to latencies, both round trip as well as
one-way. Thus, this application is mainly concerned with the mini-
mization of latencies as well as jitter.

1.1. fast-music and Soundjack

In cooperation with the two companies GENUIN [3] and Symon-
ics [4], arehearsal environment for conducted orchestras via the pub-
lic Internet is under development as the goal of the research project
fast-music. Up to 60 musicians and one conductor, who are ran-
domly distributed throughout Germany, shall be able to play together
live. The central node represents the multimedia signal processing
server network under investigation, which ideally will be located in
Frankfurt on the Main, since it is the largest Internet exchange node
in Germany it promises the smallest round trip latencies.

1.2. Concept for a Real-time Processing Server Network

The basic signal processing functionality of the server network con-
nects up to 60 UDP streams to each other and mixes them. A single
server could easily handle mixing this amount of concurrent UDP
streams with reasonably low latency, but for future research in the
application of immersive audio technologies in real-time, a single
server is not sufficient to handle the computational load of 60 indi-
vidual audio and video streams. Thus, a scalable infrastructure is
chosen to provide such signal processing capacities. The signal pro-
cessing provided by the Soundjack server network involves mixing
algorithms for audio and video streams. As an infrastructure for the
audio signal processing stage, the JACK [5] audio server is deployed.
JACK is a professional and open source audio server, that allows ap-
plications to share sample accurate audio data with each other. A
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large number of signal processing applications and algorithms are
available for JACK. Details on the mixing application can be found
in [6].

Another benefit of such a scalable approach is the minimization
of service times of network packets, which is the time a packet re-
quires to travel on the wire until it is fully held in the input buffer
of the servers network interface. During the service time of a sin-
gle network packet, no concurrent packets can be processed, which
may introduce some hold time in the upstream buffer of each con-
current stream, adding to the overall round trip time. The reduction
is not significant. The test environment considered in this paper is
the Ethernet based campus network of the university.

A detailed description of the first design of the software architec-
ture and operating system configuration can be found in [7]. Recent
findings however, have revealed the first design to be flawed and not
fully capable of providing the required features. A new software ar-
chitecture is under development. The results presented in this paper
however, are not influenced by the rework of the software architec-
ture since the JACK server is running independently.

1.2.1. Audio Video Bridging - an Open Standard Solution

Audio Video Bridging / Time-Sensitive Networking (AVB/TSN) de-
scribes a set of IEEE 802.1 standards that operate on layer two of the
OSI model [8]. These standards enable computer networks to handle
audio and video streams in real-time. Operating only on OSI layer
two, AVB is not routable. It is defined for local network segments
only.

e IEEE 802.1AS [9]
Timing and Synchronization for Time-Sensitive Applications
in Bridged Local Area Networks (referred to as gPTP)

e IEEE 802.1Qat [10]
Virtual Bridged Local Area Networks - Amendment 14: Stream
Reservation Protocol (SRP)

o IEEE 802.1Qav [11]
Virtual Bridged Local Area Networks - Amendment 12: For-
warding and Queueing Enhancements for Time-Sensitive Streams
(FQTSS)

e IEEE 1722 [12]
IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive
Applications in Bridged Local Area Networks (referred to as
ATVP)

e IEEE 1722.1[13]
IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive
Applications in Bridged Local Area Networks (referred to as
AVDECC)
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The AVB standards are extensions for generic Ethernet networks
providing precise synchronization, resource reservation and band-
width shaping. Lower latencies and jitter, the avoidance of packet
bursts and bandwidth shortage are addressed, providing real-time re-
sponsiveness to a computer network. These properties are used to
ensure a constant streaming with low latency and jitter inside the
Soundjack server network. Thus, the Soundjack client streams can
be processed inside the server network, without interfering with each
other.

AVB networks require special hardware for timestamping Eth-
ernet frames with separate transmission queues for each traffic class,
i.e. AVB traffic with Stream Reservation (SR) classes A/B and generic
Ethernet traffic. The IEEE 802.1-2014 [14] standard defines the two
stream reservation (SR) classes A and B. Both classes are used in an
SRP domain to differentiate audio and video traffic from other Eth-
ernet traffic. For SR class A, SRP reserves resources on all switch
ports along the path from talker to listener to maintain a transmission
interval of 125 ps (250 ps for SR class B). The implications of the
transmission interval are discussed in section 2.

1.2.2. Network Synchronization with gPTP

The precise synchronization of different devices spread throughout
a local area network requires a specialized protocol, i.e. PTP, which
involves several steps. Each time a gPTP capable device appears on
the network segment, a negotiation for the grand master role is trig-
gered. The best master clock algorithm (BMCA) compares the clock
information in announce messages, that are broadcasted by each PTP
capable device on the same clock domain. A clock domain is a part
of a network segment that is synchronized to the chosen grand master
clock, it is separated by devices or Ethernet bridge ports that are not
gPTP capable (gPTP is a special profile [9] for PTP [15]). Each gPTP
capable Ethernet bridge port has a mode of its own, either master or
slave. The Ethernet port of the AVB device running the grand mas-
ter clock is in master mode and is the root of the hierarchical clock
distribution. The bridge port of the AVB switch it is connected to, is
in slave mode. It receives clocking information rather then sending
it. Since the switch receives its gPTP clock from this bridge port
in slave mode, all its other bridge ports are in master mode. They
distribute the clock information of the grandmaster clock to the next
hop or AVB device.

After this election process, the clock domain needs to be syn-
chronized. This is achieved in two steps: Syntonization, and Offset
and Delay Measurement. In the first step “SYNC” messages are send
from the master to the slave port followed by a “Follow_Up” mes-
sage, which includes a timestamp taken close to the media (physical
layer) of the sender. Both messages are used to adjust the frequency
of the slave to the master clock. The second step involves ‘“Pde-
lay_Req” and “Pdelay_Resp” messages and measures the absolute
time offset between the master clock and slaves local clock. The
slave port adjusts its local clock to match the master clock. After this
procedure each network device is synchronized to the grandmaster
clock, matching its phase and frequency. For the exact mechanisms
and calculations see [9] and [16].

1.2.3. Control Messages and SO_TIMESTAMPING

The CMSG macros are used by the operating system to create and
access control messages, which are also called ancillary data, that
are not provided by the generic payload of a raw Ethernet socket.
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This additional control information includes among other things the
receiving interface, optional header fields, extended error description
or a set of file descriptors. Ancillary data is sent with sendmsg (),
received with recvmsg () andis stored as alistof st ruct cmsghdr
structures with data appended to it. The use case at hand is to
receive the hardware timestamp of the arrival of each AVTP packet.

The userspace interfaces to receive timestamped network packets are
the following [17]:

e SO_TIMESTAMP:
Generate timestamp with microseconds resolution for each
incoming packet using the system time.

e SO_TIMESTAMPNS:
Generate timestamp with nanoseconds resolution for each in-
coming packet using the system time.

e SO_TIMESTAMPING:
Generate timestamp with nanoseconds resolution for each in-
coming packet using the network hardware.

The SO_TIMESTAMP ING interface has to be configured on the raw
Ethernet socket with set sockopt () and the appropriate flags have
to be chosen from the following:

1. Determine how timestamps are generated with
SOF_TIMESTAMPING_TX/RX:

e SOF_TIMESTAMPING_TX HARDWARE:
Hardware transmission timestamp.

e SOF_TIMESTAMPING_TX_SOFTWARE:
Fallback in case of failure of
SOF_TIMESTAMPING_TX_HARDWARE.

e SOF_TIMESTAMPING_RX_ HARDWARE:
Original, unmodified reception timestamp, generated by
the hardware.

e SOF_TIMESTAMPING_RX_SOFTWARE:
Fallback in case of failure of
SOF_TIMESTAMPING_RX_HARDWARE.

2. Determine how timestamps are reported in the control mes-
sages with SOF_TIMESTAMPING_RAW/SYS:

e SOF_TIMESTAMPING_RAW_HARDWARE:
Return raw hardware timestamp.

e SOF_TIMESTAMPING_SYS_HARDWARE:
Return hardware timestamp converted to the system time.
The correlation between the transformed hardware times-
tamps and the system time is as good as possible, but
not perfect. Requires support by the network device
and will be empty without that support.

e SOF_TIMESTAMPING_SOFTWARE:
Return software timestamp.

In addition to the setsockopt (), it is necessary to initialize the
device driver to do hardware timestamping with an ioct1 () -call
to SIOCSHWTSTAMP. The ioctl () has to be called with the ar-
gument:
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struct hwtstamp_config {
int flags;
int tx_type;
int rx_filter;

i
Possible values for hwt stamp_config->tx_type are:

e HWTSTAMP_TX_OFF:
Deactivate hardware timestamping for outgoing packets.

e HWTSTAMP_TX_ ON:
Activate hardware timestamping for outgoing packets is turned
on. The sender decides which packets are to be time stamped.

Possible values for hwt stamp_config->rx_filter are:

e HWTSTAMP_FILTER_NONE:
Deactivate timestamping for incoming packet.

e HWTSTAMP_FILTER_ALL:
Activate timestamping for any incoming packet.

e HWTSTAMP_FILTER_SOME:
Activate timestamping all requested packets plus some more.

e HWTSTAMP_FILTER_PTP_V1_L4_ EVENT:
PTP v1, UDP, any other event packet.

1.2.4. Hardware Configuration

Two server types with real-time capabilities are designed for the
Soundjack server network, an AVB proxy server and an AVB pro-
cessing server. Both server types are running on a x86_64 architec-
ture with eight physical cores and are equipped with an Intel 1210
network interface card [18]. A open source driver stack that is re-
quired to compile the kernel module (1gb_avb . ko) with AVB sup-
port is available at Github [19]. The gPTP daemon, which is used in
this setup, is also provided by this repository. All AVB servers of
both types are registered for a media clock stream, which is supplied
by an XMOS development board manufactured by Atterotech [20].

Wireshark IO Graphs: processing

{

|
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Packets/1 ms
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20 30 40 50 60
Time (s)

Figure 1: Packet rate of the IEEE 1722 AVTP media clock stream
originating from the XMOS talker. The MRP client of the
JACK media clock backend has established the
connection to the XMOS talker after 12 seconds. The
figure is enhanced and clipped at 60 seconds to show the
anomalies (packet rates of 7 and 9 packets per
millisecond) between around 30 and 50 seconds.
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2. IEEE 1722 AVTP MEDIA CLOCK SYNCHRONIZATION
CONCEPT FOR THE JACK AUDIO CONNECTION KIT

The signal processing concept is designed for a completely digital
signal chain, i.e. neither analog-digital (ADC) and nor digital-analog
converters (DAC) are present. Without the local clock of an ADC
the processing server would have no media clock source to synchro-
nize to. Consequently, it is not possible to adjust the local clock
to match the gPTP grandmaster clock. With a media clock stream
as clock source, no additional hardware besides the network inter-
face is required. The media clock stream maintains a constant media
clock originating from a gPTP derived word clock of the ADC on the
XMOS development board. The ADC of the XMOS development
board is running at a sampling rate of 48 kH z and is configured as an
AVB talker. It automatically acknowledges any connection request
of a listener, without the use of IEEE 1722.1 ACMP. The different
clock source concepts are explained in [16] in detail.

2.1. Packet Rate and Padded AVTP Packets

The transmission interval of 125 ps, that is defined by the SR Class
A, has the same constant transmission interval for higher sampling
rates as well. Instead of sending packets in a shorter interval, the
amount of samples per packet is adjusted. For a sampling rate of
48 k H z six samples per audio channel are written to an AVTP packet
(12 and 24 samples for 96 kH z and 192 k H z respectively):

6 samples
12018 = ks

This way the transmission interval can maintain the media clock of
the talker for the listener to recover. Figure 1 shows the packet rate
of 8 packets per millisecond of the media clock stream originating
from the XMOS development board. Figure 2 shows the probabil-
ity distributions of the transmitted AVTP packets of the media clock
stream, measured on the processing server with hardware packet ar-
rival timestamps. The calculated mean value of 124997 ns and stan-
dard deviation of 309.35 ns meet the defined transmission interval
for a SRP class A domain of 125 ps perfectly.

In section 3 we will evaluate the three JACK period sizes of 32,
64 and 128 samples. The remaining samples of a JACK period, that
occur since six (samples per AVTP packet) is not an integer divisor
of either 32, 64 nor 128, are calculated in equation (2):

= 8 packets per millisecond

&)

[N samples per JACK period

= k packet JACK period (2
6 samples per AVTP packet -‘ packets per period (2)

Samples | AVTP Packets
32| [2]1=[5+1]1=6
64 | [ =[10+2]=11
128 | [£28] =[21+ 1] =22

Table 1: Samples and packets per JACK period

This means that for 32 samples per period every 6th AVTP packet
carries a fraction of the six samples, in this case 1/3 = 2 samples,
and the remaining four samples are padded with zeros - for 64 sam-
ples every 11th packet has four samples, the rest is padded with zeros
and for 128 samples every 22th packet has two samples and the rest
is padded with zeros.
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Figure 2: Probability distribution function of the IEEE 1722 AVTP
media clock stream originating from the XMOS talker.
The measurement shows the network hardware receive
timestamps on the server side.

2.2. AVB Listener as JACK Media Clock Backend

The media clock listener is the same as in the AVB server implemen-
tation [7] and is integrated by a C++ wrapper that was inspired by
Netjack [21], i.e. only the Read () (and Write (), which is re-
quired for proper operation) member functions are used to advance
the JACK server according to the configured sample rate. As an ad-
ditional configuration, the JACK AVTP backend is required to run
a dummy stereo channel setup, because JACK clients could not be
activated otherwise.

int init_1722_driver (

IEEE 1722_avtp_driver_state_t *IEEE 1722mc,

const char* name,
charx stream_id,

charx destination_mac,
int sample_rate,

int period_size,

int num_periods

Called with the appropriate arguments, the initialization proce-
dure starts a MRP thread, which takes care of the resource reserva-
tions for the media clock listener. After the Listener has established
the path to the media clock talker and the JACK server has started,
the backends’ Read () member function calls the wrapped proce-
dure:

uint64_t media clock_listener_wait_recv_ts(
FILE+x filepointer,

IEEE 1722_avtp_driver_state_t »xIEEE 1722mc,

struct sockaddr_in x*si_other_avb,
struct pollfd *xxavtp_transport_socket_fds,
int packet_num

This procedure is blocking until an AVTP media clock packet
arrives. The struct pollfd was used to keep blocking and non-

JACK AVTP Backend
MRP
Messages AVTP Rx CMSG
Packets
MRP Daemon gPTP Daemon
Userspace
R T, e | =
Berkeley
MRP Packet PTP
Messages Filter Messages
AVTP RXT
Packets
Raw Ethernet Socket
Ethernet Ancillary
RxTx Frames Data

igb_avb.ko [<>»{PTP Hardware Clock (PHC)

Figure 3: Different kernel and userspace layers involved in the
JACK media clock backend. The socket is filtered with a
Berkeley Packet Filter (BPF) for the correct destination
MAC address, Ethernet type and IEEE 1722 message type
of the media clock stream packets. The stream ID is
filtered after an AVITP packet is received in userspace.

blocking procedure signatures consistent, since the AVB server’s
main process also uses a media clock listener.

The raw Ethernet socket, that is used to receive the media clock
stream, has the socket option SO_TIMESTAMPING set to:

ts_flags |= SOF_TIMESTAMPING_RX HARDWARE;
ts_flags |= SOF_TIMESTAMPING_SYS_HARDWARE;
ts_flags |= SOF_TIMESTAMPING_RAW_HARDWARE;

The network device driver is configured to timestamp any incoming
packet with a struct hwtstamp_config set to:

hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
hwconfig.tx_type = HWTSTAMP_TX_ON;

Experience has shown that HWTSTAMP_TX_ON has to be switched
on for the reception of the media clock stream packets, even though
the socket is not used for transmission, because the gPTP system
service is effected otherwise and loses its synchronization to the PTP
master.

Considering the following code listing, after the received packet
was copied to the userspace buffer st ruct msghdr msg with the
recv_msg () system call, the ancillary data in struct msghdr
msgq is accessed in line 8. Initially, the macro CMSG_FIRSTHDR
returns a pointer to the first field of the ancillary data and stores it
in struct cmsghdr xcmsg. As long as there is ancillary data
available, the while-loop in line 9 cycles over the ancillary data of
the received message. When a SO_TIMESTAMPING field is en-
countered, the pointers to the hardware timestamp and the hard-
ware timestamp converted to system time are stored. The packet
arrival time in nanoseconds is converted from st ruct timespec
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to unsigned int 64 and stored in the variable
pkt_arrival_ts_nsinline 17.

The current transmission interval of the packet is calculated after
the while-loop in line 25, the timestamp last_pkt_ts_ns of the
last packet is subtracted from the timestamp pkt_arrival_ts_ns
of the current packet. In line 26 the current timestamp is stored for
the next packet as last timestamp.

The variable pkt_numis an argument of the procedure and sup-
plied by the driver backend indicating the current packet number in
the JACK period. When pkt_num matches the calculated packet
numbers from table 1, a zero padded packet is sent.

If the pkt_num counter reaches the 6th, 11th or 22nd iteration,
adj_pkt_ts_ns is calculated in line 30 to precisely adjust the
JACK period. The remaining (modulus) samples of the JACK period
divided by six samples per channel per AVTP packet, is divided by
the sample rate and then scaled to nanoseconds in unsigned int
64 representation. This calculation accounts for the padded AVTP
packets calculated in table 1. The procedure returns
adj_pkt_ts_ns to the backend driver, which can adjust the JACK

period accordingly.

struct msghdr msg;

struct cmsghdr *cmsg;
uint64_t current_tx _int_ns =
uint64_t last_pkt_ts_ns = 0;

CMSG_FIRSTHDR (&msq) ;
cmsg NULL ) {
(cmsg->cmsg_level == SOL_SOCKET

&& cmsg—->cmsg_type == SO_TIMESTAMPING) {

struct timespec xts_dev, *ts_sys;
ts_sys = ((struct timespec x)

CMSG_DATA (cmsg) ) +1;

ts_dev = ts_sys + 1;
pkt_arrival_ts_ns = ts_dev->tv_sec
* 1000000000LL
+ ts_dev->tv_nsec);
break;
}
cmsg = CMSG_NXTHDR (&msg, cmsg) ;
}
current_tx_int_ns = pkt_arrival_ts_ns
- last_pkt_ts_ns;

last_pkt_ts_ns = pkt_arrival_ts_ns;

if ( pkt_num == (*xIEEE 1722mc)->num_pkts -1) {
adj_pkt_ts_ns = (uint64_t) (
( ((xIEEE 1722mc)->psize % 6 ) /
(xIEEE 1722mc)->srate ) =
1000000000LL) ;
}

return current_tx_int_ns - adj_pkt_ts_ns;

25

3. EVALUATION

The quality of the synchronization to the media clock stream may be
analyzed in terms of the variation between the points in time, when
a JACK client is triggered and when a media clock stream packet is
received. We basically observe, how many media clock stream pack-
ets are received between two successive calls of the JACK backend
to the client’s process callback function. The AVTP backend is based
on counting the media clock stream packets, thus it is implicitly syn-
chronized to the media clock stream source. The ALSA backend is
not implicitly synchronized to the media clock stream source, which
is the reason for the development of the AVTP backend. A synchro-
nization would also be possible, since the media clock source and
the servers are synchronized to the gPTP network clock. The me-
dia clock source of the XMOS development board drives its audio
codec with a phase locked loop that locks onto the gPTP network
clock. The local sample clock of an audio device connected to a
server would also require a phase locked loop that is fed into the au-
dio device or a continuing calculation and adjustment between the
network and the audio time.

The “simple_client.c” example from the JACK source tree has
been modified to make a system call to the system clock, which
is synchronized to gPTP, with CLOCK_REALTIME every time the
JACK process callback is triggered. The measured timestamps are
written in the JACK shutdown callback function to file. Simultane-
ously, the JACK AVTP backend writes the timestamps from the an-
cillary data to file, as soon as JACK is shut down. In order to be able
to compare the client activation times of the ALSA backend with
those of the AVTP backend, a common time source is required. In-
stead of a local audio time that is adjusted to gPTP, we use the media
clock stream as common time source. The JACK server is launched
twice for this reason, one instance running with the ALSA backend
and the measurement client, and a second instance running only with
the AVTP backend to measure the media clock stream. The server
was connected to a Focusrite Solo Gen2 USB audio interface [22],
when the ALSA backend was measured.

The measurements were conducted with 32, 64 and 128 sam-
ples per JACK period with a sample rate of 48 kHz over a dura-
tion of five minutes, producing between ~ 10° and ~ 5 - 10° client
activations, depending on the period size. Furthermore, the AVTP
backend was measured with two different configurations. In the first
configuration, the differences of the successive packet arrival times
are accumulated, as it was explained in subsection 2.2 (AVTP Ad-
just). In a second configuration, a constant difference of 125,000
(nanoseconds) is added each time, a media clock stream packet ar-
rives (AVTP Const). No buffer over- or underrun occurred in any of
the JACK backend configurations. The results of the measurements
are shown in table 2.

4. DISCUSSION

Table 2 confirms the primary motivation for the development of the
JACK AVTP backend, the ALSA measurements for each sample pe-
riod shows a broad distribution of client activation times, which is
further emphasized by its average and standard deviation. The ex-
pected value is not met in any configuration and the deviation is sig-
nificantly higher than with AVTP. This results in a JACK client and
a backend, which are not synchronized to the media clock. The re-
quired media clock stream packets per JACK period from table 1 are
hardly met.
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Media Clock

JACK Client Activation Count

Stream Packet 32 Samples 64 Samples 128 Samples

Count AVTP Adjust [ AVTP Const [ ALSA AVTP Adjust [ AVTP Const [ ALSA | AVTP Adjust [ AVTP Const [ ALSA

1 14099 0 15012 0 5936 0 0 0 0

2 0 0 19 0 0 0 0 0 0

3 1 0 32242 0 0 0 0 0 0

4 3 1 | 119103 0 0 0 0 0 0

5 16353 15328 7022 0 0 0 0 0 0

6 437342 406581 | 266913 0 0 5437 0 0 0

7 16416 15392 34865 0 0 | 61360 0 0 0

8 4 1 18 0 0 | 17693 0 0 0

9 1 0 0 2 1 282 0 0 0

10 0 0 0 8757 3275 9 0 0 0

11 0 0 0 204408 211261 2210 0 0 0

12 0 1 0 8817 3337 95166 1 0 0

13 0 0 0 2 0 | 70530 0 0 9

14 0 0 0 1 0 1634 0 0 2332

15 0 0 0 0 0 0 0 0 | 36583

16 0 0 0 0 0 0 0 0 2562

17 0 0 0 0 0 0 0 0 7

18 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 1 0 0

20 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 2824 3901 0

22 0 0 0 0 0 0 104961 107485 88

23 0 0 0 0 0 0 2891 3969 10814

24 0 0 0 0 0 0 0 0 | 61739

25 0 0 0 0 0 0 0 0 | 10292

26 0 0 0 0 0 0 0 0 54

27 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0

Average 5.8 6.0 5.2 11.0 10.7 10.6 21.6 22.0 21.3

Standard 0.88 0.26 1.35 0.28 1.61 2.54 2.71 026 | 379
Deviation

Table 2: JACK client activation count in respect to media clock stream
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Comparing the two AVTP backend configurations for each sam-
ple period size shows, except for some outliers that account for less
than 1% of the activation counts, that both configurations provide
a equivalent solution. The averages and standard deviations of all
sample period configurations imply a synchronized JACK client and
backend. The required media clock stream packets per JACK period
from table 1 are mostly met, with slight deviations.

5. CONCLUSIONS

Inherently, the ALSA backend for JACK adds some drift to the signal
processing chain inside the Soundjack server network. Therefore, an
experimental IEEE 1722 AVTP media clock backend for JACK was
developed to overcome this problem. We could show that our solu-
tion for this problem is working and provides the desired synchro-
nization and it is not necessary to adjust the duration of each JACK
period with nanosecond accuracy.

Since the AVTP backend only receives AVTP packets, it is the-
oretically possible to run the backend on any PTP enabled device,
even when no prioritized transmission queues are provided by the
hardware - Intel 1217 for example.

6. FUTURE WORK

Future work will focus on testing the Soundjack server network setup
in the real world, the public Internet instead of the campus network,
therefore adopting IPv6, with evaluation of the changes to the net-
work tomography, has to be done.

Furthermore, the AVB processing server network shall in the fu-
ture be migrated to function as a completely AVB capable JACK
backend, not just for media clock synchronization.

It will also be of interest to achieve a synchronization between
client and server via the public Internet. Mechanisms best suited for
this feature are already under investigation.
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ABSTRACT

Tpf-tools are used to establish bi-directional, low-latency, multichan-
nel audio transmission between two or more geographically distant
locations. The tool set consists of a server part (the tpf-server) and
a client part (the tpf-client) and is heavily inspired by the JackTrip
utility. It is based on the same protocol. It facilitates the handling
of many concurrent audio transmissions in setups with more than
two endpoints. Also, it eliminates the requirement of one endpoint
having a public IP address or port forwarding configuration.

1. INTRODUCTION

The JackTrip[1] utility has proven to be a very useful and versatile
tool for our research into the so-called telematic performance format
(tpf), staged (musical or other kinds) events that take place simulta-
neously at two or more geographically distant concert venues. For
these concerts, the stage is designed to blend physically present local
performers with their remote counterparts, represented by means of
low-latency video (UltraGrid ') and audio (JackTrip) transmission.

1.1. The obstacles of current IP networks

We have successfully used the JackTrip utility in many of our telem-
atic concerts. The utility operates in two modes: client mode and
server mode. For an audio transmission to take place, one end runs it
in server mode listening for an inbound connection, while the other
end runs it as client, thus initiating the connection. This works well
so long as the client "sees" the IP address of the server. In today’s
Internet, most computers touched by human beings are assigned an
IP address from a local area network (LAN) which is protected by
a NAT router > . Public IP addresses are usually only assigned to
headless servers and — apparently — NAT routers, but not to devices
touched by humans. This topology divides the Internet in service
providers and consumers and reflects the predominant capitalist ide-
ology of today’s Internet [2, Chapter 5]. At the same time, it hin-
ders our efforts to perform telematic concerts. Running JackTrip in
server mode at a concert venue requires a computer that has either a
public IP assigned, or the proper port forwarding configured on the
local network router. At venues where the performers are not the
owners or administrators of the local network, this often bears huge
administrative overheads and dealing with IT staff who may be more
concerned about security than artistic achievements.

!'Software for low-latency video transmission http://www.ultragrid.cz/

2NAT (network address translation) routers separate the LAN from the
Internet. This increases security, because local computers are invisible from
the Internet. It is also a way to deal with IPv4 address exhaustion, because
all devices of a local network share one public IP address for outbound con-
nections.
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1.2. The complexity of many nodes

Another complexity we have encountered is the planning and set up
of JackTrip connections when, not two, but three or (for a test situa-
tion) four venues are participating in an event. Two endpoints require
one link. Three endpoints require three links, while four endpoints
require six links. The number of links grows quickly with the num-
ber of endpoints. Events with more than two nodes require meticu-
lous and careful planning.

1.3. Our motivation

We are looking for ways to streamline our processes and improve
our tools in order to be able to shift our focus away from technical
to more artistic aspects. JackTrip is the tool of our choice, because it
is multi-platform, open source, uses JACK * and thus integrates well
with existing professional audio software (e.g. Ardour). However,
we saw an opportunity in adding a higher layer on top of the strong
basis JackTrip gives us. In our efforts, we have developed a tool set
that addresses the obstacles we’ve been experiencing:

e None of the endpoints need a public IP address.

e The client manages the audio transmissions to many endpoints
and abstracts the complexity of such setups away, while pre-
senting a simple, yet comprehensive interface to the user.

In this paper we present our tool set consisting of the tpf-client *
(the software that is running on each participating endpoint) and the
tpf-server > (the software that enables communication between the
clients and coordinates audio transmissions).

2. VARIOUS CONNECTION MODES

2.1. Client connects to server (standard mode)

The JackTrip utility is designed so that both ends are sending simi-
larly formatted UDP © packets. In server mode, it opens a listening
socket that awaits for incoming connections. As soon as a packet ar-
rives, it starts sending packets to the sender address of the incoming
packets. In client mode, it immediately starts sending packets. The
transmission is established as soon as both ends are up and running.
This only works when the IP address of the server is visible to the
client.

3Jack Audio Connection Kit, a sound server daemon for connecting audio
applications and sound cards. http://www.jackaudio.org/

4The tpf-client is available at https:/gitlab.zhdk.ch/TPF/tpf-client.

SThe tpf-server is available at https:/gitlab.zhdk.ch/TPF/tpf-server.

6User Datagram Protocol, a connectionless protocol based on the Internet
Protocol that operates on the Transport Layer (Layer 4) of the OSI model.
Applications with a strong focus on low latency often use it for transport.
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2.2. Two clients connect to each other

A transmission can also be established when running both endpoints
in client mode so long as both clients specify both bind port and peer
port. The peer port of the first client matches the bind port of the
second client, and vice versa.

An example of a JackTrip setup with both instances running as
client:

$ jacktrip -c 192.168.0.12 —--bindport 2000
——peerport 3000

$ jacktrip -c 192.168.0.11 --bindport 3000
——peerport 2000

This requires both ends to have an IP address visible to the other
party. If one or both endpoints are hidden by a NAT-firewall, a con-
nection cannot be established. However, this setup shows that the
JackTrip design does not mandate one party to run as server.

2.3. Connection using a UDP proxy

The fact that a transmission can happen with two endpoints both
running in client mode is crucial for the next step: establishing a
transmission where none of the endpoints are assigned a public IP
address. Since we want both endpoints to run in client mode, we
need a third party that has assigned a public IP address and thus
is visible for both endpoints, even when they are behind a firewall.
This third party acts as proxy for both endpoints by relaying pack-
ets from client A to client B and vice versa. This technique passes
most types of firewalls easily because the client initiates the connec-
tion. It works transparently for both endpoints as they do not have
to know their respective peer’s IP address. They simply connect to
the UDP proxy. Since the JackTrip packet format is agnostic of the
underlying transport protocol, all connection specific details are part
of the UDP header and the payload does not contain any reference
to the client address or port number. This allows the UDP proxy to
relay incoming datagrams as is, without inspecting or changing the
payload.

3. SUBSCRIPTION-BASED UDP PROXY

The simplest variant of a UDP proxy knows exactly two endpoint
addresses and relays packets between them. However, this design
mandates that each parallel transmission uses an instance of the UDP
proxy, each listening on a dedicated port. The purpose of the sub-
scription-based UDP proxy is to allow many parallel transmissions
on the same port. To know which endpoints belong to a certain trans-
mission, the endpoints send a so called token that is unique per trans-
mission. If two clients send the same token, a transmission between
those endpoints is established. This design allows an arbitrary num-
ber of transmissions to run on the same port, and each transmission is
protected from intentional or unintentional interference by the token.
Because of the requirement to send a token, the subscription-based
UDP proxy does not work with the traditional JackTrip, at least not
out-of-the-box 7 . Also, both parties intending to participate in a
transmission must first agree on a common token through a separate
channel.

7JackTrip could be wrapped into a script that first sends the token using
the same bind port before it starts JackTrip
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3.1. Implementation

The tpf-server presented here uses a Python ® script as subscription-
based UDP proxy. It uses two dictionaries (dicts) that are empty
at start-up: a token dict and a link dict. The token dict stores the
token string and sender adress when a token message is received.
The token message is a UDP packet containting a string like

_TOKEN XXXX

where XXXX is the token string, an arbitrary string of arbitrary length.
If a token message is received, its token string is looked up in the to-
ken dict. If there is no entry found, an entry is added to the token
dict with the token string as key and the sender address as value. If
another token message is received carrying the same token string but
from a different sender address, two entries are made to the link dict.
The first entry uses the address from the token dict as key and the
sender address of the last token message as value. The second en-
try uses the same two addresses, but key and value are interchanged.
After creating the entries to the link dict, the respective entry in the
token dict is deleted, so that the same token may be used later by
another party.

Incoming UDP datagram
Src: dst:

12.54.7.7:30001 | 195.175.247.53:4460

Link Dict

src: dst:
62.32.31.237:50102 121.211.107.157:43211
121.211.107.157:43211 62.32.31.237:50102
12.54.7.7:30001 98.65.4.4.30005
98.65.4.4.30005 12.54.7.7:30001

UDP proxy listening on 195.176.247.53:4460

Outgoing UDP datagram
src: dst:

195.175.247.53:4460 | 98.65.4.4.30005

Figure 1: Subscription-based UDP proxy.

Since the UDP protocol does not guarantee that packets reach
their destination, the client must keep sending token messages at a
low rate (i.e. one message per second). When the client receives a
packet for the first time, it stops sending token messages.

3.2. Considerations

Creating two entries per transmission into the link dict seems like a
waste of memory, but it allows for a very quick look-up to determine
the destination on an incoming packet. Keeping the latency low has
the highest priority in our use case.

Although Python, as an interpreted language, is not among the
fastest, it was the preferred choice for rapid prototyping and exper-
imenting. It turned out that the UDP proxy written in Python was
never the bottleneck in our performance tests and although it causes
some CPU load under load, it does not seem to add a significant la-
tency to the UDP transport. There has not yet been a pressing need
to rewrite the UDP proxy in a more performant way.

8Python is an interpreted programming language supporting many
paradigms. https://www.python.org/
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4. THE TPF SERVER

The complexity of a setup increases quickly with the number of par-
ticipating endpoints, as we showed before. We wanted software to
manage the complex part of handling many parallel audio transmis-
sions. The engineer should not have to deal with many terminal win-
dows for running many JackTrip instances and know what IP address
and port number each of their peer uses. Simplifying the involved
processes was the main motivation for defining a protocol [3] and
writing a server software implementing that protocol. It is worth
noting that this part is orthogonal to the problem of audio transmis-
sion. The tpf-server is not involved in transmission of any audio data.
Rather, it enables clients to know about each other and to let them
initiate audio transmissions. The communication between server and
clients uses TCP and runs on different ports.

4.1. Based on netpd-server and OSC

In order to reduce development efforts, the design is based on exist-
ing software — the netpd-server ° — that was extended to implement
the tpf-server presented here. The netpd-server is a relay for OSC
messages and was developed for the netpd [4] project, a framework
based on Pure Data (Pd) [5] that allows geographically remote clients
to do electronic music together in real-time by synchronizing instru-
ment states. The netpd framework uses OSC [6] for the communica-
tion, while OSC messages are encapsulated by SLIP [7] and trans-
ported by TCP. The OSC 1.1 specification [8] proposes SLIP to de-
limit OSC messages when transported by stream-oriented protocols
such as TCP. While many OSC applications use UDP for transport
for simplicity and speed, data integrity and correct order are crucial
for the netpd framework. Also, for the tpf-server, whose purpose is
to coordinate clients and allow them to share data, and which is not
involved in the audio transmission directly, reliability trumps speed.
TCP has a notion of connection, so for a server using TCP, there is
no ambiguity in knowing when a client joins or leaves. With UDP
it is much harder to clearly determine a client’s state (e.g. joined or
left).

4.2. netpd-server

The netpd-server defines rules about how incoming OSC messages
are forwarded to the connected clients. This allows clients to send
messages to specific peer clients, broadcast messages to all clients,
or send messages to the server itself. The netpd-server forwards OSC
messages according to the first element of the OSC path. The set of
supported values for this field is listed here:

field | forwarding action

b message is broadcast to all connected clients
S message is intended for the server itself (not forwarded)
<int> | message is forwarded to the client with ID <int>

Table 1: List of valid receivers

4.3. The tpf-server internals

The tpf-server loads the netpd-server as an abstraction [9]. It re-
serves the OSC name space /s/tpf, which means all received mes-

9The netpd-server is part of the netpd framework developed by Roman
Haefeli. The code is hosted at https://github.com/reduzent/netpd-server

sages whose OSC address starts with /s/tpf are handled by the
tpf-server. The protocol is built on top of the protocol of the netpd-
server. The exact protocol specification is part of the tpf-server pack-
age [3]. Since the protocol is based on OSC, it is agnostic of any
software framework or programming language. It could be imple-
mented in any language where libraries exist to deal with network
sockets and the OSC protocol. It was implemented in Pure Data,
because it uses parts already written in Pure Data. The tpf-server
keeps track of the connected clients and coordinates a few common
parameters that the endpoints must agree on before they are able to
establish an audio transmission. It manages a few data containers
and notifies clients about updates when data is changed. The tpf-
server sends current data to the clients upon their request, while it
is the duty of the clients to request data if they receive an update
notification from the server. The data containers include:

4.3.1. Client ID And Name

When a client connects, the tpf-server assigns it a unique client ID
(unique in the scope of the session). This ID, usually a small integer
number, is used to identify each client. The same ID is also used
to send an OSC message to a specific client by putting it into the
first field of the OSC path. After establishing the connection to the
server, the client registers a name (e.g. given name or location). It
allows clients to display the list of connected peers in a more human-
friendly way (see Client List).

4.3.2. Parameter List

The client with the smallest ID, usually the one that connects first to
the server, is given a special role: it has the authority to set or change
a set of parameters that all clients are mandated to use for the current
session — samplerate, blocksize, bit resolution. Those parameters are
distributed to all clients and the clients either adjust their settings or
report an error when a mismatch occurs. The parameter list is not a
hard-coded set. Instead, it is fully defined by the clients.

4.3.3. Client List

The tpf-server keeps a list of all connected clients with their ID,
name, IP address and role. Whenever a client connects or discon-
nects, the tpf-server broadcasts an update of this list to all clients. It
is therefore crucial that clients terminate their connection properly,
otherwise they keep appearing in the client list until the connection is
considered terminated. This period depends on the operating system.

4.3.4. Link List

In a full mesh network, each node is linked to every other node. If n
is the number of nodes, the number of links (/) is:

n(n —1)
5 M
The tpf-server assigns each pair of clients a link ID, so each link

ID associates two clients. The tpf-server sends each client its own

list of their peer’s client IDs along with the corresponding link ID.

Clients use the link ID to establish the audio transmission to a spe-

cific peer. Early versions used one server port per transmission and

tpf-client used the link ID as the port offset parameter for running

JackTrip. In the current version, the link ID is used to generate a

token string. Two clients using the same ID and thus the same token

string are linked by the subscription-based UDP proxy.

| =
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When every transmission was using its dedicated UDP port, it
seemed appropriate to let the server, as a central authority, assign
link IDs to avoid collisions, but also to ensure that only IDs cor-
responding to an active UDP proxy would be assigned. With the
subscription-based UDP proxy, this coordination task became moot,
as clients could also negotiate a token by peer-to-peer communica-
tion without involving the server. Future versions of the tpf-server
might remove the link list.

5. THE TPF-CLIENT

5.1. Written in Pure Data

The tpf-client is implemented in Pure Data, so it can be built on top
of an already existing framework. For communication to the server,
parts from the netpd client have been reused. Designed as a real-time
audio programming language, Pure Data has already covered many
aspects of dealing with low-latency audio. Furthermore, part of the
Pd "eco system" is a vivid community that has been contributing
many libraries extending the functionality of the software. Namely,
there are so-called externals for parsing and formatting OSC mes-
sages (osc) and for accessing network sockets (iemnet). Pure Data
has native JACK support built-in and runs on a variety of platforms.

5.2. Implementation

The purpose of the tpf-client is to manage audio transmissions to one
or many peers joining the same session. It is the implementation of
the client side of the tpf protocol. First drafts only implemented the
management aspects in order to get the necessary information for
starting the original JackTrip utility with the appropriate command-
line arguments, so the audio transmission part was left completely
to JackTrip. It was later decided to also re-implement the JackTrip
utility as an abstraction.

5.2.1. Rewrite of JackTrip as Pd abstraction

Implementing the audio transmission part in Pure Data has some ad-
vantages:

e The lack of a stable and feature-complete Pd external for run-
ning system commands makes it hard to consistently control
many JackTrip instances from Pd. JackTrip reimplemented as
a Pd abstraction is easier to control and interface with.

e An implementation of the JackTrip protocol in Pd allows to
extend it, if necessary. A small addition — the subscription by
sending a token message — to the JackTrip functionality was
necessary to support the subscription-based UDP proxy.

e Although able to create many JackTrip connections, the tpf-
client appears as one JACK client, which somewhat simplifies
the process of drawing connections in the connections dialog
of QjackCtl.

e Since the audio signals travel through Pd, some signal pro-
cessing could be applied. The current implementation doesn’t
apply any processing, though.

e Since the audio signals travel through Pd, signal level mon-
itoring can be used and graphically represented in the client
user interface.

e Signal path can be used to measure round-trip time of the au-
dio signal with built-in latency meter.
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5.3. User interface

: host=telenatic . zhdk.ch ch=6
. Zurich Sr=44100nZ__res=iv s=12

TX PEERNODES RX DELAY DROP 7 8

| [Hong kong_(12.54.7.0) | |0 | 7]

Latency

Messages

Figure 2: The tpf-client user interface.

The user interface displays a few configuration parameters that
are settable before the connection to the server is initiated:

e name

e hostname (or IP address) of the tpf-server
e blocksize (of the JackTrip packets)

e number of channels (outgoing)

e queue buffer size

The samplerate and bit resolution cannot be changed in the client.
The bit resolution is hard-coded to 16 bit. The samplerate is man-
dated by the JACK server and is inherited by Pd. After the connec-
tion is established, those configuration parameters become locked
and cannot be changed until the session ends.

The client registers its name and either uploads the audio pa-
rameters such as samplerate, blocksize, bit resolution to the server
or matches them against the mandated parameters, if another client
already has configured those parameters. If there is mismatch be-
tween configured and mandated parameters, the client either reports
an error (mismatch with samplerate, bit resolution) or silently ad-
justs the parameter (mismatch with blocksize). It is worth noting that
blocksize configured in the tpf-client is decoupled from the block-
size used by the JACK server. This allows clients to run JACK with
deviant blocksizes. After successfully having registered the name
and matched audio parameters, the connection button (top left) turns
blue to indicate that the client is ready for audio transmissions.

5.4. Managing transmissions

Peer clients are each listed in a separate row in the client interface.
Audio transmissions are not started automatically, but are initiated by
a user on either side by clicking the left-most button in the row. The
button on the respective row on the peer’s client starts flashing. Only
when confirmed by the other end by clicking on the flashing button
is the audio transmission started. The number of received channels
is represented by the number of squares turning from grey to black
in the respective row. Depending on the signal level of each chan-
nel, the square changes color from black (silence) to bright green
(full amplitude). The number in each square corresponds with port
number of the tpf-client in the QJackCtl connection dialog.

5.5. Transmission monitoring

During an audio transmission, three types of glitches are counted and
displayed in the respective row:
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DROP number of dropped packets. Late packets that miss their
time frame to be played back are also considered dropped.

GLITCH number of audible audio glitches. Often, many packets
are dropped in a row, resulting in one audible glitch. Thus, the
number of audible artefacts is always smaller than the number
of dropped packets.

00O number of packets received out of order. If an out-of-order
packet misses its time frame, it is dropped. Otherwise it is
played back in correct order.

All counters are reset to zero when the audio transmission is
restarted. Although those counters are not of much use during a real
concert (not much can be done about bad statistics), they might help
compare the quality of different network links, when testing setups
or internet providers.

5.6. Message and chat window

Beside the main window, tpf-client’s interface has a message win-
dow, where info, warning and error messages are displayed. There is
also a built-in chat in the chat window. A channel of communication
not involving audio is often desired.

5.7. Built-in latency measurement tool

To measure the overall round-trip time of the audio signal, both end-
points need to configure the audio path accordingly. The method is
robust enough to allow the signal to be played back by a speaker
and recorded with a microphone, even in a mildly noisy environ-
ment. The signal path of a full round-trip measurement is shown in
Figure 3 .

tpf-client

\
tpf-server

[

Figure 3: Signal path of latency measurement.

5.8. Adding artificial latency

The tpf-client allows each audio transmission to add an artificial au-
dio delay. By adjusting the delay, it is possible to target a specific
total round-trip time. Reasons for latency adjustment include:

e The performance of a certain musical piece requires the per-
ceived latency to be aligned to the given tempo of the work.
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e In a three-node setup, where one peer location is far more
remote than the other, the un-adjusted latencies differ signif-
icantly, so it might be desired to "harmonize" the perceived
latencies by artificially increasing the "distance" of the closer
peer.

5.9. Considerations

Certain aspects of writing software in Pd are difficult. Designing a
graphical user interface is relatively hard and the graphical represen-
tation is bound to pixel sizes and cannot be scaled dynamically (i.e.
by resizing the window). Also, it is not possible to create dynamic
interfaces that display different content depending on context. Due
to those limitations, it was decided to restrict some capabilities of
the client in order to provide a simple and consistent interface. The
number of channels per audio transmission is limited to 8. Also, the
maximum number of displayed peers and thus the number of con-
current audio transmissions is limited to 8. This limits the overall
number of connected client being able to interact with each other to
9. Those limitations are not imposed by the tpf-server or the pro-
tocol, and the client could be adapted if need be. They are abitrary
choices and during the past year of using the tpf-tools, those limits
never have been reached in real life.

Unlike the original JackTrip implementation, each party in a
setup using the tpf-tools can choose the number of channels to be
sent individually. This saves bandwidth and might improve qual-
ity. Also, the configured blocksize is not dependent on the blocksize
mandated by the JACK server. This can be an advantage, since the
value for the most optimal JACK configuration might differ between
clients.

6. EXPERIENCES AND DISCUSSIONS

We were interested to know how the usage of the tpf tools impacts
audio quality and overall latency. We performed tests to compare
the usage of the UDP proxy with a traditional JackTrip client-server
connection. We wanted to know whether the usage of the UDP proxy
has an influence on the number of dropped packets. In another test,
we examined the latency differences between using a UDP proxy
and a direct JackTrip connection. We also examined, whether the
tpf-client imposes a penalty to the quality of the audio transmission
compared to the original JackTrip.

6.1. Dropped packets imposed by UDP proxy

For counting glitches (which are a result of dropped packets), we sent
a 1kHz-sine-tone through JackTrip to a remote JackTrip instance,
that looped back the signal, and recorded the result for a predeterim-
ined period of time. We used the —z commandline option of Jack-
Trip, so that glitches were visually more easy to spot in the wave-
form. Then we counted the glitches by loading the recorded sound
file into a sound editor and examining the discontinuities in the wave-
form. We were not able to determine a significant difference between
a direct link and a link using the UDP proxy. At another instance,
that was totally unrelated to the test series, we experienced many
dropped packets. We later found out that the reason was a bug in the
driver of the virtual network interface of the virtual machine the UDP
proxy is running on. While the UDP proxy usually does not impact
the number of dropped packets negatively, there is a plethora of pos-
sibilities as to why the UDP proxy might behave badly, because it
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depends on hardware, on the operating system and of the software
itself. These sources of error do not apply to a direct JackTrip link.

6.2. Latency imposed by UDP proxy

At the time of comparing the latency of a direct link to the UDP
proxy, the tpf-client had not been written. So a simple tool in Pd was
built to send a single UDP packet to a remote location, that sends
back the packet immediately. The tool measures the delay betwen
sending and receiving the packet. The average travel times turned out
to be identical for both, a direct link a link using the UDP proxy. This
behavior was consistent with different remote locations. This can be
eppxlained by the fact that both, the computer taking the samples and
the server running the UDP proxy, were located at the same campus.
By using tools like mtr or traceroute, we found out that the number of
hops between the computer taking samples and the remote computer
was the same for both link types. In a scenario where both endpoints
are located outside the campus hosting the UDP proxy, using the
UDP proxy adds additional latency. The amount depends on how far
the UDP proxy is away from the direct network path between both
endpoints.

6.3. Performance of the tpf-client

We also tried to examine the impact of using tpf-client compared
to the original JackTrip. It turns out that Pure Data adds one block
of additional latency, because the way it communicates with JACK
decouples its audio processing from the strict graph of the JACK
server. Many other JACK clients like JackTrip are tightly coupled
and do not add additional latency. When using a blocksize of 128 at
a samplerate of 48kHz, the penalty of using tpf-client is 2.6666 ms.
It increases with larger blocksizes or lower samplerates.

Because Pd interfaces the JACK server differently, it is possible
that Pure Data’s audio processing experiences audio drop-outs while
the JACK server does not. This means that the tpf-client introduces a
new source of possible buffer underruns. From our experience, this
theoretical penalty has not become manifest in more glitches when
using tpf-client, at least not when running tpf-client on a macOS
system. On Linux, Pure Data was found, in some situations, to be
the source of glitches when not running with realtime privileges. It
was usually simple to remedy the situation.

6.4. Shortcomings of the JackTrip protocol

While measuring the number of glitches with different combinations
of blocksize and number of channels, we found there was a sudden
increase in glitch rate when the number of channels exceeded a cer-
tain value. When running two parallel transmissions with each only
carrying half the channels, we experienced a low rate of glitches. By
running other tests with the tool iperf, which allowed us to set the
rate and size of UDP packets, we found that link capacity was only
one limiting factor. Not less important was the so-called Path MTU
10" UDP packets larger than the Path MTU are fragmented during
transport. The loss of a single fragment results in the loss of the
whole UDP packet. The likeliness of a UDP packet being dropped
increases with the amount of fragmentation it experiences. For best
performance, the UDP packet size should not exceed the Path MTU.

10Maximum Transmission Unit, is the maximum packet size that is a trans-
mitted in a single network layer transaction, while Path MTU refers to the
maximum packet size that is transmitted through all intermediate hops with-
out fragmentation.
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By running tests with iperf, we were not able to saturate a network
link with a UDP stream, when choosing a relatively large packet size
(e.g. 16000 bytes). By selecting a smaller packet size (e.g. 1400
bytes), we were able to achieve a data transfer rate close to the theo-
rethical maximum while still keeping the number of dropped packets
low. This finding shows that the JackTrip protocol is not suitable for
all kinds of payloads, since the UDP packet size depends on bit res-
olution, number of channels and blocksize:

@

. bl'CS
paCketSZZ@ = Huypp + Hjacklrip + Nchannel X ? X Buffer

where Hypp = Header size of UDP datagram,
Hjackvip = Header size of JackTrip frame,
N channel = Number of channels,
bres = bit resolution,

Bhutter = buffer size

Larger numbers of channels or blocksize result in UDP packet
sizes bigger than the optimal size. With a typical Path MTU of 1500,
and a given blocksize of 128, the largerst number of channels still
fitting into the Path MTU is 5 (1296 bytes). A single audio transmis-
sion with a high number of channels could be split into two or more
parallel transmissions with a lower number of channels in order to
reduce the resulting packet size. However, synchronization between
the transmissions is not guarantueed and therefore this is not a suit-
able solution. The ability to detect the Path MTU and to optimize
UDP packet size by splitting a transmission into many, while keep-
ing synchronicity, are features that still need to be researched.

6.5. UDP hole punching

While there is none or only a negligible penalty for using the UDP
proxy when it is located close to one participating party, it might
add significantly to unacceptable latency, when the participating par-
ties are all located geographically distant from it. In terms of net-
work latency, using a direct link is sometimes as good, and in many
cases clearly superior to using a proxy. A technique called UDP
hole punching allows us to establish a direct UDP conncetion be-
tween two end-points, both acting as client, that is able to traverse
many types of NAT-firewalls. NAT-firewalls usually let an incoming
UDP packet pass, when its receiver address (IP and port) matches the
sender address of a previously outgoing UDP packet. That is because
UDP is a stateless protocol and has no notion about connection. That
is how NAT-firewalls discern outbound connections (that are usu-
ally allowed) from inbound connections (that are usually blocked).
Before establishing the connection, both endpoints contact a central
server to learn about their peer’s public IP address and port number.
Then they start sending packets to the address they learned. Because
this happens on both sides, the firewall on either side "thinks" the
connection was initiated from a local client and it will pass incoming
packets. The technique is already used in webRTC and IP telephony
applications. The tpf-client supports UDP hole punching as an ex-
perimental feature. By double-clicking (instead of single-clicking)
the left button in the peer row an audio transmission using a direct
link is requested. There are still many scenarios where establishing a
such link fails. Supporting more cases and making UDP hole punch-
ing a viable option is certainly a field worthy of further exploration.
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ABSTRACT

Given the relative stagnation in single-thread performance of many
processors in the recent years, made even worse by the recent security
findings such as SPECTRE or L1TF which led to restrictions in ex-
isting features and decreased performance for the sake of security, it
is necessary to find new ways to improve the run-time performance
of dynamic multimedia systems. In this paper, we present the in-
troduction of a just-in-time compiler in the ossia score interactive
score authoring and playback software. We discuss in particular the
creation of a toolchain and software development kit for C++ just-in-
time compilation on the three major desktop platforms, the challenges
and benefits caused by the use of C++ in terms of standard library
requirement, but also the benefits that the system offers in terms of
live-coding.

Keywords: interactive scores, just-in-time compilation, toolchains

1. INTRODUCTION

Users of multimedia software demand two features which can be hard
to reconcile. On one hand, they ask for more performance, the ability
to run more tracks, add more effects, etc. On the other hand, they
request more dynamic behavior, and easily extensible systems — in
particular, systems which do not require the user to write Makefiles and
set-up a compilation toolchain. But such a dynamic behavior generally
comes at a cost: for instance, Javascript, Lua or Python are often
integrated with media environments, such as Blender, ossia score,
and Renoise. These languages can have undesirable properties in low-
latency audio environments: they can cause spurious dynamic memory
allocations, which prevents real-time guarantees to be ensured.

Ongoing advances in just-in-time compilation can to some extent
reconcile these needs. The LLVM project [7] provides simple APIs
to integrate compiler and assembler in C++ software, through the
MCIIT and OrcJIT sub-libraries.

The benefits of just-in-time compilation have been known for
a long time [2] ; of particular interest to us is the ability of just-
in-time compilers to adapt to the exact CPU type available in the
user’s computer. This can lead to great performance improvements:
modern compilers are able to generate correctly vectorized code for
vector instruction sets, such as SSE, AVX, AVX-2, AVX-512 on x86-
based platforms, or Neon on ARM platforms. But in the traditional
compilation model, the author of the software has to know beforehand
for which instruction set the software shall provide optimized routines,
and either write them manually in assembler or with intrinsincs, use
compiler-specific extensions such as GCC’s function multiversioning '
or resort to manual run-time dispatch to the correct function according
to detection of the user’s CPU. This leads to an increase in executable

lhttps://lwn.net/Articles/691 932/
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size for all the users of the software, and can be quite time-consuming
for the developer. Thus, we propose to leverage JIT compilation for
some of the most performance-critical parts of media software so that
they can be compiled in the most optimal way for the user’s CPU.

The proposed system simply compiles C++ code. This is in con-
trast with many approaches such as Faust [11] for audio signal process-
ing, PostgreSQL [13] for improvement of the SQL query performance
or the language created by Avramoussis et al. for transformation of
geometry assets in the VDB format [1]. These systems all provide
custom domain-specific languages (DSL) to solve a well-defined task.
This has the advantage of freeing oneself from C and C++’s compli-
cated legacy and generally simplify the language semantics, but also
means that:

* A large amount of work must be provided by the new language
authors.

* The language won’t necessarily be subject to new advances
in compiler development unless its authors keep working on
it: while some optimization phases can occur at later stage
if leveraging an existing compiler framework such as LLVM,
some optimizations require actual knowledge of the language’s
semantics and thus cannot be applied generically to any DSL.

» The language may not be able to leverage the existing corpus
of libraries available in C and C++.

The system is integrated in the ossia score software [6, 4] for
media creation. Part of the motivation is to improve run-time perfor-
mance while live-coding: the software currently features a Javascript
engine which can be leveraged to provide new behaviors at run-time.
While it is one of the software’s user-base’s favorite features, it comes
at a cost: no real-time safety due to the Javascript engine performing
many memory allocations, and huge “context switch” costs between
the native code world, and the interpreted Javascript engine world.
The objective is to improve the run-time performance, while retaining
some of the properties provided by live-coding: for this, Thor Mag-
nusson gives the hard criteria that a live-coding language should not
take more than five seconds between code and sound [10].

We will first give a brief overview of the OSSIA project, and
of the way just-in-time compilation is introduced into the system.
Then, we will give some pointers towards the creation of a cross-
platform toolchain which allows to support JIT compilation in the
three major desktop operating systems, Linux, macOS and Windows.
Some performance metrics will be discussed.

2. OSSIA PROJECT

ossia ? is an open-source software suite composed of a library (/i-
bossia) and a graphical user interface (ossia score) for managing

2https://ossia.io/
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communication, mapping and time-scripting between various soft-
ware in interactive multimedia artworks. This toolset is cross-platform
(Windows, macOS, Linux), cross-protocol (OSC, MID]I, ...). The
libossia library has been ported to many creative coding tools (Able-
ton, Max/MSP, PureData, VVVV, Touch Designer, OpenFrameworks,
Processing...). It simplifies connecting and controlling various digital
production software together. Its main goals are to facilitate the devel-
opment of time-centric interactive artworks and lower the barrier of
entry to interactive media creation and authoring for emerging artists.

The ossia score software’s execution engine is based on a dataflow
architecture described in [3]. The user interface part leverages a
modern C++ and Qt-based generic document framework which can
be easily reused for other document-centric software. It features an
extensible plug-in API, undo-redo with automatic recovery in case
of crash, interface injection, serialization, selection handling and
multiple document management. It is specifically well-tailored to
hierarchical document structures and enforces strong typing practices.

This framework has been used in an unrelated software as a test
of its flexibility: a point-and-click game editor (SEGMent, developed
with Raphagl Marczak?®).

00:00:00000 > b ® O

Figure 1: ossia score, the main software leveraging this framework

3. C++ JIT

We chose to extend ossia score with a C++ just-in-time compilation
mechanism. The main motivations for this were:

e Using C++ allows reusing easily large amounts of existing
code ; for instance digital signal processing libraries such as
Gamma[12], KFR* or FFmpeg’.

* Due to the amount of software built using C++, compiler opti-
misations for this language are still an active research topic [8,
9], which guarantees “free” performance improvements in the
following years.

* ossia score was already integrating Faust, which itself uses
LLVM, and thus acted as a gateway drug of sorts.

4. PLUG-IN AND PLUG-IN APIS

ossia score already provides multiple plug-in APIs: a simple API
based on defining a unit generator with strong type-safety features

3https://scrime.u-bordeaux.fr/Arts-Sciences/Projets/
Projets/SEGMent2-Study-and-Education-Game-Maker

4https://www.kfrlib.com

Shttps://www.ffmpeg.org
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relating to the input and output ports of the unit generator, and a low-
level API which allows creating plug-ins that can modify every part
of the ossia score software: menus, panels, etc.

The JIT system leverages the existing plug-in APIs: the same
code can seamlessly be integrated either during the build of ossia
score, or at run-time. We give thereafter a brief overview of these two
APIs.

4.1. Safe process API

This API only gives the ability to provide a new unit generator to
the system. Inputs, outputs and controls are given as C++ constant
expressions, which generates the user-interface code at compile-time
and guarantee type-safety. The necessary boilerplate being relatively
low (for C++ code), it is viable to use in live-coding contexts. A
specific unit generator, for now simply named “C++ Jit process” in
the software, allows the user to input code using such API, which will
be live-recompiled ; the corresponding node will be instantiated.

Algorithm 1 provides an example of a “gain” node, which has
one audio and one floating-point input, one audio output, and applies
the gain to the input.

Algorithm 1 : A naive gain implementation in the “safe” plug-in
API. The inputs and outputs of the unit generator are declared in
the Metadata struct. A compile-time mechanism ensures that the
prototype of the run function conforms to the prototype, and that
the types of the arguments are correct. This increases type safety at
run-time when compared to the more traditional C-based solutions
where the programmer has to manually cast the inputs of the unit
generator into the correct type according to knowledge not part of the
type system.

struct Node
{
struct Metadata :
{
static const constexpr auto prettyName =
static const constexpr auto controls
= std::make_tuple(Control::FloatSlider{"Gain", 0., 2., 1.3});
static const constexpr audio_in audio_ins[1{"in"};
static const constexpr audio_out audio_outs[J{"out"};

};

Control: :Meta_base

"Gain";

using control_policy = ossia::safe_nodes::last_tick;

static void run(
const ossia::audio_port& p1, float g, ossia::audio_port& p2,
ossia::token_request, ossia::exec_state_facade)

const double gain = (double)g;
const auto chans = pl.samples.size();
p2.samples.resize(chans);
for (std::size_t i = @; i < chans; it++)
{

auto& in = pl.samples[i];

auto& out = p2.samples[i];

const auto samples =
out.resize(samples);

in.size();

for (std::size_t j
{
out[j] = in[j] *

= 0; j < samples; j++)

gain;
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4.2. General plug-in API

This API enables its user to introduce new elements in most parts of
the software:

* New menus, panels, etc.

¢ Run-time additions to existing data types of the software.
* File loaders.

* Network and hardware protocols.

At the source code level, it mainly leverages the Abstract Factory
design pattern. A plug-in can define a new interface, identified by an
UUID. An example is given in algorithm 2:

Algorithm 2 : An example of interface definition in ossia score. This
particular interface allows a plug-in to register the handling of new
file types in the “Library” panel.

class LibraryInterface : public score::InterfaceBase
SCORE_INTERFACE(LibraryInterface, "9b94d974-9f2d-4986-a62b-
b69e51a4d305" )
public:
~LibraryInterface() override;

virtual QSet<QString> acceptedFiles() const noexcept;
virtual QSet<QString> acceptedMimeTypes() const noexcept;

virtual void setup(
ProcessesItemModel& model
, const score::GUIApplicationContext& ctx);
virtual bool onDoubleClick(
const QString& path
, const score::DocumentContext& ctx);
/7 ...

Plug-ins can then register implementations for these interfaces,
which can be listed and accessed through a global context object.

The majority of the ossia score codebase is based on this API, the
actual software being itself merely a set of plug-ins implemented on
top of the base plug-in framework. The JIT extension discussed here
is itself a plug-in °.

The original plan for ossia score was to rely on this plug-in API to

allow prebuilt extensions to be downloaded from a common repository.

Due to the ongoing development of the software, no ABI (Application
Binary Interface) stability guarantees are provided, which means that
plug-ins must generally be recompiled against the source code of
newer versions. This requires an extensive compilation architecture
which could not only rebuild and publish new versions of ossia score
but also the plug-ins regularly. Common service providers such as
Travis CI and Appveyor do not provide enough capacity for this to be
viable for an open-source, volunteer-led project.

Hence, the plan going forward is to distribute the plug-ins not
included in the base software under source code form. The JIT system
looks for addons on startup in the user library folder: for instance
~/Documents/ossia score library/Addons and simply compiles
all the source files of the addon together. This guarantees that API and
ABI breakage do not cause subtle run-time errors since the add-ons
are compiled against the exact source code that was used to build the
software, the headers being shipped as part of the package: if the API
has changed in a breaking manner, the add-on will not be compiled at
all and the user warned.

https://github.com/0SSIA/score-addon-jit
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5. A CROSS-PLATFORM TOOLCHAIN

ossia score being a cross-platform software, it is necessary to ensure
the same level of support on the three major operating systems: Win-
dows, macOS and Linux. The endeavor was relatively straightforward
on Linux thanks to the availability of the LLVM libraries and com-
pilers in package managers. In particular, the Linux implementation
of JIT compilation in ossia score is also able to use system libraries
instead of the ones provided by the toolchain. The official release of
ossia score is based on the AppIlmage mechanism which allows it to
work on many distribution: as such, it is also necessary to build a
recent toolchain to be able to target older systems, such as CentOS 7
or Ubuntu 12.04.

The complete toolchain, whose build scripts are available at
https://github.com/0SSIA/sdk provides the following libraries:

LLVM 7.0.1 (8 svn on Windows due to previous versions not
working) , Qt 5.12 , FFMPEG 4.1 , PortAudio , JACK headers , SDL2
, OpenSSL , Faust.

5.1. Uniform C++ standard library

The C++ parts of the toolchain are built against the /libc+4 standard
library implementation on all platforms. This is for two reasons: uni-
formity, and licensing. Using a single C++ standard library across
all platforms guarantees less variance in behavior, which is still fairly
common for instance across the various implementations in the im-
plementation of standard algorithms, or complex libraries such as
<regex>. Especially on Windows, the standard library headers pro-
vided as part of Visual Studio are not freely redistributable. This
means that this would introduce an unacceptable dependency on a
Visual Studio installation into ossia score. Hence, we use the system
headers provided by the mingw-w64 project, along with the LLVM
libc++ standard library. The build process implies a first build of the
LLVM project, clang compiler and libc++ standard library, which are
then used to boostrap a second set of LLVM libraries. This is needed
due to the JIT implementation directly calling into LLVM’s OrcJIT
API: if we linked directly against the first set of LLVM libraries, there
would be a standard library mismatch which would in the best case
fail to link properly, and in the worst case fail at run-time.

The llvm-mingw project’ greatly simplified the creation of the
Windows toolchain.

5.2. macOS and rpath handling

macOS is special in that libc++ is the default C++ library implemen-
tation. There is no equivalent to MinGW in the Apple world: the
only implementation of system headers is the one provided by Apple.
Those are not under a free license, to the exception of the C standard
library and Mach kernel headers.

In addition, the customized clang / libc++ provided by Apple is
slightly out-of-date when compared to other platform’s implemen-
tations and suffers from some artificial limitations: using various
C++17 standard library types, such as std: :any, std: :optional or
std: :variant restricts the deployment to the latest in date version of
macOS, 10.14, which is not acceptable for multimedia software users
often restricted to older system versions for the sake of compatibil-
ity. The macOS version of the toolchain thus provides its own clang /
libc++ build which overcomes this problem.

Thttps://github.com/mstorsjo/11lvm-mingw
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A custom-built clang-based toolchain on macOS will by default
still link against the system libc++ implementation. The observed
behavior is as follows:

* No arguments passed: the compiler hard-codes an absolute
path to the system /usr/1lib/libc++.1.dylib.

e -L$SDK/1ib -lc++ -lct++abi: the compiler links the soft-
ware to @rpath/libc++.1.dylib.

It is thus necessary to specifiy the rpath to get working binaries
during development: -L$SDK/1ib -1lc++ -lc++abi -W1,-rpath,/
sdk/1ib.

6. BENCHMARKING

We provide a few performance tests of the system: what advantages
and what costs actually bring C++ JIT compilation. Benchmarks are
run on two machines, both running Linux (Kernel: 4.20.8-arch1-1-
ARCH):

¢ Machine 1: Intel(R) Core(TM) i7-6900K CPU @ 4.00GHz
(Broadwell architecture, desktop).

* Machine 2: Intel(R) Core(TM) i7-8750H CPU @ 4.00GHz
(Coffee Lake architecture, laptop).

6.1. Compile times

C++ is notorious for its slow compile times, due to large amounts of
header files to include, and the cost of the template instantiation mech-
anism. More recent C++ standards being oriented towards compile-
time computation of most values in a program also leads to an increase
in compile times.

On the test machine, a simple node such as the one provided in 1
takes between 1.3 and 1.5 seconds to compile on an average of five
runs. A generic test addon providing mock implementations of a few
interfaces, comprised of 7 source files, 10 header files, for a total of
428 lines of code which themselves include part of the C++ standard
library and Boost, takes between 4.5 and 5 seconds to compile on an
average of five runs.

LLVM generates bitcode, which could be cached on-disk, and
be used to make following start-ups faster. This optimization is not
yet applied and a complete recompile cycle currently occurs for each
addon on startup.

The current “interactive” performance characteristics, while much
slower than what the Javascript interpreter provides, are thus still
viable for some level of live-coding.

6.2. Run times: benchmarking gain adjustment

We discuss here the runtime improvements provided by the system.
The following cases cases are tested:

* The gain node of algorithm 1 as provided pre-built in the ossia
score binary, which must work on a variety of systems and thus
is not optimized for any kind of vector instruction set outside
of the x86-64 SSE2 baseline.

* The same gain node, passed in the system presented in this
paper which operates at an -Ofast -march=native optimiza-
tion level and is thus able to take into account the user’s actual
CPU features.

* A manually optimized version of the gain node, done with
hand-written AVX intrinsincs.
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We measure every time the time taken by the computation for
various common buffer sizes. Figure 2 gives the measurements for
the first machine, figure 3 for the second machine.
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Figure 2: Broadwell CPU: average time in nanoseconds to compute
a buffer. In blue: generic code with the default compilation settings.
In orange: generic code while built with the JIT system. In green:
manually-written AVX implementation.
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Figure 3: Results for the Coffee Lake CPU, following the same nomen-
clature than the Broadwell CPU.

Figure 4 presents the improvements between the two CPUs, in
order to help the reader see the differences more clearly between
figures 2 and 3.
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Figure 4: Performance difference between the Cofteelake and the
Broadwell CPU: it is interesting to note that the buffer size heavily
influences which workloads benefits the most from the CPU improve-
ments.

6.3. Run times: benchmarking FFT

For this benchmark, we compare the run time of a Fast Fourier Trans-
form algorithm implemented in the KFR library mentioned earlier.
This library provides hand-optimized versions for many different in-
structions sets, ranging from SSE2 to AVX?2. The results are presented
in 1. The test is done on a large array: 16384 double-precision floating-
point values.

Machine Generic JIT Time saved
Broadwell 214 ps 144 ps 32.7%
Coffeelake 172 ps 107 ps 37.8%

Table 1: Performance increases yielded by using the proper instruction
set.

6.4. Discussion
A few things are made apparent by the previous benchmarks:

 In simple cases, it is pointless to try to optimize better than
what the compiler can: the manually-written AVX version
is almost never faster than the simple for-loop version when
optimized by the compiler.

* The improvement in that case is fairly expected: AVX is able
to compute almost twice as many floats than SSE2 in the same
time.

* In the more complex, hand-optimized case of the FFT, there
are also important performance benefits.

* The C++ compile-times are certainly not negligible for large
amounts of code. Potential paths for improvement could be the
use of precompiled headers, or upcoming C++ modules.
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In addition, we note that the system does not currently add any
performance benefits — nor drawbacks — versus compiling the whole
codebase at -Ofast -march=native. Thus, the system is mainly use-
ful performance-wise in the case where the end-user is not able to
rebuild the software himself. While on Linux systems this is generally
not a problem (even though users may use old distributions with com-
pilers unable to support recent editions of the C++ language required
by ossia score), this is tremendously useful for Mac and Windows
users where the default toolchain requires mutltiple gigabytes of disk
space and takes a long time to install.

7. CONCLUSION

We presented the integration of a C++ just-in-time compilation system
based on LLVM in an existing media authoring environment, ossia
score.

There are multiple further steps that we would like to reach for
the system:

* Correct live-reloading of addons. The main problem to handle
is that a JIT-compiled addon may instantiate new objects in the
system. These objects must be tracked, serialized and reloaded
whenever the addon code change: else, due to the ABI of
objects potentially changing, this will cause runtime crashes.

* Generation of cross-compiled code. An often requested feature
for ossia score is to support embedded architectures. While
the software already builds and run on such systems, it would
be useful to generate a minimal executable for such platforms
from a desktop machine, which only contains a given score
with implementations optimized for the exact system being
targeted.

* In longer time-scales, cross-unit-generator optimizations could
be interesting: in particular, how can the system integrate with
other languages also based on LLVM such as Faust ? The
Mozilla team is currently researching cross-language inlin-
ing between C++ and Rust for instance. Combining multiple
audio nodes written in different languages, and compile them
together in a single dataflow graph may open further optimiza-
tion opportunities.

Finally, the JIT denomination for the system could in practice be
argued: since ossia score is itself an interpreter for a visual language,
but the execution of the programs of this visual language are done
only once every part of the system has been compiled to assembly: for
reasons of safety, we prefer not to launch C++ compilations during
the execution of a score, since it may seriously hamper the available
performance of the system. The JIT process still allows this, but the
user must be aware of the risks in doing so if the score already uses
most of the machine’s cores for instance.
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ABSTRACT

The Stage, a small concert hall at CCRMA, Stanford University,
was designed as a multi-purpose space when The Knoll, the build-
ing that houses CCRMA, was renovated in 2003/5. It is used for
concerts, installations, classes and lectures, and as such it needs to
be always available and accessible. Its support for sound diffusion
evolved from an original array of 8 speakers in 2005, to 16 speak-
ers in a 3D configuration in 2011, with several changes in speaker
placement over the years that optimized the ability to diffuse pieces
in full 3D surround. This paper describes the evolution of the design
and a significant upgrade in 2017 that made it capable of rendering
HOA (High Order Ambisonics) of up to 5th or 6th order, without
changing the ease of operation of the existing design for classes and
lectures, and making it easy for composers and concert presenters to
work with both the HOA and legacy 16 channel systems.

1. INTRODUCTION

We have been hosting concerts at CCRMA since it was created in the
70’s. In 2009 we started expanding our concert diffusion capabilities
while gearing up for the inaugural season of a new concert hall being
built at Stanford, the Bing Concert Hall. In 2013 we were able to
use our newly created GRAIL system (the Giant Radial Array for
Immersive Listening) to diffuse concerts with out own “portable”
speaker array with up to 24 speakers and 8 subwoofers arranged in a
dome configuration for full 3D surround sound diffusion [1].

= |

Figure 1: CCRMA Concert in the Bing Studio with the GRAIL

By 2011 our Listening Room Studio included a 22.4 speaker ar-
ray in a full 3D configuration (with speakers below an acoustically
transparent grid floor), which could accurately decode periphonic
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(full 3D) 3rd order Ambisonics. Our upgraded GRAIL concert dif-
fusion system was also able to render up to 3rd order Ambisonics,
or even 4th order if some errors in rendering were ignored. This
was made possible by the publication of algorithms that allowed the
design of HOA decoders for irregular arrays [2]. In particular, the
release of the Ambisonics Decoder Toolkit software package written
by Aaron Heller [3][4], which included software implementations
of the aforementioned research, simplified the task of designing de-
coders. This work enabled the creation of successful diffusion strate-
gies for irregular speaker placement in the Bing Concert Hall and its
rehearsal space (the Studio), as well as other spaces. Both systems
benefited from an open architecture based on the GNU/Linux oper-
ating system and many free audio software packages that, combined,
allowed us to tailor the system to our specific needs.

We have curated many concerts with content of varied spatial
resolution. As composers went on to create works requiring more
speakers for a higher Ambisonic order decode, the limitations of
our systems became apparent. While Ambisonics is well known
for a graceful degradation of the spatial resolution when not enough
speakers are available for the original order of the piece, the state of
research and artistic creation was moving towards orders that were
higher than what we could support.

1.1. From WFS tests to HOA in the Stage

In 2011 we bought 32 small speakers (Adam A3X) to create an ex-
perimental WFS array. Over the next few years we used it for demos
and classes, but other than a couple of concert performances the sys-
tem was used very sparingly. On the other hand, our Stage concert
hall had a complement of 16 speakers and 8 subwoofers, which lim-
ited our ability to render full 3D HOA (we had been recently using a
32.8 system for our off-site concerts).

In an effort to upgrade our dedicated diffusion space at CCRMA,
we proposed to re-purpose the “unused” speakers and add them to
the existing Stage diffusion system. This addition would increase
the total count of speakers to 48, and preliminary studies determined
that we would be able to render up to 6th order Ambisonics quite
accurately. Natasha Barret’s research [5] points to diminishing re-
turns in spatial performance for 7th and higher order decoding, so
we felt confident that moving to a fifth or sixth order system would
be adequate for our needs and a worthwhile upgrade.

The design and implementation of this upgrade ended up being
anything but easy.

2. REQUIREMENTS

The existing system in the Stage consisted of 8 movable tower stands,
each one housing a main speaker (four S3A and four P33 Adam
high quality mid-field studio monitors) and a subwoofer (M-Audio
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SBX10). In addition to those, we had 8 Adam P22 speakers hang-
ing from the trusses and arranged as a ring of 6 with an additional
two more overhead. All 16 speakers could be individually addressed
from a Yamaha DM1000 mixer, with some limitations as the sub-
woofers were paired to the 8 main speakers - we used their internal
crossovers - and could not be used by the upper 8 speakers.

The Stage is not only a concert hall, it is also regularly used for
classes, lectures, demos and other events that do not need or want a
high spatial resolution speaker array. In fact, the majority of users re-
quire access to just stereo playback. As the CCRMA concert events
combine live performers, touring musicians and researchers, many
concerts do not deal with 3D surround sound and use mostly stereo
projection. The existing flexible 16 channel system allowed for cre-
ative diffusion using a combination of speakers and provided flexi-
bility in which orientation the space could be used.

One of the key requirements for the upgrade was that the existing
system and methods of operation would not be changed. Further-
more, the space sometimes is used to accommodate big audiences
(for its size), so any addition to the Stage could not permanently en-
croach in the floor space available for setting up chairs for events.

These varied requirements complicated the design process in
ways which we had not anticipated.

We were required to:

1. have a mode of operation that would keep the existing de-
sign, 8 main speaker and subwoofer towers plus 8 secondary
speakers hanging from the ceiling trusses, all of them driven
directly from our DM 1000 digital mixer

2. not degrade the performance of the existing system in any
way, including the low latency achievable with the digital
mixer, appropriate for live performances

3. have a way to easily switch from the basic system to a fully
expanded speaker array which added 32 speakers, all of them
controlled through a single Linux based computer similar to
the one managing diffusion tasks in our Listening Room [6][7]

4. have the ability to physically move the additional small speak-
ers positioned at ear level out of the way, so that they would
not interfere with the existing floor footprint of the diffusion
system

5. easily switch between the two modes of operation, preferably
with “one big switch” that would need no expertise from the
operator

6. the system had to be “low cost”

This created a situation with many mutually incompatible sys-
tem requirements from a design standpoint.

3. FEASABILITY TESTING

Before starting the upgrade a practical question had to be answered:
were the tiny A3X speakers good enough (in quantity) to be able to
produce enough SPL for a concert diffusion situation? Matt Wright
and Christopher Jette organized a quick test session in which we in-
stalled 16 speakers in a ring at ear level (on top of chairs and plastic
bins!) and drove them from our GRAIL concert control computer.
This test was successful and confirmed that they were up to the task,
but only if properly equalized, so we could go ahead with the up-
grade.
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4. LOCATION, LOCATION, LOCATION

Where and how to mount all speakers was a difficult task, made
harder by the rectangular shape of the room and the presence of
trusses that hold the cathedral-style ceiling. To arrive at a prelim-
inary even distribution in space we used a simple successive approx-
imation software that treats speaker locations as electrons that repel
each other, and determines the approximate ideal locations of the
speakers [8]. Additional constraints were introduced in the software
to “fix” the position of the existing 16 speakers in space (remember
that our design must be a superset of the existing system), and see
where the rest of the speakers would fall.

Figure 2: Ideal projection of speaker locations on a hemisphere (red
dots: original upper 8 speakers, blue dots: ear level speakers)

A simple geometrical model of the Stage created in OpenSCAD
[9] was used to project those ideal locations into the walls and ceiling
of the Stage, to see where we might approximate the ideal locations
in space with real mounting points. It was challenging to find loca-
tions which would not be shadowed by the ceiling trusses for most
of the audience seating space, and in a couple of instances there was
unavoidable shadowing that we had to ignore.

Figure 3: OpenSCAD model of the Stage (seen from below) with
speaker location projections, the cylinders partially represent the
A/C ducts, the black beams are the lower part of the trusses

We used ADT (the Ambisonics Decoder Toolkit)[3][4] as a de-
sign verification tool, in particular the energy and particle velocity
graphs helped us determine if the proposed mounting locations for
the speakers would provide uniform coverage for the desired Am-
bisonics orders (Sht and 6th order was the goal). Other diffusion
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methods (VBAP, etc) would also benefit from a uniform spatial dis-
tribution of the speakers.
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Figure 4: Side view of the Stage with speaker mounting points. Grey
dots are ideal positions in a hemispherical dome, colored rectangles
are the real positions

The final speaker configuration at which we arrived was an ear
level ring of 20 speakers (the 8 original towers plus 12 additional
A3X speakers), another ring of 14 A3X speakers mounted on the
trusses (roughly 20 degrees in elevation above the first ring), and the
original 8 speakers (roughly 20 degrees of elevation higher) plus 6
more A3X’s distributed in the upper part of the dome. The 12 ear
level speakers could not be mounted on stands that would take away
floor space needed for seating, and had to be able to be moved out of
the way when not in use. We installed a truss mounted rail system
and designed telescoping mounts that could be switched between
the normal listening position and a “parked” position where the 12
small speakers are moved next to the existing towers. The mechan-
ical design took a long time and several prototypes were built and
tested. Our final system features custom fabricated mounts made
from 80/20 extruded aluminum profiles and hanging steel channel to
facilitate rolling the speakers between locations.

5. DRIVING MANY SPEAKERS

One of the difficult aspects of the design process was finding an audio
routing and distribution technology that would allow us to satisfy all
the requirements within a reasonable amount of time and with the
limited budget and manpower available to us. Furthermore, the full
system needed to be controlled from a computer running GNU/Linux
(like our Listening Room system), and Linux desktops and laptops
should be able to connect to it for diffusion tasks.

For our GRAIL concert sound diffusion system we had been us-
ing a homebrew system which consisted of one half of a network
snake (the Mamba box), plus some ingenious software in the form
of a Jack[10] client (jack-mamba [11]), to transform it into a very re-
liable 32 channel D/A converter. While the system proved to be rock
solid for our concerts, it was not really expandable in a way which
could satisfy our requirements.

The first audio technology we explored was MADI. We had used
RME MADI audio interfaces which had good driver support in Linux
in our Listening Room system. For this 22.4 system we had to use
two cards, one RME MADI and one RayDAT. This type of system
could scale up to the number of inputs and outpus that we needed, but
we could not find an easy way to control rerouting of connections to
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Figure 5: Speaker mount

support both modes of operation. The only reasonable cost option we
found was an RME MADI switching matrix, but switching between
MADI scenes required several operations on the front control panel,
and there was no option for remote software control which would
have enabled us to design a separate simple to use interface.

Our experience with the ethernet based Mamba digital snake sys-
tem suggested that a similar technology based on ethernet could be
an answer to meet our requirements.

There are several protocols that rely on ethernet connections to
transport audio and interconnect several audio interfaces together.
The most widespread commercially so far has been Dante, but that
was ruled out as the protocol specification is closed and proprietary,
and there is no formal support for Linux. There is one company
that offers a 128 channel ethernet card with associated Linux binary
drivers, but there is no guarantee that this will be supported for future
kernel upgrades and the card and driver combo is extremely expen-
sive.

AVB (Audio Video Bridging) [12], on the other hand, is an open
standard with a free software implementation embodied in the ope-
nAVNu project [13]. Regretfully not many manufacturers have used
this standard for their products. One product manufacturer we con-
sidered was Motu, as their newer audio interfaces can be connected
to each other through AVB and standard ethernet cables. Their in-
ternal configuration can be completely controlled through a built-in
web server which makes it platform agnostic, and there is a pub-
lished API that can use JSON http requests and OSC to remotely
control all aspects of its operation. A Linux computer could control
the full system without relying on proprietary software.

Regretfully the AVNu project does not yet include code for a
complete Linux-based solution. It would be possible to create one,
but that would require a substantial software development effort which
was beyond the scope of the resources available to this project.

We bought a couple of interfaces for evaluation and experimented
with using their USB interfaces. In the most desirable MOTU cards
we found that the implementation of the USB2 class compliant driver
was limited to 24 channels, which was much less than what we
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needed (the cards were advertised as having 64 channel I/O through
USB?2, but that was only possible when using their proprietary driver).
So we were at an impasse.

5.1. Firmware giveth...

Almost by chance we found an online reference to a “64 channel
mode”, and traced it back to a very recent firmware upgrade that
added a mode selection configuration option to the USB audio in-
terface. The new firmware allowed us to set the maximum number
of channels handled by the USB class compliant driver to 64 if the
sampling rate was limited to 44.1 and 48KHz, which was accept-
able for our use case. This is beyond what the USB2 specification
can do, but it performed well in tests under Linux, and allowed us
to potentially address all speakers through the GRAIL control com-
puter’s USB2 interface, while multiple additional audio interfaces
could communicate audio data through AVB. This new feature also
would enable end users to interface with the finished diffusion sys-
tem using another audio interface with its own USB2 interface. This
would provide multiple entry points into the system using just USB2,
making it easily usable by our users.

A firmware upgrade transformed the Motu hardware into a vi-
able option. But what firmware can give, it can take away, as we will
see...

5.2. Digital Mixer Mode

The first phase of the design centered around finding a configura-
tion that could keep the old setup of DM1000 plus 8 main speakers
operational with minimal changes. Some simple tests determined
that routing the DM1000 to a 16A Motu interface through ADAT
so it would drive the speakers (instead of the DM 1000 driving them
directly) would not change the latency of the system significantly.
This 16A audio interface would also be the word clock master for
the whole system, and this basic setup would depend on only the
DM1000 and that interface being up and running to work.

This means that the 16.8 legacy system (we will call this the
“Digital Mixer Mode”) could be kept unchanged, and could be a
subset of the full 48.8 system (the “OpenMixer Mode”).

5.3. Routing the Subwoofers

There was a very long design detour that tried to use the internal
crossover of the old subwoofers in “Digital Mixer Mode” as they
were working fine and everybody wanted to keep their well known
sound. We are going to skip those 4 months and jump straight into
the design that incorporated new subwoofers much later.

The subwoofer upgrade proved to be a problem, both from the
point of view of signal routing and from the specs that they had to
meet. We wanted to have standalone crossovers when in “Digital
Mixer Mode”, and software crossovers implemented in the GRAIL
control computer when in “OpenMixer Mode”. We also wanted to
have a rather high crossover frequency (originally 110Hz, currently
about 90Hz) to minimize the cone excursion of the main speakers at
low frequencies (they are mid-field monitors and almost too small
for the space, but we love their very precise sound). And we wanted
a low frequency limit of around 20Hz with enough power to fill the
room without clipping or distortion.

The ideal subwoofer that would meet all our requirements does
not exist (the details of why that is the case are beyond the scope of
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this paper). We ended up buying SVS SB4000 units, and not using
the internal DSP processing included in the unit.

The only workable solution we found was to use external pro-
grammable crossovers when the system was operating in “Digital
Mixer Mode”. We used DBX 260 units and routed them through in-
puts and outputs of the same Motu audio interface used to drive the
8 main speakers (this back and forth tour added a tiny bit of latency).
In “Digital Mixer Mode” the DBX crossovers are inserted into the
signal path by the internal routing of the Motu audio interfaces, and
in “OpenMixer” mode they are completely disconnected so that the
GRAIL control computer can directly interface with speakers and
subwoofers, and provide its own separate digital crossovers. In “Dig-
ital Mixer Mode” the signals going to the 8 main speakers are routed
to the crossovers which split it between the main speakers and to
the corresponding subwoofers, in “OpenMixer Mode” all speakers
are mixed in to the 8 subwoofers. All the signal switching is ac-
complished using the routing matrix that is part of the Motu audio
interfaces.

The use of external crossovers also allowed us to properly match
phase at the crossover frequency and equalize the whole system in
“Digital Mixer mode” for best performance, something we could not
do before the upgrade.

Another 16A Motu interface drives the upper 8 speakers with
signals that are sent from the digital mixer through AVB and the
internal routing matrices of both audio interface cards.

The core system in “Digital Mixer Mode” consists of two Motu
16A cards, the DBX crossover units and the DM 100 digital mixer.
That not only keeps the same operational characteristics as before,
but improves the system through better crossovers and speakers.
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Figure 6: Signal routing in Digital Mixer Mode

5.4. And firmware taketh away...

In the middle of the design and implementation of the system we
found that newer Motu interfaces no longer had the 64 channel mode
configuration option. It turns out that Motu had “unspecified prob-
lems” with it, and removed the feature from their products through
another firmware upgrade.

Suddenly the audio interfaces were useless for our purposes (24
channels instead of 64), with no fix coming from Motu, after all,
they worked fine with their proprietary drivers. To make a long story
short, we were able to downgrade the firmware to a version where
that feature was still supported, and everything worked again. A not
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very sustainable fix and a hack as we (and possibly random users of
the system) have to ignore the constant reminders that a “software
upgrade is available”.

While software upgradable products offer useful flexibility, you
never know when something you depend on might go away, or some
new and exciting capabilities might be added, and in which order
that might happen. That was not the last problem we had with Motu
firmware versions.

5.5. OpenMixer Mode

With the core architecture now a working reality, we added three
24 Ao Motu audio interfaces hidden in the ceiling trusses of the Stage
to drive the additional 32 small speakers (two would have been enough,
but using three made the wiring easier and wiring represented a large
time expenditure in this upgrade). An additional 16A in the Open-
Mixer control computer rack (on casters) acted as the interface be-
tween the OpenMixer Linux control computer and the rest of the
system, using a single USB2 interface. AVB streams are used to
send and receive audio to all other Motu audio interfaces, and finally
to all speakers, and changing the internal routing in the audio inter-
faces through JSON http calls configures the audio routing for the
two main modes of operation.

An additional 24Ai audio interface in the OpenMixer system
rack is the entry point in the system for connecting laptops and other
computers for concert diffusion or other purposes (Windows, OSX
and Linux are all supported). A single USB2 cable allows us to have
up to 64 channels of input/output available, which is enough for our
current needs. AVB and the internal routing of the interfaces is used
to send signals around.

Yet another 16A audio interface is used to interface with our
dedicated Linux desktop workstation which resides on another cart
together with its display, keyboard and mouse. A total of 8§ Motu
audio interfaces interconnected through AVB make up the audio part
of the diffusion system.

Three Motu AVB switches connect all the audio interfaces to-
gether, and the different racks and mobile units in the space are eas-
ily connected through long ethernet cables (one mobile rack for the
digital mixer and associated equipment, another for the OpenMixer
control computer and another one for the desktop computer). The
use of ethernet means there is a significantly smaller cable count to
manage 64 channels of audio.

5.6. Switching modes

The attentive reader might have noticed that switching between “Dig-
ital Mixer Mode” and “OpenMixer Mode” seems to be happening
magically so far. While we do have a Linux control computer, we
cannot rely on it for switching modes. The system should keep work-
ing even if the control computer is off, or if it breaks down.

A solution that has worked admirably well is to add yet another
computer (as if the system was not complex enough). This addi-
tional computer is a RaspberryPI 3 with a touch panel, mounted right
next to the digital mixer. It allows the user to switch sampling rates,
switch between operating modes and even activate different options
in “OpenMixer mode” (changing between the Direct and Ambison-
ics modes, selecting Ambisonics decoders, etc). It communicates
through ethernet with all the Motu audio interfaces and the main
OpenMixer control computer.

The OpenMixer control computer also has a touch display, and
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Figure 7: Signal routing in OpenMixer Mode

the software was designed so that either of them can be used to con-
trol the system and they stay synchronized with each other.

5.7. What? More Speakers?

Quite early in the implementation process Christopher Jette pushed
for the immediate inclusion of something we had planned as a future
expansion. In addition to the existing subwoofer and main speaker,
the eight main towers would house 8 speakers almost hugging the
ground. These speakers were included to help “pull down” the sound
image, specially in the Ambisonics decoder modes. So our final
speaker count is 56 speakers and 8 subwoofers, adding up to 64 in-
dividual outputs. We are maxed out.

5.8. Control Software

In “OpenMixer Mode” the Linux control computer (currently boot-
ing Fedora and running an optimized RT patched kernel) performs all
internal DSP using SuperCollider[14] and its Supernova multi-core
load-balancing sound server [15]. Jconvolver [16] is used for very ef-
ficient low latency partitioned convolution, and implements the digi-
tal loudspeaker correction filters. The software itself is conceptually
simple, it provides for level and delay equalization of all speakers,
digital crossovers (a combination of Linkiwitz Rayley [17] and But-
terworth filters), routing control so that different sound sources (digi-
tal mixer, laptop, desktop) can be connected to the speakers, optional
built-in Ambisonics decoders created with ADT [3][4](up to 6th or-
der) and of course digital equalization of all speakers with convolu-
tion filters created from analyzing their measured impulse responses
with the DRC (Digital Room Correction [18]) software package.
SuperCollider is started automatically on boot through a systemd
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unit and takes care of orchestrating the rest of the system startup pro-
cess. First, Jack [10] is started, then the SuperCollider program starts
the Supernova sound server and its associated DSP software, two in-
stances of Jconvolver, and finally everything is connected together
using aj-snapshot and dynamically generated XML connection files.
SuperCollider monitors all auxiliary programs, and restarts and re-
connects them if they somehow fail.

The whole system is optimized for low latency, and currently
runs with 128 frames per period (work is underway to get it to work
at 64 frames per period, which would start approaching the perfor-
mance of the digital mixer which runs with 64 frame blocks).

SuperCollider is also used for the touch graphical user interface
in both the main computer and the small RaspberryPi switching ap-
pliance.

5.9. Calibration

For best performance the full speaker array is calibrated after the
initial installation and when hardware changes are made. First el-
evation and azimuth angles for all speakers are measured, as well
as the distances to the center of the space. These measurements are
used to create the Ambisonics decoders for the main array and the
subwoofers, and also to compensate for arrival times at the center
of the space. After that we use Aliki [19] to measure the impulse
response of the speakers, and that information is used to calculate
convolution filters using DRC. Finally SPL measurements are done
to compensate for small differences in speaker loudness in both di-
rect and Ambisonics modes.

6. PROBLEMS AND CHALLENGES

While the selection of Motu products lead to a viable design, there
are still occasional problems when using them on “unsupported plat-
forms”.

Occasionally an audio interface can disconnect from one or more
of its AVB streams. The web interface shows them blinking and we
have not found a way out of this other than rebooting both interfaces.
After the reboot the connections are re-established automatically. We
have not been able to find a way to reproduce this, and it only hap-
pens in the more complex Stage system we are describing in this
paper (it has not happened, so far, in a far simpler system now run-
ning in our Listening Room). We have to do an thorough audit of the
existing streams and only enable exactly what we need. This may
be a problem solved in later firmware releases, but we are chained to
older ones to retain the features that make the system possible in the
first place.

In a different Studio in which we also deployed a single Motu
interface we found another firmware related problem when using the
class compliant driver under Linux. Suddenly inputs going into the
computer through USB would switch channels in blocks of 8. What
was coming through input 1 is suddenly in input 9, and so on and so
forth. Again, downgrading to a previous firmware version fixes the
problem (or using the proprietary driver). Caveat emptor.

In terms of the Linux control computer for the Stage system,
the long term solution for interfacing with the audio interfaces is to
use AVB streams directly. That would lift the 64 channel limitation
(we of course would like to add a few more speakers), and hopefully
make the system more reliable. The foundation of that is available
in the OpenAVNu git repository but much work remains to be done
(some preliminary tests managed to sync the Linux computer to the
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AVB clock, and get the system to recognize the existence of a Motu
card).

6.1. Motu vs. Jack vs. PulseAudio

A weird feature of the Motu interfaces is that every time the sampling
rate is changed (even if it is an internal change and the card is not
slaved to an external clock) it takes the card a few seconds to acquire
a “lock”. During this time Jack can try to start, but at some point it
decides that it can’t, and fails.

This can lead to an endless loop of failed starts in the following
scenario: assume the card is already running at 44.1KHz and we
are trying to start Jack at 48KHz. Jack requests exclusive access to
the card from PulseAudio and the request is granted. Jack tries to
start but fails, because the card was running at 44.1KHz and it takes
time to switch to 48KHz. After the attempt the card is switching to
48KHz, but when Jack quits it hands the card back to PulseAudio,
which promptly resets its sampling rate to its default, 44.1KHz. And
we are back where we started. There is no way to start Jack, unless
PulseAudio is killed or its default sampling rate is changed to the
one we want, or we tell it to ignore the card, which is not what we
want to do.

If there is no change in sampling rate and Jack fails to start,
waiting a few seconds and trying again succeeds.

To avoid this problem, in the control software for both the Lis-
tening Room and Stage Linux computers we use a JSON http call to
check the lock status of the audio interface clock and delay the start
of Jack until the sampling rate is locked.

7. CONCLUSIONS

The opening concerts of the newly upgraded Stage took place in Oc-
tober 4/5 2017, and the system performed very well (at the time we
were still using the old subwoofers). Another round of upgrades in
2018 replaced the original subwoofers with newer ones, as outlined
above, and also upgraded the main 8 speakers with newer A77X
Adam monitors. The lower layer of speakers were repositioned at
the bottom of the main towers, and the new subwoofers were stacked
immediately above them (originally they had been reversed). A sec-
ond round of successful concerts (our annual Transitions concerts)
took place in October 2018 with the fully upgraded array. The full
array has seen more use in the past year, with several concerts using
it instead of what would have been stereo or quad diffusion.

We have outlined the design process of a complex Linux-based
diffusion system, using off-the-shelf components and GNU/Linux
for all the software components.
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Figure 8: Transitions 2018 concert

who spent many hours soldering many many small connectors, and
routing what seemed like miles of cables. No audio would flow if
not for her help. Jay Kadis, our audio engineer at the time, also
spent quite a bit of time wiring DB25 connectors and cabling the
main towers. Juan Sierra, one of our MA/MST students, was instru-
mental in properly phase matching of the new subwoofers with the
main speakers and tuning the crossovers for best performance, the
Stage sounds much better thanks to him. Carlos Sanchez, sysadmin
and staff at CCRMA, designed and implemented the hardware and
software that drives the touch interface that controls the whole sys-
tem. And Constantin Basica, our new concert coordinator, has been
helping visiting artists use the full system for much more interesting
concerts over the past year. Many thanks to all involved, we can now
do justice to many fantastic pieces from composers that tickle our
ears with beautiful sounds arranged in space.

9. REFERENCES

[1] Fernando Lopez-Lezcano, “Searching for the grail,” Computer
Music Journal, vol. 40, no. 4, pp. 91-103, 2016.

Franz Zotter and Matthias Frank, “All-round ambisonic pan-
ning and decoding,” J. Audio Eng. Soc, vol. 60, no. 10, pp.
807-820, 2012.

Aaron Heller, Eric Benjamin, and Richard Lee, “A toolkit for
the design of ambisonic decoders,” Proc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>