
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

A JACK SOUND SERVER BACKEND TO SYNCHRONIZE TO AN IEEE 1722 AVTP MEDIA
CLOCK STREAM

Christoph Kuhr

Anhalt University of Applied Sciences
Köthen, Germany

christoph.kuhr@hs-anhalt.de

Alexander Carôt

Anhalt University of Applied Sciences
Köthen, Germany

alexander.carot@hs-anhalt.de

ABSTRACT
This paper presents the evaluation of a media clocking scheme in
an AVB network segment. The JACK audio connection kit on each
AVB processing server is synchronized to an IEEE 1722 media clock
stream, as well as each UDP Soundjack receiver on each AVB proxy
server. Thus, the transmission of each packet of an audio stream
is bound to the transmission interval of the media clock stream and
each participant is able to recover the same media clock. In this
paper we present the evaluation of this media clocking scheme and
the JACK client synchronization with the AVB network segment at
hand.

1. INTRODUCTION

Soundjack [1] is a real-time communication software using peer to
peer connections, to connect up to five participants to each other.
This software was designed as a tool for musicians and was first
published in 2006 [2]. The interaction with live music over the pub-
lic Internet is very sensitive to latencies, both round trip as well as
one-way. Thus, this application is mainly concerned with the mini-
mization of latencies as well as jitter.

1.1. fast-music and Soundjack

In cooperation with the two companies GENUIN [3] and Symon-
ics [4], a rehearsal environment for conducted orchestras via the pub-
lic Internet is under development as the goal of the research project
fast-music. Up to 60 musicians and one conductor, who are ran-
domly distributed throughout Germany, shall be able to play together
live. The central node represents the multimedia signal processing
server network under investigation, which ideally will be located in
Frankfurt on the Main, since it is the largest Internet exchange node
in Germany it promises the smallest round trip latencies.

1.2. Concept for a Real-time Processing Server Network

The basic signal processing functionality of the server network con-
nects up to 60 UDP streams to each other and mixes them. A single
server could easily handle mixing this amount of concurrent UDP
streams with reasonably low latency, but for future research in the
application of immersive audio technologies in real-time, a single
server is not sufficient to handle the computational load of 60 indi-
vidual audio and video streams. Thus, a scalable infrastructure is
chosen to provide such signal processing capacities. The signal pro-
cessing provided by the Soundjack server network involves mixing
algorithms for audio and video streams. As an infrastructure for the
audio signal processing stage, the JACK [5] audio server is deployed.
JACK is a professional and open source audio server, that allows ap-
plications to share sample accurate audio data with each other. A

large number of signal processing applications and algorithms are
available for JACK. Details on the mixing application can be found
in [6].

Another benefit of such a scalable approach is the minimization
of service times of network packets, which is the time a packet re-
quires to travel on the wire until it is fully held in the input buffer
of the servers network interface. During the service time of a sin-
gle network packet, no concurrent packets can be processed, which
may introduce some hold time in the upstream buffer of each con-
current stream, adding to the overall round trip time. The reduction
is not significant. The test environment considered in this paper is
the Ethernet based campus network of the university.

A detailed description of the first design of the software architec-
ture and operating system configuration can be found in [7]. Recent
findings however, have revealed the first design to be flawed and not
fully capable of providing the required features. A new software ar-
chitecture is under development. The results presented in this paper
however, are not influenced by the rework of the software architec-
ture since the JACK server is running independently.

1.2.1. Audio Video Bridging - an Open Standard Solution

Audio Video Bridging / Time-Sensitive Networking (AVB/TSN) de-
scribes a set of IEEE 802.1 standards that operate on layer two of the
OSI model [8]. These standards enable computer networks to handle
audio and video streams in real-time. Operating only on OSI layer
two, AVB is not routable. It is defined for local network segments
only.

• IEEE 802.1AS [9]
Timing and Synchronization for Time-Sensitive Applications
in Bridged Local Area Networks (referred to as gPTP)

• IEEE 802.1Qat [10]
Virtual Bridged Local Area Networks - Amendment 14: Stream
Reservation Protocol (SRP)

• IEEE 802.1Qav [11]
Virtual Bridged Local Area Networks - Amendment 12: For-
warding and Queueing Enhancements for Time-Sensitive Streams
(FQTSS)

• IEEE 1722 [12]
IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive
Applications in Bridged Local Area Networks (referred to as
ATVP)

• IEEE 1722.1 [13]
IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive
Applications in Bridged Local Area Networks (referred to as
AVDECC)

https://www.hs-anhalt.de
mailto:christoph.kuhr@hs-anhalt.de
http://www.hs-anhalt.de
mailto:alexander.carot@hs-anhalt.de

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

The AVB standards are extensions for generic Ethernet networks
providing precise synchronization, resource reservation and band-
width shaping. Lower latencies and jitter, the avoidance of packet
bursts and bandwidth shortage are addressed, providing real-time re-
sponsiveness to a computer network. These properties are used to
ensure a constant streaming with low latency and jitter inside the
Soundjack server network. Thus, the Soundjack client streams can
be processed inside the server network, without interfering with each
other.

AVB networks require special hardware for timestamping Eth-
ernet frames with separate transmission queues for each traffic class,
i.e. AVB traffic with Stream Reservation (SR) classes A/B and generic
Ethernet traffic. The IEEE 802.1-2014 [14] standard defines the two
stream reservation (SR) classes A and B. Both classes are used in an
SRP domain to differentiate audio and video traffic from other Eth-
ernet traffic. For SR class A, SRP reserves resources on all switch
ports along the path from talker to listener to maintain a transmission
interval of 125 µs (250 µs for SR class B). The implications of the
transmission interval are discussed in section 2.

1.2.2. Network Synchronization with gPTP

The precise synchronization of different devices spread throughout
a local area network requires a specialized protocol, i.e. PTP, which
involves several steps. Each time a gPTP capable device appears on
the network segment, a negotiation for the grand master role is trig-
gered. The best master clock algorithm (BMCA) compares the clock
information in announce messages, that are broadcasted by each PTP
capable device on the same clock domain. A clock domain is a part
of a network segment that is synchronized to the chosen grand master
clock, it is separated by devices or Ethernet bridge ports that are not
gPTP capable (gPTP is a special profile [9] for PTP [15]). Each gPTP
capable Ethernet bridge port has a mode of its own, either master or
slave. The Ethernet port of the AVB device running the grand mas-
ter clock is in master mode and is the root of the hierarchical clock
distribution. The bridge port of the AVB switch it is connected to, is
in slave mode. It receives clocking information rather then sending
it. Since the switch receives its gPTP clock from this bridge port
in slave mode, all its other bridge ports are in master mode. They
distribute the clock information of the grandmaster clock to the next
hop or AVB device.

After this election process, the clock domain needs to be syn-
chronized. This is achieved in two steps: Syntonization, and Offset
and Delay Measurement. In the first step “SYNC” messages are send
from the master to the slave port followed by a “Follow_Up” mes-
sage, which includes a timestamp taken close to the media (physical
layer) of the sender. Both messages are used to adjust the frequency
of the slave to the master clock. The second step involves “Pde-
lay_Req” and “Pdelay_Resp” messages and measures the absolute
time offset between the master clock and slaves local clock. The
slave port adjusts its local clock to match the master clock. After this
procedure each network device is synchronized to the grandmaster
clock, matching its phase and frequency. For the exact mechanisms
and calculations see [9] and [16].

1.2.3. Control Messages and SO_TIMESTAMPING

The CMSG macros are used by the operating system to create and
access control messages, which are also called ancillary data, that
are not provided by the generic payload of a raw Ethernet socket.

This additional control information includes among other things the
receiving interface, optional header fields, extended error description
or a set of file descriptors. Ancillary data is sent with sendmsg(),
received with recvmsg() and is stored as a list of struct cmsghdr
structures with data appended to it. The use case at hand is to
receive the hardware timestamp of the arrival of each AVTP packet.

The userspace interfaces to receive timestamped network packets are
the following [17]:

• SO_TIMESTAMP:
Generate timestamp with microseconds resolution for each
incoming packet using the system time.

• SO_TIMESTAMPNS:
Generate timestamp with nanoseconds resolution for each in-
coming packet using the system time.

• SO_TIMESTAMPING:
Generate timestamp with nanoseconds resolution for each in-
coming packet using the network hardware.

The SO_TIMESTAMPING interface has to be configured on the raw
Ethernet socket with setsockopt() and the appropriate flags have
to be chosen from the following:

1. Determine how timestamps are generated with
SOF_TIMESTAMPING_TX/RX:

• SOF_TIMESTAMPING_TX_HARDWARE:
Hardware transmission timestamp.

• SOF_TIMESTAMPING_TX_SOFTWARE:
Fallback in case of failure of
SOF_TIMESTAMPING_TX_HARDWARE.

• SOF_TIMESTAMPING_RX_HARDWARE:
Original, unmodified reception timestamp, generated by
the hardware.

• SOF_TIMESTAMPING_RX_SOFTWARE:
Fallback in case of failure of
SOF_TIMESTAMPING_RX_HARDWARE.

2. Determine how timestamps are reported in the control mes-
sages with SOF_TIMESTAMPING_RAW/SYS:

• SOF_TIMESTAMPING_RAW_HARDWARE:
Return raw hardware timestamp.

• SOF_TIMESTAMPING_SYS_HARDWARE:
Return hardware timestamp converted to the system time.
The correlation between the transformed hardware times-
tamps and the system time is as good as possible, but
not perfect. Requires support by the network device
and will be empty without that support.

• SOF_TIMESTAMPING_SOFTWARE:
Return software timestamp.

In addition to the setsockopt(), it is necessary to initialize the
device driver to do hardware timestamping with an ioctl()-call
to SIOCSHWTSTAMP. The ioctl() has to be called with the ar-
gument:

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

struct hwtstamp_config {
int flags;
int tx_type;
int rx_filter;

};

Possible values for hwtstamp_config->tx_type are:

• HWTSTAMP_TX_OFF:
Deactivate hardware timestamping for outgoing packets.

• HWTSTAMP_TX_ON:
Activate hardware timestamping for outgoing packets is turned
on. The sender decides which packets are to be time stamped.

Possible values for hwtstamp_config->rx_filter are:
• HWTSTAMP_FILTER_NONE:

Deactivate timestamping for incoming packet.
• HWTSTAMP_FILTER_ALL:

Activate timestamping for any incoming packet.
• HWTSTAMP_FILTER_SOME:

Activate timestamping all requested packets plus some more.
• HWTSTAMP_FILTER_PTP_V1_L4_EVENT:

PTP v1, UDP, any other event packet.

1.2.4. Hardware Configuration

Two server types with real-time capabilities are designed for the
Soundjack server network, an AVB proxy server and an AVB pro-
cessing server. Both server types are running on a x86_64 architec-
ture with eight physical cores and are equipped with an Intel I210
network interface card [18]. A open source driver stack that is re-
quired to compile the kernel module (igb_avb.ko) with AVB sup-
port is available at Github [19]. The gPTP daemon, which is used in
this setup, is also provided by this repository. All AVB servers of
both types are registered for a media clock stream, which is supplied
by an XMOS development board manufactured by Atterotech [20].

Figure 1: Packet rate of the IEEE 1722 AVTP media clock stream
originating from the XMOS talker. The MRP client of the
JACK media clock backend has established the
connection to the XMOS talker after 12 seconds. The
figure is enhanced and clipped at 60 seconds to show the
anomalies (packet rates of 7 and 9 packets per
millisecond) between around 30 and 50 seconds.

2. IEEE 1722 AVTP MEDIA CLOCK SYNCHRONIZATION
CONCEPT FOR THE JACK AUDIO CONNECTION KIT

The signal processing concept is designed for a completely digital
signal chain, i.e. neither analog-digital (ADC) and nor digital-analog
converters (DAC) are present. Without the local clock of an ADC
the processing server would have no media clock source to synchro-
nize to. Consequently, it is not possible to adjust the local clock
to match the gPTP grandmaster clock. With a media clock stream
as clock source, no additional hardware besides the network inter-
face is required. The media clock stream maintains a constant media
clock originating from a gPTP derived word clock of the ADC on the
XMOS development board. The ADC of the XMOS development
board is running at a sampling rate of 48 kHz and is configured as an
AVB talker. It automatically acknowledges any connection request
of a listener, without the use of IEEE 1722.1 ACMP. The different
clock source concepts are explained in [16] in detail.

2.1. Packet Rate and Padded AVTP Packets

The transmission interval of 125 µs, that is defined by the SR Class
A, has the same constant transmission interval for higher sampling
rates as well. Instead of sending packets in a shorter interval, the
amount of samples per packet is adjusted. For a sampling rate of
48 kHz six samples per audio channel are written to an AVTP packet
(12 and 24 samples for 96 kHz and 192 kHz respectively):

125 µs =
6 samples
48 kHz

⇒ 8 packets per millisecond (1)

This way the transmission interval can maintain the media clock of
the talker for the listener to recover. Figure 1 shows the packet rate
of 8 packets per millisecond of the media clock stream originating
from the XMOS development board. Figure 2 shows the probabil-
ity distributions of the transmitted AVTP packets of the media clock
stream, measured on the processing server with hardware packet ar-
rival timestamps. The calculated mean value of 124997 ns and stan-
dard deviation of 309.35 ns meet the defined transmission interval
for a SRP class A domain of 125 µs perfectly.

In section 3 we will evaluate the three JACK period sizes of 32,
64 and 128 samples. The remaining samples of a JACK period, that
occur since six (samples per AVTP packet) is not an integer divisor
of either 32, 64 nor 128, are calculated in equation (2):⌈N samples per JACK period

6 samples per AVTP packet

⌉
= k packets per JACK period (2)

Samples AVTP Packets

32 d 32
6
e = d5 + 1

3
e = 6

64 d 64
6
e = d10 + 2

3
e = 11

128 d 128
6
e = d21 + 1

3
e = 22

Table 1: Samples and packets per JACK period

This means that for 32 samples per period every 6th AVTP packet
carries a fraction of the six samples, in this case 1/3 = 2 samples,
and the remaining four samples are padded with zeros - for 64 sam-
ples every 11th packet has four samples, the rest is padded with zeros
and for 128 samples every 22th packet has two samples and the rest
is padded with zeros.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 2: Probability distribution function of the IEEE 1722 AVTP
media clock stream originating from the XMOS talker.
The measurement shows the network hardware receive
timestamps on the server side.

2.2. AVB Listener as JACK Media Clock Backend

The media clock listener is the same as in the AVB server implemen-
tation [7] and is integrated by a C++ wrapper that was inspired by
Netjack [21], i.e. only the Read() (and Write(), which is re-
quired for proper operation) member functions are used to advance
the JACK server according to the configured sample rate. As an ad-
ditional configuration, the JACK AVTP backend is required to run
a dummy stereo channel setup, because JACK clients could not be
activated otherwise.

int init_1722_driver(
IEEE 1722_avtp_driver_state_t *IEEE 1722mc,
const char* name,
char* stream_id,
char* destination_mac,
int sample_rate,
int period_size,
int num_periods

)

Called with the appropriate arguments, the initialization proce-
dure starts a MRP thread, which takes care of the resource reserva-
tions for the media clock listener. After the Listener has established
the path to the media clock talker and the JACK server has started,
the backends’ Read() member function calls the wrapped proce-
dure:

uint64_t media clock_listener_wait_recv_ts(
FILE* filepointer,
IEEE 1722_avtp_driver_state_t **IEEE 1722mc,
struct sockaddr_in **si_other_avb,
struct pollfd **avtp_transport_socket_fds,
int packet_num

)

This procedure is blocking until an AVTP media clock packet
arrives. The struct pollfd was used to keep blocking and non-

Figure 3: Different kernel and userspace layers involved in the
JACK media clock backend. The socket is filtered with a
Berkeley Packet Filter (BPF) for the correct destination
MAC address, Ethernet type and IEEE 1722 message type
of the media clock stream packets. The stream ID is
filtered after an AVTP packet is received in userspace.

blocking procedure signatures consistent, since the AVB server’s
main process also uses a media clock listener.
The raw Ethernet socket, that is used to receive the media clock
stream, has the socket option SO_TIMESTAMPING set to:

ts_flags |= SOF_TIMESTAMPING_RX_HARDWARE;
ts_flags |= SOF_TIMESTAMPING_SYS_HARDWARE;
ts_flags |= SOF_TIMESTAMPING_RAW_HARDWARE;

The network device driver is configured to timestamp any incoming
packet with a struct hwtstamp_config set to:

hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
hwconfig.tx_type = HWTSTAMP_TX_ON;

Experience has shown that HWTSTAMP_TX_ON has to be switched
on for the reception of the media clock stream packets, even though
the socket is not used for transmission, because the gPTP system
service is effected otherwise and loses its synchronization to the PTP
master.

Considering the following code listing, after the received packet
was copied to the userspace buffer struct msghdr msgwith the
recv_msg() system call, the ancillary data in struct msghdr
msg is accessed in line 8. Initially, the macro CMSG_FIRSTHDR
returns a pointer to the first field of the ancillary data and stores it
in struct cmsghdr *cmsg. As long as there is ancillary data
available, the while-loop in line 9 cycles over the ancillary data of
the received message. When a SO_TIMESTAMPING field is en-
countered, the pointers to the hardware timestamp and the hard-
ware timestamp converted to system time are stored. The packet
arrival time in nanoseconds is converted from struct timespec

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

to unsigned int 64 and stored in the variable
pkt_arrival_ts_ns in line 17.

The current transmission interval of the packet is calculated after
the while-loop in line 25, the timestamp last_pkt_ts_ns of the
last packet is subtracted from the timestamp pkt_arrival_ts_ns
of the current packet. In line 26 the current timestamp is stored for
the next packet as last timestamp.

The variable pkt_num is an argument of the procedure and sup-
plied by the driver backend indicating the current packet number in
the JACK period. When pkt_num matches the calculated packet
numbers from table 1, a zero padded packet is sent.

If the pkt_num counter reaches the 6th, 11th or 22nd iteration,
adj_pkt_ts_ns is calculated in line 30 to precisely adjust the
JACK period. The remaining (modulus) samples of the JACK period
divided by six samples per channel per AVTP packet, is divided by
the sample rate and then scaled to nanoseconds in unsigned int
64 representation. This calculation accounts for the padded AVTP
packets calculated in table 1. The procedure returns
adj_pkt_ts_ns to the backend driver, which can adjust the JACK
period accordingly.

1 struct msghdr msg;
2 struct cmsghdr *cmsg;
3 uint64_t current_tx_int_ns = 0;
4 uint64_t last_pkt_ts_ns = 0;
5 ----------------------8<-----------------------
6 recv_msg(..., &msg, ...)
7 ----------------------8<-----------------------
8 cmsg = CMSG_FIRSTHDR(&msg);
9 while(cmsg != NULL) {

10 if(cmsg->cmsg_level == SOL_SOCKET
11 && cmsg->cmsg_type == SO_TIMESTAMPING){
12 struct timespec *ts_dev, *ts_sys;
13 ts_sys = ((struct timespec *)
14 CMSG_DATA(cmsg))+1;
15 ts_dev = ts_sys + 1;
16

17 pkt_arrival_ts_ns = ts_dev->tv_sec
18 * 1000000000LL
19 + ts_dev->tv_nsec);
20 break;
21 }
22 cmsg = CMSG_NXTHDR(&msg,cmsg);
23 }
24

25 current_tx_int_ns = pkt_arrival_ts_ns
26 - last_pkt_ts_ns;
27 last_pkt_ts_ns = pkt_arrival_ts_ns;
28

29 if(pkt_num == (*IEEE 1722mc)->num_pkts -1){
30 adj_pkt_ts_ns = (uint64_t) (
31 (((*IEEE 1722mc)->psize % 6) /
32 (*IEEE 1722mc)->srate) *
33 1000000000LL);
34 }
35

36 return current_tx_int_ns - adj_pkt_ts_ns;

3. EVALUATION

The quality of the synchronization to the media clock stream may be
analyzed in terms of the variation between the points in time, when
a JACK client is triggered and when a media clock stream packet is
received. We basically observe, how many media clock stream pack-
ets are received between two successive calls of the JACK backend
to the client’s process callback function. The AVTP backend is based
on counting the media clock stream packets, thus it is implicitly syn-
chronized to the media clock stream source. The ALSA backend is
not implicitly synchronized to the media clock stream source, which
is the reason for the development of the AVTP backend. A synchro-
nization would also be possible, since the media clock source and
the servers are synchronized to the gPTP network clock. The me-
dia clock source of the XMOS development board drives its audio
codec with a phase locked loop that locks onto the gPTP network
clock. The local sample clock of an audio device connected to a
server would also require a phase locked loop that is fed into the au-
dio device or a continuing calculation and adjustment between the
network and the audio time.

The “simple_client.c” example from the JACK source tree has
been modified to make a system call to the system clock, which
is synchronized to gPTP, with CLOCK_REALTIME every time the
JACK process callback is triggered. The measured timestamps are
written in the JACK shutdown callback function to file. Simultane-
ously, the JACK AVTP backend writes the timestamps from the an-
cillary data to file, as soon as JACK is shut down. In order to be able
to compare the client activation times of the ALSA backend with
those of the AVTP backend, a common time source is required. In-
stead of a local audio time that is adjusted to gPTP, we use the media
clock stream as common time source. The JACK server is launched
twice for this reason, one instance running with the ALSA backend
and the measurement client, and a second instance running only with
the AVTP backend to measure the media clock stream. The server
was connected to a Focusrite Solo Gen2 USB audio interface [22],
when the ALSA backend was measured.

The measurements were conducted with 32, 64 and 128 sam-
ples per JACK period with a sample rate of 48 kHz over a dura-
tion of five minutes, producing between ≈ 105 and ≈ 5 · 105 client
activations, depending on the period size. Furthermore, the AVTP
backend was measured with two different configurations. In the first
configuration, the differences of the successive packet arrival times
are accumulated, as it was explained in subsection 2.2 (AVTP Ad-
just). In a second configuration, a constant difference of 125, 000
(nanoseconds) is added each time, a media clock stream packet ar-
rives (AVTP Const). No buffer over- or underrun occurred in any of
the JACK backend configurations. The results of the measurements
are shown in table 2.

4. DISCUSSION

Table 2 confirms the primary motivation for the development of the
JACK AVTP backend, the ALSA measurements for each sample pe-
riod shows a broad distribution of client activation times, which is
further emphasized by its average and standard deviation. The ex-
pected value is not met in any configuration and the deviation is sig-
nificantly higher than with AVTP. This results in a JACK client and
a backend, which are not synchronized to the media clock. The re-
quired media clock stream packets per JACK period from table 1 are
hardly met.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Media Clock JACK Client Activation Count
Stream Packet 32 Samples 64 Samples 128 Samples
Count AVTP Adjust AVTP Const ALSA AVTP Adjust AVTP Const ALSA AVTP Adjust AVTP Const ALSA

1 14099 0 15012 0 5936 0 0 0 0
2 0 0 19 0 0 0 0 0 0
3 1 0 32242 0 0 0 0 0 0
4 3 1 119103 0 0 0 0 0 0
5 16353 15328 7022 0 0 0 0 0 0
6 437342 406581 266913 0 0 5437 0 0 0
7 16416 15392 34865 0 0 61360 0 0 0
8 4 1 18 0 0 17693 0 0 0
9 1 0 0 2 1 282 0 0 0

10 0 0 0 8757 3275 9 0 0 0
11 0 0 0 204408 211261 2210 0 0 0
12 0 1 0 8817 3337 95166 1 0 0
13 0 0 0 2 0 70530 0 0 9
14 0 0 0 1 0 1634 0 0 2332
15 0 0 0 0 0 0 0 0 36583
16 0 0 0 0 0 0 0 0 2562
17 0 0 0 0 0 0 0 0 7
18 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 1 0 0
20 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 2824 3901 0
22 0 0 0 0 0 0 104961 107485 88
23 0 0 0 0 0 0 2891 3969 10814
24 0 0 0 0 0 0 0 0 61739
25 0 0 0 0 0 0 0 0 10292
26 0 0 0 0 0 0 0 0 54
27 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0

Average 5.8 6.0 5.2 11.0 10.7 10.6 21.6 22.0 21.3
Standard 0.88 0.26 1.35 0.28 1.61 2.54 2.71 0.26 3.79Deviation

Table 2: JACK client activation count in respect to media clock stream

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Comparing the two AVTP backend configurations for each sam-
ple period size shows, except for some outliers that account for less
than 1% of the activation counts, that both configurations provide
a equivalent solution. The averages and standard deviations of all
sample period configurations imply a synchronized JACK client and
backend. The required media clock stream packets per JACK period
from table 1 are mostly met, with slight deviations.

5. CONCLUSIONS

Inherently, the ALSA backend for JACK adds some drift to the signal
processing chain inside the Soundjack server network. Therefore, an
experimental IEEE 1722 AVTP media clock backend for JACK was
developed to overcome this problem. We could show that our solu-
tion for this problem is working and provides the desired synchro-
nization and it is not necessary to adjust the duration of each JACK
period with nanosecond accuracy.

Since the AVTP backend only receives AVTP packets, it is the-
oretically possible to run the backend on any PTP enabled device,
even when no prioritized transmission queues are provided by the
hardware - Intel I217 for example.

6. FUTURE WORK

Future work will focus on testing the Soundjack server network setup
in the real world, the public Internet instead of the campus network,
therefore adopting IPv6, with evaluation of the changes to the net-
work tomography, has to be done.

Furthermore, the AVB processing server network shall in the fu-
ture be migrated to function as a completely AVB capable JACK
backend, not just for media clock synchronization.

It will also be of interest to achieve a synchronization between
client and server via the public Internet. Mechanisms best suited for
this feature are already under investigation.

Acknowledgment
fast-music is part of the fast-project cluster (fast actuators sensors &
transceivers), which is funded by the BMBF (Bundesministerium für
Bildung und Forschung).

7. REFERENCES

[1] (2019, Feb. 8) Soundjack - a realtime communication solution.
[Online]. Available: http://http://www.soundjack.eu

[2] A. Carôt, U. Krämer, and G. Schuller, “Network music perfor-
mance (nmp) in narrow band networks,” in in Proceedings of
the 120th AES convention, Paris, France. Audio Engineering
Society, May 20–23, 2006.

[3] (2019, Feb. 8) Genuin classics gbr, genuin recording group gbr.
04105 Leipzig, Germany. [Online]. Available: http://genuin.de

[4] (2019, Feb. 8) Symonics gmbh. 72144 Dusslingen, Germany.
[Online]. Available: http://symonics.de

[5] (2019, Feb. 8) Jack audio connection kit. [Online]. Available:
https://jackaudio.org

[6] C. Kuhr, T. Hofmann, and A. Carôt, “Use case: Integration of a
faust signal processing application in a livestream webservice,”
in Proceedings of the 1st International Faust Conference 2018.

Mainz, Germany: Johannes Gutenberg-Universität Mainz, Jul.
17–18, 2018.

[7] C. Kuhr and A. Carôt, “Software architecture for a multiple
avb listener and talker scenario,” in Proceedings of the Linux
Audio Conference 2018. Berlin, Germany: Linuxaudio.org,
Jun. 7–10, 2018.

[8] H. Zimmermann, “Osi reference model -the iso model of ar-
chitecture for open systems interconnection,” in IEEE Transac-
tions on Communications, Vol. 28, No. 4, Apr. 1980, pp. 425–
432.

[9] Timing and Synchronization for Time-Sensitive Applications in
Bridged Local Area Networks, IEEE Std. 802.1AS, Mar. 2011.

[10] Virtual Bridged Local Area Networks - Amendment 14: Stream
Reservation Protocol (SRP), IEEE Std. 802.1Qat-2010, Sep.
2010.

[11] Virtual Bridged Local Area Networks - Amendment 12:
Forwarding and Queuing Enhancements for Time-Sensitive
Streams, IEEE Std. 802.1Qav-2009, Jan. 2010.

[12] Layer 2 Transport Protocol for Time-Sensitive Applications in
Bridged Local Area Networks, IEEE Std. 1722, May 2011.

[13] Device Discovery, Connection Management, and Control Pro-
tocol for IEEE 1722 Based Devices, IEEE Std. 17 221, Aug.
2013.

[14] (Revision of IEEE Std 802.1Q-2011) - IEEE Standard for Lo-
cal and metropolitan area networks–Bridges and Bridged Net-
works, IEEE Std. Std 802.1Q-2014, Dec. 2014.

[15] Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems, IEEE Std. 1588-2008, Jul.
2008.

[16] H. Weibel and S. Heinzmann, “Media clock synchronization
based on ptp,” in Audio Engineering Society Conference:
44th International Conference: Audio Networking, Nov
2011. [Online]. Available: http://www.aes.org/e-lib/browse.
cfm?elib=16146

[17] (2019, Feb. 8) User space api for time stamping of incoming
and outgoing packets. [Online]. Available: https://www.kernel.
org/doc/Documentation/networking/timestamping.txt

[18] I. Corp. (2019, Feb. 8) Intel R© ethernet controller i210-at
product specifications. [Online]. Available: https://ark.intel.
com/products/64400/Intel-Ethernet-Controller-I210-AT?_ga=
1.64461743.1696258023.1478891344#tab-blade-1-0

[19] (2019, Feb. 8) Openavnu - an avnu sponsored repository for
time sensitive network (tsn and avb) technology. [Online].
Available: https://github.com/AVnu/OpenAvnu/

[20] (2019, Feb. 8) Xmos ltd. / attero tech inc. [Online]. Avail-
able: http://www.atterodesign.com/cobranet-oem-products/
xmos-avb-module/

[21] A. Carôt, T. Hohn, and C. Werner, “Netjack – remote music
collaboration with electronic sequencers on the internet,” in
Proceedings of the Linux Audio Conference 2009. Parma,
Italy: Institute of Telematics University, Deutsche Telekom AG
Laboratories, University of Lübeck, Germany, 16–19, 2009.

[22] (2019, Feb. 8) Focusrite audio engineering ltd. United
Kingdom. [Online]. Available: https://us.focusrite.com/
usb-audio-interfaces/scarlett-solo

http://http://www.soundjack.eu
http://genuin.de
http://symonics.de
https://jackaudio.org
http://www.aes.org/e-lib/browse.cfm?elib=16146
http://www.aes.org/e-lib/browse.cfm?elib=16146
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://ark.intel.com/products/64400/Intel-Ethernet-Controller-I210-AT?_ga=1.64461743.1696258023.1478891344#tab-blade-1-0
https://ark.intel.com/products/64400/Intel-Ethernet-Controller-I210-AT?_ga=1.64461743.1696258023.1478891344#tab-blade-1-0
https://ark.intel.com/products/64400/Intel-Ethernet-Controller-I210-AT?_ga=1.64461743.1696258023.1478891344#tab-blade-1-0
https://github.com/AVnu/OpenAvnu/
http://www.atterodesign.com/cobranet-oem-products/xmos-avb-module/
http://www.atterodesign.com/cobranet-oem-products/xmos-avb-module/
https://us.focusrite.com/usb-audio-interfaces/scarlett-solo
https://us.focusrite.com/usb-audio-interfaces/scarlett-solo

	1 Introduction
	1.1 fast-music and Soundjack
	1.2 Concept for a Real-time Processing Server Network
	1.2.1 Audio Video Bridging - an Open Standard Solution
	1.2.2 Network Synchronization with gPTP
	1.2.3 Control Messages and SO_TIMESTAMPING
	1.2.4 Hardware Configuration

	2 IEEE 1722 AVTP media clock Synchronization Concept for the JACK Audio Connection Kit
	2.1 Packet Rate and Padded AVTP Packets
	2.2 AVB Listener as JACK Media Clock Backend

	3 Evaluation
	4 Discussion
	5 Conclusions
	6 Future Work
	7 References

