
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

BIPSCRIPT: A DOMAIN-SPECIFIC SCRIPTING LANGUAGE FOR INTERACTIVE MUSIC

John Hammen

bipscript.org
Berkeley, California, USA
jhammen@j2page.com

ABSTRACT

Bipscript is a domain-specific scripting language designed to make
it easier to create interactive music. The base language is the
Squirrel scripting language which has been complemented with a
standard class library containing audio-specific domain objects.
This API provides methods for creating, scheduling and handling
events of various types including MIDI, OSC and extracted
features of audio streams. A single-threaded programming model
with asynchronous event handling is familiar to web developers but
atypical in music DSLs. Scripts are executed by a command line
interpreter with tight integration to the audio system.

1. INTRODUCTION AND DESIGN GOALS

The Bipscript project began as an attempt to implement a musical
"bot" application, with the base functionality of existing auto-
accompaniment software augmented with a high degree of
interactive functionality. The goal was software that would output
appropriate MIDI sequences in real-time based on external inputs,
most notably data from human performers. The emphasis was on
tempo-driven music with tight integration to a local transport.

Design goals did not include specialization on any particular style
of music, nor any specific assumptions on how external inputs
would affect generation of MIDI sequences, leaving these
decisions to the configuration of a particular piece.

As the options for configuration grew it became clear the easiest
way to express the behavior of a particular musical part would be
via an imperative language with the abilities to directly receive
relevant input from external sources, and use this information
algorithmically to sequence MIDI notes.

2. FEATURES

2.1. Squirrel

The scripting language itself is the Squirrel language [1]. From the
Squirrel website:

"Squirrel is a high level imperative, object-oriented programming
language, designed to be a light-weight scripting language that fits
in the size, memory bandwidth, and real-time requirements of
applications like video games."

These attributes and the associated predictability in run-time behav-
ior make Squirrel an ideal language also for the real-time demands
of audio applications.

Bipscript builds on top of Squirrel by adding a class library API
containing audio domain-specific classes and a custom transport-
aware interpreter that allows for event handling.

2.2. Class Library

The Bipscript class library API features objects representing plug-
ins, mixers, and system inputs and outputs of various types, pre-
dominately audio, MIDI and OSC [2]. These objects can be con-
nected programmatically to create complex networks of the differ-
ent protocols (see Figure 1)

Events of any applicable type can be scheduled to occur on any
node in the network, in particular code can generate and output
timed MIDI and OSC sequences. Event handlers can be registered
to fire on particular events including features extracted from audio
streams.

Additional classes allow the use of textual specification of musical
score data in the scripts using ABC notation [3], Music Macro Lan-
guage [4] or a MIDI tablature format based on common drum tab-
lature.

Figure 1: Creating Connections.

2.3. Threading and Context Model

Scripts including event handlers run in a single execution thread
with a single global context. Instructions in a script will be exe-
cuted sequentially until the main body of the script completes. At
this point any event handlers that were registered by the script will
execute as needed in the same thread and scope with direct access
to all variables defined in the main body of the script.

This programming model is analogous to traditional JavaScript de-
velopment in a web browser where the main body of the script reg-
isters event handlers that are then executed in the same thread
within the same page context. In both cases execution is single-
threaded and non-blocking in favor of asynchronous event han-
dling.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Although many objects such as plugins will participate in the audio
client’s process thread the script thread itself is separate from the
process thread and not subject to its programming limitations on
e.g. memory allocation and system I/O.

2.4. Transport-Aware Interpreter

The command-line interpreter is tightly integrated with the system
transport, on Linux provided by the Jack Audio Connect Kit [5].
Scripts can request to be the transport master via the API but are
not required to do so when there is an external master present to
provide position information.

Whether or not the script itself is the transport master, the inter-
preter will act as a sequencer for any events scheduled by the
script, playing them in time with the transport and reacting to any
arbitrary external transport position changes including looping.

3. COMPARISON WITH OTHER PROJECTS

3.1. Synthesis Languages

There exist several DSLs for music creation with large and active
communities, for instance Pure Data [6] and SuperCollider [7]
among others. These environments differ from each other, for in-
stance Supercollider is a traditional text-based programming lan-
guage while Pure Data is a visual language.

There is a however a common emphasis on sound design with code
libraries of elements representing oscillators, filters and other sig-
nal generation capabilities. Bipscript currently offers no such ob-
jects in its standard class library instead offering hosting capabili-
ties for 3rd party sound generation and effects plugins.

The emphasis instead is on timed music which has led to an API
built around handling events and just-in-time sequencing using data
structures representing e.g. MIDI notes and mutable patterns
(groups of notes). In contrast most music DSLs produce timed mu-
sic at a lower level by alternating between immediate sound-gener-
ation instructions and some variation of a system “sleep” com-
mand.

3.2. Other Open Source Projects

Other comparisons can be drawn to some of the many projects aris-
ing from the community of open source audio software on Linux
and elsewhere:

One of the most feature-rich open source audio applications is the
Ardour DAW [8], which in recent versions has a large number of
the C++ implementation classes exposed as Lua objects [9] giving
a scripting environment incorporating much of Ardour's MIDI and
DAW functionality. This differs from a more traditional script lan-
guage-plus-interpreter environment in that scripts are executed as
callbacks in application-specific contexts, each with their own
scope and applicable model objects.

Another project using Lua is the Moony Lv2 plugins [10]. Taking
advantage of Lua's real-time performance, scripts are run directly
in the process thread and thus allow manipulation of e.g. MIDI

messages as they pass through the plugin. but are bound by all the
standard real-time limitations of running in the process thread.

LuaJack is a Lua binding library for Jack [11]. Scripts written in
LuaJack and Bipscript have a visual similarity due to the similarity
between Lua and Squirrel and the fact the LuaJack and Bipscript
API are wrapping some of the same objects, e.g. system ports.
However as a language binding LuaJack does not include an inter-
preter nor an object API beyond directly exposing the Jack client
API.

4. IMPLEMENTATION

The command line executable that functions as an interpreter to ex-
ecute scripts was written in C++ and runs on the Linux operating
system with the Jack Audio Connection Kit as a run-time depen-
dency.

The standard Squirrel implementation is intended to be embedded
and was used as the basis of the command line interpreter.

The interpreter also acts as a standard audio client, opening and
connecting system audio and MIDI input/output ports and hosting
plugins as specified by the executing script.

Scripts are loaded and run in a dedicated execution thread separate
from the application’s audio process thread. Any event generated
by the script is appended to an applicable lock-free queue that is
consumed by the process thread.

Script objects that hold scheduled events will participate in the au-
dio process thread to pull events from the queues and emit them at
the appropriate position in a running transport with sample-level
accuracy. Synchronization between the script and process threads
allows the script execution to properly respond to arbitrary trans-
port location changes.

A set of bindings was created for the class library, generated from
a high level API description to interface the C++ implementations
of the standard library classes and methods to the Squirrel engine
via its stack-based API.

The object implementations make use of reliable third party code
where possible via both embedded code and dynamically linked li-
braries. The current implementation makes uses of popular
projects such as abcmidi, liblo and libsndfile.

5. USE CASES

Now existing in a basic implementation, Bipscript can be used for
the following use cases:

5.1. Dynamic Accompaniment

An example “Robot Jazz Band” was built [12], showing the script
implementation of 3 related bots (playing acoustic bass, piano and
trap drum samples) that play a dynamic sequence based on rhyth-
mic probabilities in a jazz “swing” pattern coupled with a given in-
put chord progression. All players take an input parameter of “in-
tensity” playing louder and busier vs. softer and sparser on a mea-
sure by measure basis. The main script connects an audio onset de-

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

tector to a system audio input and continuously updates this inten-
sity variable for all players based on the number of onsets received.

This example shows a standard programming model for creating a
script with this kind of interactive behavior:

• The main script instantiates plugins and needed audio and
MIDI connections (see Figure 1) and schedules any static
parts of the score

• Event handlers listen to human performers via e.g MIDI,
OSC and/or audio features and update an internal state
(see Figure 2)

• Scheduled methods read this state and use as input in cal-
culating a short output sequence (e.g. a beat or bar at a
time)

The result is a dynamic and reactive auto-accompaniment system
written in a relatively few lines of code compared to general pur-
pose programming or even other music DSLs. The simple example
works as expected in practice but leaves open many paths for future
development in creating more complex interactive scripts.

Figure 2: Sample Code from the Robot Jazz Band Demo.

5.2. Utility Scripts for Live Performers

In many traditional live musical projects there is no need for dy-
namically generated sequences, especially those where human per-
formers are playing from a static score. In such an environment
there is still a use for certain computer-aided functions such as trig-
gering samples in time or adding a “click track” or other timed au-
dio cues not heard by the audience. These functions can be built in
custom scripts with relatively few lines of code.

5.3. Live Coding

Another prospective use is that of live coding. Those functions of
the command line interpreter that allow for developer convenience

may also be useful in a live coding situation, e.g. the ability of the
script to be loaded and unloaded dynamically including while the
transport is running. This use case is as of yet mostly unexplored

6. FUTURE WORK

With the completion of a basic proof-of-concept interpreter and
class library the main focus of the project remains stabilizing the
standard API and improving the basic tool implementations espe-
cially with an eye to reliability in live settings. To this end recent
work has been done in the area of unit and functional testing for
testing scripts as well as the interpreter itself.

Much of the API design going forward should be based on feed-
back from those who use these tools in a live production setting.

7. REFERENCES

[1] Demichelis, A. 2016. Squirrel – The Programming Language.
http://www.squirrel-lang.org/

[2] Wright, M. 2002. Open sound control 1.0 specification.

[3] Walshaw, C. 2018. abc notation. http://abcnotation.com/

[4] Nakamura, S. 2015. A tiny MML parser. Cubeatsystems.com
https://www.cubeatsystems.com/tinymml/

[5] Davis, P. 2003. Jack audio connection kit. http://jackaudio.org/

[6] Puckette, M. 1970. Pure Data: another integrated computer
music environment.

[7] McCartney, J. 1996. SuperCollider. supercollider.github.io

[8] Davis, P. 2018. Ardour: the Digital Audio Workstation.
http://www.ardour.org

[9] Manual.ardour.org 2018. The Ardour Manual.
http://manual.ardour.org / lua-scripting /

[10] Portner, H. 2018. Moony - realtime Lua as programmable glue
in LV2. http://open-music-kontrollers.ch/lv2/moony/

[11] Trettel, S. 2018. LuaJack Reference Manual. Stetre.github.io,
https://stetre.github.io/luajack/doc/index.html

[12] Hammen, J. 2016. Robot Jazz Band Example. bipscript.org,
http://www.bipscript.org/en/examples/robotjazz

http://abcnotation.com/
https://stetre.github.io/luajack/doc/index.html
http://open-music-kontrollers.ch/lv2/moony/
http://manual.ardour.org/lua-scripting/
http://manual.ardour.org/lua-scripting/
http://manual.ardour.org/lua-scripting/
http://manual.ardour.org/lua-scripting/
http://www.ardour.org/

	1. Introduction and Design Goals
	2. Features
	2.1. Squirrel
	2.2. Class Library
	2.3. Threading and Context Model
	2.4. Transport-Aware Interpreter

	3. Comparison with Other Projects
	3.1. Synthesis Languages
	3.2. Other Open Source Projects

	4. Implementation
	5. Use Cases
	5.1. Dynamic Accompaniment
	5.2. Utility Scripts for Live Performers
	5.3. Live Coding

	6. Future Work
	7. References

