
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

FORMALIZING MASS-INTERACTION PHYSICAL MODELING IN FAUST

James Leonard and Jérôme Villeneuve

Univ. Grenoble Alpes, CNRS, Grenoble INP*, GIPSA-lab,
38000 Grenoble, France

* Institute of Engineering Univ. Grenoble Alpes
james.leonard@gipsa-lab.grenoble-inp.fr

Romain Michon,1,2 Yann Orlarey1 and Stéphane Letz1

1GRAME-CNCM, Lyon (France)
2CCRMA, Stanford University (USA)

michon@grame.fr

ABSTRACT

This paper presents recent work conducted on the integration of
mass-interaction physical models in the FAUST programming lan-
guage. After a brief introduction to mass-interaction networks,
FAUST, and previous works on this topic, we present a simple mod-
eling framework, a FAUST code generator and its associated library,
allowing to implement 1D mass-interaction models. In addition to
the open-source tool itself, this research offers a perspective on for-
malizing arbitrarily large networks of bidirectional feedback cou-
plings and state-space models in FAUST, through routing patterns.
We finish with a set of examples, and discuss future perspectives and
challenges.

1. INTRODUCTION

For several decades, physical modeling has been used to synthesize
audio by means of simulating the behaviour of vibrating objects. A
panoply of methods have been proposed over the years, from lumped
discrete models [1], to Waveguides [2], to large scale Finite Differ-
ence schemes [3], that have gained in popularity with the increase
of computing power. Creating a model of a mechanical instrumental
system can be simpler than explicitly formulating the signal that it
produces (as sound properties emerge from the physical conditions
of the matter) and offers direct means for control and interaction, ei-
ther by simulating musical gestures or by coupling the user and the
virtual object, for instance using haptic technologies [4].

FAUST [5] is a functional programming language for real-time
Digital Signal Processing (DSP) with a strong focus on the design of
synthesizers, musical instruments, audio effects, etc. The FAUST
compiler can be used to “translate” a FAUST program to various
non-domain-specific-languages such as C++, C, JAVA, JavaScript,
LLVM bit code, WebAssembly, etc. Thanks to a wrapping system,
code generated by FAUST can be easily compiled into a variety of ob-
jects ranging from audio plug-ins to standalone applications, smart-
phone apps, web apps, etc.1 This mechanism also makes it possible
to add MIDI, OSC, polyphony, etc. support to any FAUST-generated
program.

1.1. Mass-Interaction Physical Models

Pioneered in artistic applications by the CORDIS-ANIMA system
[1] at ACROE, mass-interaction physical modeling allows to formu-
late physical systems in the form of lumped networks, composed
of two main components: masses, representing material points in a
given space (1D, 2D, 3D) with a given inertial behaviour, and inter-
actions, each representing a specific type of physical coupling (i.e.,

1The FAUST website contains an exhaustive list of all the FAUST targets:
https://faust.grame.fr.

visco-elastic, collision, non-linear, etc.) between two mass elements.
Mass-interaction systems are now used in a variety of contexts (mu-
sical & other), partly for the fact that arbitrarily complex virtual ob-
jects can be described simply as a construction of elementary physi-
cal components. A basic model is shown in Figure 1.

Figure 1: Topological representation of a mass-interaction model.
Here, a fixed point (represented on the left) is connected to a trian-
gle composed of masses and dampened springs. An input module
interacts with the top mass through a non-linear pluck interaction.

Unlike FDTD methods [3], creating physical models with this
formalism avoids the need to explicitly define a mathematical model
(partial difference equations systems, boundary conditions, etc.) for
a given physical structure beforehand. Therefore, it lends itself par-
ticularly well to iterative and exploratory design of "physically plau-
sible" virtual objects, grounded in the laws of Newtonian physics
but not necessarily limited to the mechanical constraints of the real
world.

Mass-interaction physical models can contain anything from a
couple of physical elements to tens or hundreds of thousands of
them. Assembling and configuring the models element by element
can be very time consuming. To this end, user-friendly modeling
environments have been proposed, namely GENESIS [6] (and more
recently Synth-A-Modeler [7]) for 1D audio applications. The for-
mer offers high level tools for generating topological structures, and
analyzing/tuning physical constructions through modal analysis [8].

1.2. Current State of Physical Modeling in Faust

Various projects have been using FAUST to implement physical mod-
els of musical instruments.

The FAUST-STK [9] is a complete re-implementation of the
waveguide and modal models of the Synthesis ToolKit (STK) [10].
It also contains various models from the Soundius Project. 2

2Unfortunately, there is no documentation/publication on this project yet.

http://www.gipsa-lab.fr/
mailto:james.leonard@gipsa-lab.grenoble-inp.fr
http://grame.fr
mailto:michon@grame.fr
https://faust.grame.fr

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Julius O. Smith implemented a series of waveguide meshes that
landed in the FAUST libraries3 but that were never documented/pub-
lished.

More recently, the FAUST physical modeling toolkit [11] was
introduced. It is based on a library allowing for the implementation
of bi-directional block diagrams in FAUST and containing a wide
range of musical instrument parts that can be assembled in a mod-
ular way. It also comes with mesh2faust[12], a tool to generate
modal physical models compatible with the FAUST physical model-
ing library using Finite Element Analysis (FEA).

The work presented in this paper was partly inspired by Ed
Berdahl’s Synth-A-Modeler [7] (which itself direcly draws upon
CORDIS-ANIMA [1] and GENESIS [6]). This environment allows
for the implementation of hybrid models combining mass-interaction
systems with waveguide models using a graphical user interface
(GUI). Synth-A-Modeler is based on a series of FAUST libraries and
generates custom FAUST programs corresponding to the models im-
plemented in the GUI. While it successfully combines various types
of modeling techniques at a high level and facilitates their control
using custom haptic interfaces such as the FireFader [13], it has,
to our knowledge, never been used to implement large scale mass-
interaction models.

Our proposed approach does not aim to supplant Berdahl’s;
rather, from a similar starting point it questions how the FAUST lan-
guage’s versatility can be used to formalize arbitrarily large mass-
interaction models – and more generally speaking complex feedback
networks – in a direct, concise and clear manner.

2. MASS INTERACTION PARADIGM IN FAUST

Before getting into implementation specifities, this section presents
the basics of mass-interaction networks, in the case of 1D systems,
in which all masses vibrate along a single z axis. These models are
sometimes referred to as "zero-D", since they are purely topological
and contain no direct geometrical information. First, discrete-time
mass and interaction physical algorithms are presented and assem-
bled into an explicit computational scheme.

Then, relying on a matrix-based representation of the topological
network, we present a generic FAUST architecture that implements
this computational scheme.

2.1. Discrete-Time Physical Algorithms

Below, we present finite difference implementations of two of the
most basic elements in a mass-interaction network: punctual masses
and springs.

2.1.1. Discrete-time implementation of a punctual mass

The motion equation for a continuous time mass is given by New-
ton’s second law:

f = m.a = m
d2x

dt2
(1)

Where f is the force applied to the mass, m is its inertia a its
acceleration, and x its position. Applying the second-order central
difference scheme, with the sampling interval noted ∆T , a discrete
equation of the mass can be formulated as follows:

f(t) = m.
x(t+∆T)− 2x(t) + x(t−∆T)

∆T 2
(2)

3https://github.com/grame-cncm/faustlibraries

Equation (2) can be normalized to unity, and rearranged in order
to express the mass’ position update scheme (discrete-time positions
and forces are noted X and F) :

X(n+1) = 2X(n) −X(n−1) +
F(n)

M
(3)

With M , the discrete time inertial parameter defined as :

M =
m

∆T 2
(4)

Hence, the basic discrete-time mass module produces new po-
sition data based on its current position, previous position, the
"discrete-time" mass parameter M , and the sum of forces applied
to the mass from the previous interaction computation step.

The initial position X(0), delayed initial position X(−1) (which
infers initial velocity) and initial force F(0) must be supplied at the
start of the computation.

2.1.2. Discrete-time implementation of a dampened spring

The elastic force applied by a linear spring with a stiffness k and a
resting length of l0 = 0 connecting a mass m2 at the position x2 to
a mass m1 at the position x1 is given by Hookes law:

fs1→2 = −k.(x2 − x1) (5)

The exact equivalent of this equation in discrete time is :

Fs1→2(n) = −K.(X2(n) −X1(n)) (6)

Where the discrete-time stiffness parameter K = k. The fric-
tion force applied by a linear damper with a damping parameter z
connecting the same two masses is :

fd1→2 = −z.d(x2−x1)

dt
(7)

Using the Backward Euler difference scheme, the frictional force
can be formulated in discrete-time as :

fd1→2(t) = −z. (x2(t)−x1(t))− (x2(t−∆T)− x1(t−∆T))

∆T
(8)

Which after normalization becomes :

Fd1→2(n) = −Z.((X2(n)−X2(n−1))−(X1(n) −X1(n−1))) (9)

With the discrete time inertial parameter Z defined as :

Z =
z

∆T
(10)

The global equation of the force applied by the dampened spring
is composed of Fs and Fd :

F(n) =−K.(X2(n)−X1(n))

− Z.((X2(n)−X2(n−1))− (X1(n)−X1(n−1)))
(11)

It is applied symmetrically to each mass (Newton’s third law):

F2→1(n) = −F(n)

F1→2(n) = +F(n)

(12)

https://github.com/grame-cncm/faustlibraries

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

2.1.3. Discrete mass - dampened spring - fixed point oscillator

A linear harmonic oscillator is obtained by combining equations (3)
and (11), in the case where X1 is a fixed point set to X1(n) = 0,
n ∈ Z. This results in :

X(n+1) =
(

2−K+Z

M

)
.X(n) +

(Z

M
−1
)
.X(n−1) +

F(n)

M
(13)

Since the basic oscillator is a very common element in modeling,
the integrated form given in (13) can be implemented in the form a
specific mass-type module (although it is identical to assembling a
mass, dampened spring and a fixed point).

2.1.4. Generalization

Any element in a mass-interaction model follows the basic template
of the elements described above. More complex interactions stem
from conditional statements (e.g. springs only active during inter-
penetration of two material points, as in visco-elastic collisions) or
dynamic stiffness or damping parameters that depend on the posi-
tion and/or velocity of the connected material points (e.g. through
non-linear lookup tables, such as in plucking or bowing interactions
[14]).

It is important to note that the M and Z parameters are depen-
dent on the sampling interval. Hence, the oscillatory behaviour of
physical models will be dependent on the sampling rate of the simu-
lation.

2.2. Computation Scheme

Computing a mass-interaction model consists in calculating the
mass-type and interaction-type algorithms in a closed loop. The ex-
plicit time step increment is carried by the masses, as shown in the
discrete-time equation (3). The interactions in themselves are delay-
less operations, but can be computed since their output is fed back
into the masses for the next calculation step (cf. Figure 2). In other
words, calculating a step of real-time audio requires to run all the
masses’ algorithms once, then all the interactions’ algorithms.

2.3. Representing the Topological Network

The topological connections of a mass-interaction model can be for-
malized as a routing matrix of dimensions J × 2K, where J is the
number of material elements (or M points) in the network, and K is
the number of interactions (each interaction module has two connec-
tions - or L points in the usual terminology[1]) :



i0_l1 i0_l2 . . . ik_l1 ik_l2

m1 1 or 0 1 or 0 1 or 0

m2 1 or 0
...

...
...

...
. . .

...
...

mj 1 or 0 1 or 0

 (14)

Each column in the matrix must have a single connection set to
1 and all others to 0, as an L point only connects to a single M point
(partially connected interactions are not allowed). On the other hand,
a material point could be connected to any number of interactions in
a given model (many connections set to 1 for a single line).

Figure 2: Computation cycles of the model presented in Figure 1.
At each time step, the mass-type algorithms are first computed using
the forces calculated in the previous step, then the interaction-type
algorithms are computed using the new positions.

As an example, (15) presents the routing matrix for the topolog-
ical structure shown in Figure 1. The material elements (fixed point,
three masses and a position input module) are represented vertically
and the L points of the four springs and the non-linear interaction are
represented horizontally.

The closed-loop physical calculation scheme performed by
FAUST is shown in Fig. 3. On the left, a LINKTOMASS connec-
tion function routes the force feedback signals produced by the in-
teractions based on the routing matrix (thus calculating the sum of
forces for each mass). The new positions of the material elements
modules are then calculated. These positions are then fed into a
MASSTOLINK connection function, that routes the signals to all of
the concerned interactions. Finally, the pairs of force signals pro-
duced by the interactions are fed back for the next calculation step.

Position and force inputs are directly incorporated into the
LINKTOMASS function, so that they are applied to the correct in-
put module. Similarly, modules whose positions are observed as
audio outputs are simply added as extra signals at the end of the
MASSTOLINK function.

2.4. FAUST Implementation of Mass and Interaction Elements

The mi.lib library contains the FAUST implementation of most
elementary mass-type elements (i.e., masses, fixed points, oscilla-
tors, etc.) and link-type elements (i.e., springs, collisions, non-linear
plucking / bowing, etc.). Since the implementations are similar, we
will explicit only the two simplest and most common elements be-
low: the mass and the spring.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019


r0_1 r0_2 r1_1 r1_2 r2_1 r2_2 r3_1 r3_2 nl1 nl2

s 1 0 0 0 0 0 0 0 0 0
m0 0 1 1 0 0 0 0 1 0 0
m1 0 0 0 1 1 0 0 0 0 1
m2 0 0 0 0 0 1 1 0 0 0
in 0 0 0 0 0 0 0 0 1 0

 (15)

Figure 3: FAUST-generated diagram corresponding to the model presented in Fig. 1.

2.4.1. Mass

The discrete-time algorithm of a basic mass module described in
(3) can be easily expressed with letrec environment expression
in FAUST:

mass(m,x0,x1) = equation
with{

A = 2;
B = -1;
C = 1/m;
equation = x
letrec{

’x = A*(x : initState(x0)) +
B*(x’ : iniState((x0,x1))) +

*(C);
};

};

Listing 1: The discrete-time mass algorithm in FAUST.

The module takes an input signal (the sum of all forces fed back
through the interaction feedback loop and routing function) and pro-
duces a position output. The initial position and delayed position of
the module are dealt with using the initState function, which
initializes the first step with the correct values.

2.4.2. Dampened spring

Similarly, a visco-elastic spring expressed in FAUST is shown in List-
ing 2. Interaction modules such as the spring take two input signals
(the positions of the masses connected together by the link) and pro-
duce two identical and opposite force signals.

Attention must be paid to the correct initialization of velocity
based interactions, especially when the initial position or speed of
the masses is non-zero. To this end, the delayed initial positions

of the two connected mass elements are supplied as arguments to the
interaction function, which initializes them with the initState()
function.

spring(k,z,x1r0,x2r0,x1,x2) =
k*(x1-x2) +
z*(

(x1 - (x1’ : initState(x1r0))) -
(x2 - (x2’ : initState(x2r0)))

)
<: *(-1),_;

Listing 2: The discrete-time dampened spring algorithm in FAUST.

3. CREATING MODELS WITH MIMS

MASS INTERACTION MODEL SCRIPTER4 is a simple graphical or
command-line tool written in Python to generate structured FAUST
code from a textual description of a physical model.

Models are described in a format similar to the PNSL language
[15]: each physical element has a specific label, specific physical
parameters and/or initial conditions, etc. Parameters can be added
to this description and shared by any number of physical modules,
allowing global variation of the physical attributes (i.e., stiffness,
damping, mass, etc.) of a subset of modules in real-time.

MIMS’ physics2faust tool compiles the model by :

• parsing all of the physical modules and noting any specific
elements (i.e., position or force inputs, audio outputs, etc.)

• creating the routing matrix and translating it into the two dual
FAUST routing functions.

4https://github.com/mi-creative/MIMS

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

• ordering the resulting data into the output .dsp file. "Place-
holder" functions are created for position / force inputs, al-
lowing the user to describe his input functions directly in the
FAUST code.

Define global parameter attributes
@m_K param 0.1
@m_Z param 0.001

@nlK param 0.05
@nlScale param 0.01

Create material points
@m_s0 ground 0.
@m_m0 mass 1. 0. 0.
@m_m1 mass 1. 0. 0.
@m_m2 mass 1. 0. 0.

Create and connect interaction modules
@m_r0 spring @m_s0 @m_m0 0.05 0.01
@m_r1 spring @m_m0 @m_m1 m_K m_Z
@m_r2 spring @m_m1 @m_m2 m_K m_Z
@m_r2 spring @m_m2 @m_m0 m_K m_Z

Inputs and outputs
@in1 posInput 0.
@out1 posOutput @m_m2

Add plucking interaction
@pick nlPluck @in1 @m_m1 nlK nlScale

Listing 3: MIMS description for the model presented in Fig. 1.

The graphical UI version of MIMS also provides basic tools
for generating certain categories of physical structures (i.e., strings,
membranes, etc.) and performing modal analysis of linear structures.

Figure 4: The MIMS model editor prototype.

The FAUST code generated from the model in Code Listing 3 is
presented in Code Listing 4. The only hand-written element is the
inPos function, that adds a graphical slider to control the position
of the input mass. The control-rate output of the slider is smoothed
to avoid artifacts.

import("stdfaust.lib");
import("mi.lib");

inPos = hslider("pos",1,-1,1,0.0001) : si.
smoo;

OutGain = 10.;

m_K = 0.1;
m_Z = 0.001;
nlK = 0.05;
nlScale = 0.01;

model = (
RoutingLinkToMass:

ground(0.),
mass(1.,0., 0.),
mass(1.,0., 0.),
mass(1.,0., 0.),
posInput(0.) :

RoutingMassToLink :
spring(0.05,0.01, 0., 0.),
spring(m_K,m_Z, 0., 0.),
spring(m_K,m_Z, 0., 0.),
spring(m_K,m_Z, 0., 0.),
nlPluck(nlK,nlScale),

par(i, 1,_)
)~par(i, 10, _): par(i, 10,!), par(i, 1, _)
with{
RoutingLinkToMass(l0_f1,l0_f2,l1_f1,l1_f2,

l2_f1,l2_f2,l3_f1,l3_f2,l4_f1,l4_f2,in1)
= l0_f1, l0_f2+l1_f1+l3_f2, l1_f2+l2_f1+
l4_f2, l2_f2+l3_f1, l4_f1, in1;

RoutingMassToLink(m0,m1,m2,m3,m4) = m0, m1,
m1, m2, m2, m3, m3, m1, m4, m2,m3;

};
process = inPos : model: *(OutGain);

Listing 4: MIMS description for the model presented in Figure 1.

4. EXAMPLES AND EVALUATION

The basic mi_faust package contains several examples of virtual in-
struments and use-cases of mass-interaction physics in FAUST. All
of these examples can be compiled and executed directly as web ap-
plications via the FAUST online editor,5 with generic user interfaces.
They can also be found as pre-compiled web-apps on the mi_faust
project web-page.6

• IPlayTheTriangle: the demonstration model discussed
previously in this paper (Figure 1).

• PolyTriangle: the same model (with a direct force im-
pulse applied instead of a pluck system), using FAUST’s abil-
ity to automatically handle polyphonic voice allocation for
MIDI instruments.

• PluckedHarmonics: a 150-mass string terminated by two
fixed points. The first position input allows plucking the

5https://faust.grame.fr/tools/editor/
6https://faust.grame.fr/community/

made-with-faust/mi-faust

https://faust.grame.fr/tools/editor/
https://faust.grame.fr/community/made-with-faust/mi-faust
https://faust.grame.fr/community/made-with-faust/mi-faust

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

string, and three others are used to press down lightly on the
string at specific areas in order to bring out natural harmonics.

• BowedString: a bowed string, using the nlBow interaction.
The user can control bow pressure and velocity, as well as the
stiffness of the string.

• LargeTriangleMesh: a big triangular mesh, fixed at one
summit, excited by a plucking system and damped by user
input.

• Resonator: the audio input is fed into one end of a resonat-
ing physical model. The user can alter the properties of the
resonator.

• PhysicalLFO: Using a physical model with slow dynamics
as a control variable for another synthesis process. Here, the
wave propagation observed along a very loose string is used
to modulate the amplitude of a white noise source, generating
AM modulation going from complex patterns at the onset to
quasi-sinusoidal modulation as the higher modes of the string
decay.

In addition to these examples, two large structures (a 20 by
30 mass mesh: 20x30mesh and a 1000 mass string: 1000
massString) were created for model complexity tests. The bench
test results in Table 1 show the compile time and CPU load for var-
ious models. Large routing functions result in slower compilation,
and maximum complexity is reached for approx. 1800 physical el-
ements. Overall, fairly complex models run well, with a reasonable
CPU load.

5. FUTURE WORKS

5.1. Faust

FAUST proves to be well adapted to implement mass-interaction
physical models. The combination of connection matrices and of
the use of the letrec environment expression allowed us to seam-
lessly implement the various elements of mi.lib. However, this
raised some issues that will need to be solved in the future. They are
presented below.

5.1.1. Specifying Initial States in letrec

The letrec environment expression doesn’t allow us to specify an
initial state (i.e., the value of y(n− 1), y(n− 2), etc. at n = 0). We
got around this problem by implementing the initState function
which requires some unneeded computation. Hence, letrec could
be modified to allow this type of expression to be written (rewriting
Code Listing 1):

equation = x
letrec{

x’ = x0;
x’’ = x1;
’x = A*x +B*x’ + *(C);

};

We believe that this would significantly reduce computation for
large scale models.

5.1.2. Optimizing Routing Matrices

The current “bare bone” implementation of connection matrices
(e.g., RoutingLinkToMass in Code Listing 3) is hard to solve
by the FAUST compiler, preventing large models to be generated (see
§4). This could be solved by turning this operation into a primitive
of the language. Compilation time would be significantly reduced
since pattern matching [5] wouldn’t be involved to solve this type of
expression.

6. CONCLUSIONS

In this paper, we have presented early results of formal integration
of 1D mass-interaction physical modeling into the FAUST environ-
ment, resulting in a new library. The MIMS and physics2faust tools
allow to automatically generate FAUST dsp code for complex topo-
logical models, by expliciting the routing scheme for the model’s
position and force signals. Several basic models have been imple-
mented and benchmarked, showing promising results. Furthermore,
FAUST’s capabilities offer an efficient solution for playing several
dynamically allocated and parameter-mapped instances of a physical
model across large ranges. More generally, this work extends beyond
mass-interaction modeling and explores the possibilities for describ-
ing complex feedback networks and state space-models in FAUST.

7. REFERENCES

[1] Claude Cadoz, Annie Luciani, and Jean Loup Florens, “Cordis-
anima: a modeling and simulation system for sound and image
synthesis: the general formalism,” Computer music journal,
vol. 17, no. 1, pp. 19–29, 1993.

[2] Julius O. Smith, “Physical modeling using digital waveguides,”
Computer Music Journal, vol. 16, no. 4, pp. 74–91, Winter
1992.

[3] Stefan Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, John Wiley and
Sons, Chichester, UK, 2009.

[4] James Leonard, Nicolas Castagné, Claude Cadoz, and Annie
Luciani, The MSCI Platform: A Framework for the Design
and Simulation of Multisensory Virtual Musical Instruments,
pp. 151–169, Springer International Publishing, Cham, 2018.

[5] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[6] Nicolas Castagné and Claude Cadoz, “Genesis: a friendly
musician-oriented environment for mass-interaction physical
modeling,” in ICMC 2002-International Computer Music Con-
ference. MPublishing, 2002, pp. 330–337.

[7] Edgar Berdahl, “An introduction to the Synth-A-Modeler com-
piler: Modular and open-source sound synthesis using physical
models,” in Proceedings of the Linux Audio Conference (LAC-
12), Stanford, USA, May 2012.

[8] Jérôme Villeneuve and Claude Cadoz, “Understanding and
tuning mass-interaction networks through their modal repre-
sentation,” in 40th International Computer Music Confer-
ence/11th Sound and Music Computing Conference, 2014, pp.
1490–1496.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Model Name N. Masses N. Springs FAUST Comp. Dur. CPU Load
1000massString 1000 1002 - -

20x30mesh 598 1151 20.576s 45%
BowedString 150 152 1.962s 14%

IPlayTheTriangle 3 5 0.029s 1%
LargeTriangleMesh 324 901 12.083s 48%

PhysicalLFO 10 12 0.032s 1%
PluckedHarmonics 150 152 2.192s 14%
PolyTriangle 3 5 0.027s 1%
Resonator 30 32 0.056s 4%

Table 1: Number of masses and springs, compilation duration, and CPU load of the examples. Measurements were made on a Lenovo ThinkPad
X1 Carbon with the following configuration: Linux Manjaro, Intel i7-7500U 4 cores at 2.7GHz, 16GiB of RAM, sampling rate of 48KHz, buffer
size of 256 samples. Programs were compiled as ALSA applications with a GTK interface using faust2alsa.

[9] Romain Michon and Julius O. Smith, “Faust-STK: a set of lin-
ear and nonlinear physical models for the Faust programming
language,” in Proceedings of the 14th International Conference
on Digital Audio Effects (DAFx-11), Paris, France, September
2011.

[10] Perry Cook and Gary Scavone, “The Synthesis Toolkit (stk),”
in Proceedings of the International Computer Music Confer-
ence (ICMC-99), Beijing, China, 1999.

[11] Romain Michon, Julius O. Smith, Chris Chafe, Ge Wang, and
Matt Wright, “The faust physical modeling library: a modular
playground for the digital luthier,” in Proceedings of the 1st
International Faust Conference (IFC-18), Mainz (Germany),
2018.

[12] Romain Michon, Sara R Martin, and Julius O Smith,
MESH2FAUST: a Modal Physical Model Generator for the
Faust Programming Language - Application to Bell Modeling,
Ann Arbor, MI: Michigan Publishing, University of Michigan
Library, 2017.

[13] Edgar Berdahl and Alexandros Kontogeorgakopoulos, “The
firefader: Simple, open-source, and reconfigurable haptic force
feedback for musicians,” Computer Music Journal, vol. 37, no.
1, pp. 23–34, 2013.

[14] James Leonard and Claude Cadoz, “Physical modelling con-
cepts for a collection of multisensory virtual musical instru-
ments,” in Proceedings of the Conference on New Interfaces
for Musical (NIME15), Baton Rouge, USA, May 2015.

[15] Nicolas Castagné, Claude Cadoz, Ali Allaoui, and Olivier
Tache, “G3: Genesis software environment update,” in ICMC
2009. MPublishing, 2009, pp. 407–410.

	1 Introduction
	1.1 Mass-Interaction Physical Models
	1.2 Current State of Physical Modeling in Faust

	2 Mass Interaction Paradigm in Faust
	2.1 Discrete-Time Physical Algorithms
	2.1.1 Discrete-time implementation of a punctual mass
	2.1.2 Discrete-time implementation of a dampened spring
	2.1.3 Discrete mass - dampened spring - fixed point oscillator
	2.1.4 Generalization

	2.2 Computation Scheme
	2.3 Representing the Topological Network
	2.4 Faust Implementation of Mass and Interaction Elements
	2.4.1 Mass
	2.4.2 Dampened spring

	3 Creating Models with MIMS
	4 Examples and Evaluation
	5 Future Works
	5.1 Faust
	5.1.1 Specifying Initial States in letrec
	5.1.2 Optimizing Routing Matrices

	6 Conclusions
	7 References

