
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

MIDIZAP: CONTROLLING MULTIMEDIA APPLICATIONS WITH MIDI

Albert Gräf

IKM, Music-Informatics
Johannes Gutenberg University (JGU) Mainz, Germany

aggraef@gmail.com

ABSTRACT
The paper introduces midizap, a new Linux utility to interface MIDI
controllers with multimedia applications such as audio and video
editors or computer music programs. midizap is a heavily mod-
ified version of Eric Messick’s ShuttlePRO program. Its purpose
is to translate MIDI controller input to commands (either MIDI or
X11 keyboard and mouse events) which the application understands.
Configurations are simple text files, no programming skills are re-
quired. There’s also an Emacs mode to help creating and testing
these configurations. Jack session and MIDI patchbay functional-
ity is available as well, making it easy to manage separate midizap
instances for different controllers and applications.

1. INTRODUCTION

These days, MIDI controllers are typically USB class devices which
can be connected to a Linux computer without requiring any spe-
cial hardware or drivers. Also, they’re often much cheaper than spe-
cialized gear for specific uses such as photo and video editing. So
wouldn’t it be nice if we could just use whatever MIDI controller
we have for controlling our favorite multimedia applications? The
problem is, while DAW and DJ programs typically have extensive
and customizable MIDI interfaces built into them, other applications
may not offer any MIDI support at all, or only recognize a particular
set of MIDI messages. Thus we often have to translate the MIDI in-
put from the controller to whatever keyboard or MIDI commands the
application understands, and we’d like to be able to do this without
having to modify the target application.

I was surprised to find that on Linux apparently there’s no sim-
ple and practical solution for this problem yet. There is the Ctlra and
Mappa software from the OpenAV project [1], but it is still under
development and only readily supports a handful of devices and ap-
plications right now, which means that adding a new controller or ap-
plication likely requires a fair amount of C programming. A popular
commercial program in this realm is the Bome MIDI translator [2],
but it’s only available for Mac and Windows.

Another interesting utility is Eric Messick’s ShuttlePRO pro-
gram [3] which targets the Contour Design “Shuttle” devices [4]
designed for video editing. These devices don’t speak MIDI, but
Messick’s program is free (GPL) software, works on Linux, and in-
cludes the necessary code to recognize applications by their window
name and translate device input to X11 keyboard and mouse events.
Adding Jack MIDI support to it seemed to be a piece of cake, so
that’s what I set out to do. The first result of this side project was
a fork of the ShuttlePRO program which improves the original pro-
gram in some ways and adds Jack MIDI output [5]. The next obvious
step then was to replace the Shuttle input with Jack MIDI input, giv-
ing birth to the midizap program as it stands now [6].

In the following sections, we discuss midizap’s most important
features and some typical uses. For lack of space, this description

is necessarily somewhat terse and incomplete, but should give the
interested reader an idea of what capabilities the program offers and
when you might want to use it. More details can be found on the
Github project page or in midizap’s extensive manual.

2. TRANSLATION SYNTAX

As with the ShuttlePRO program, midizap’s configuration is a sim-
ple text file which is divided into sections for different applications.
A sample configuration is provided in /etc/midizaprc, you can copy
this to create a .midizaprc file in your home directory and edit it
there as needed. You can also run midizap with any other configu-
ration file by specifying the name of the file on the command line.
A collection of configurations for various purposes (mostly Mackie
emulations for different devices) can be found in the examples folder
in the sources.

The configuration language is line-oriented, each line is either a
section header or a translation rule. The hash sign # at the beginning
of a line or after whitespace starts a comment. Each section starts
with a header of the following form, specifying a section name and
a regular expression pattern:

[name] pattern
The section name is only used in diagnostic messages and can

essentially be chosen freely. It is the regular expression pattern which
actually determines whether the translations in the section are active
at any given time. To these ends, midizap matches the pattern against
the WM_CLASS and WM_NAME properties of the currently selected X ap-
plication window. The latter is what is actually visible in the window
title, while the former is an internal property which identifies the type
of application window.1 The regular expression pattern can also be
omitted, in which case the translations will always be active. Such
“default” sections are to be placed near the end of the file, and their
translation rules will be used as fallback translations when none of
the other translation sections in the configuration match the selected
application window.

The section header is followed by a list of (zero or more) trans-
lation rules describing the translations which should be active for
the given application. These just list MIDI messages and their trans-
lations in a human-readable symbolic format. Each translation rule
must be on a line by itself and consists of a single left-hand side
symbol denoting the MIDI message to be translated, followed by the
right-hand side which is a list of zero or more symbols specifying the
MIDI messages and/or keyboard and mouse commands to be output.
It thus takes the following general form:

input output1 output2 . . .

1You can find out about the WM_CLASS and WM_NAME properties of a win-
dow with the xprop program, or invoke midizap with the -dr debugging op-
tion to have it print this information. midizap will try to match both by de-
fault, but you can tell it explicitly to only match class or title by prefixing the
pattern with the CLASS or TITLE token, respectively.

http://www.musikwissenschaft.uni-mainz.de/Musikinformatik/
mailto:aggraef@gmail.com

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Here is a simple example:

[Terminal] CLASS ^(.*-terminal.*|konsole|xterm)$
F5 XK_Up
F#5 "pwd"
G5 XK_Down
G#5 "ls"
A5 XK_Return

This defines a list of translations for some common types of ter-
minal windows, as specified in the section header on the first line.
The input messages are listed on the left and the corresponding key-
board output on the right. Here we map a few notes in the middle
octave to the cursor up and down and return keys, as well as some
frequently used shell commands. The bindings above will let you
operate the shell from your MIDI keyboard when the keyboard fo-
cus is on a terminal window. To make this work, you’ll first have
to connect your MIDI controller to midizap’s MIDI input port, e.g.,
using a Jack MIDI patchbay program like QjackCtl. You then click
on the desired terminal window and start entering notes on the MIDI
keyboard to have the corresponding commands sent to the selected
window.

It is important to note here that, like the ShuttlePRO program,
midizap will only ever send keyboard and mouse commands to the
currently selected window or, more precisely, the window which has
the keyboard focus. The selected window also determines which sec-
tion of translation rules is currently active. Thus you have to make
sure that you first click on the right application window before you
can go on sending keyboard and mouse commands to it. (In con-
trast, MIDI commands can be sent to any application as long as it is
connected to midizap’s MIDI output, see below.)

Let’s now have a closer look at the syntax of translation rules.
The precise syntax is a bit intricate, so we have to refer the reader
to the EBNF grammar in Appendix A for details. But we will try
to at least sketch out the most important elements in what follows.
The first token of a translation rule (the left-hand side) denotes the
MIDI message to be translated, which is followed by an output se-
quence (the right-hand side) consisting of MIDI messages or X key
and mouse events. There can be any number of these, and you can
freely mix MIDI messages and X events on the output side.

The XK symbols indicate X key codes and must be denoted ex-
actly as they appear in the /usr/include/X11/keysymdef.h file. A
string enclosed in double quotes is simply a shorthand for a sequence
of X key events.2 Besides the key codes from the header file, there
are also some special tokens to denote mouse button and scroll wheel
events (XK_Button_1, XK_Scroll_Up, etc.).

MIDI note messages are denoted in a symbolic format that will
be familiar to musicians: a note letter (A to G) is followed by an
optional accidental (# or b) and an octave number. By default, C5
denotes middle C, but the octave numbering can be changed with a
directive in the configuration file. Other kinds of (non-system) MIDI
messages are denoted using short mnemonics: KP:note (aftertouch
a.k.a. key pressure for the given note); CCn (control change for the
given controller number); PCn (program change for the given pro-
gram number); CP (channel pressure); and PB (pitch bend). These
can all be followed by a dash and the MIDI channel (the default
MIDI channel being 1).

In the example above, all note messages are interpreted as key
events, having an “on” and “off” status: the key goes “down” when

2In the current implementation, this only works with printable ASCII
characters which can be mapped 1-1 to X11 key codes. Otherwise explicit
key codes must be used.

a note-on message is received, and goes “up” again when the corre-
sponding note-off message (or a note-on with zero velocity) arrives.
We also call this a key translation. These work in the same way as in
the ShuttlePRO program; e.g., in the above example, the XK_Up key
is pressed when the note-on for F5 is received, and won’t be released
until the corresponding note-off is detected. If there’s more than one
key in the output sequence, as with the double-quoted strings in the
example, each key will normally be released before the next one is
pressed, and only the last key in the sequence will be held until the
note-off is received. There are also some special suffixes for key
specifications (/D, /U, /H) which indicate keys to be held and re-
leased explicitly or at the end of the sequence; we refer the reader to
the documentation for details.

As another, more practical example, here are some bindings for
the Kdenlive and Shotcut video editors mapping some keys and the
big jog wheel on a Mackie-compatible device to some common video
editing functions:

[Kdenlive/Shotcut] CLASS ^(shotcut|kdenlive)$

playback controls
A#7 XK_space # Play/Pause
A7 "K" # Stop
G7 "J" # Rewind
G#7 "L" # Forward

replace/drop (sets in and out points)
D#7 "I" # Set In
E7 "O" # Set Out

left/right cursor movement
D8 XK_Home # Beginning
D#8 XK_End # End

the jog wheel moves left/right by single frames
CC60< XK_Left # Frame reverse
CC60> XK_Right # Frame forward

The last two rules for the jog wheel show an example of a data
translation which translates incremental changes in the extra data
byte of a message to corresponding X key presses. For ordinary
(absolute) control changes these take the form CCn- and CCn+, where
n denotes the controller number, and the - or + flag the direction of
the change. However, here we employed the special < and > suffixes
which indicate a relative change in “sign-bit” encoding [7], which is
commonly used with encoders (knobs or wheels which can be turned
endlessly in either direction). In either case, the up or down output
sequence is emitted for each unit change in the parameter. You can
also scale these responses by adding suitable step sizes on the left-
hand or right-hand side of the translation rules; again we refer the
reader to the documentation for details.

The rules we’ve seen so far all translate MIDI to X key events.
midizap can also work as a MIDI mapper which translates MIDI in-
put to MIDI output. This is useful if the target application supports
MIDI, but needs the controller input to be remapped to MIDI com-
mands it understands. The following example lets you play a little
drumkit on a General MIDI (GM) synthesizer like Fluidsynth, by
remapping some of the white keys in the 4th octave to a few drum
notes on MIDI channel 10 (the GM drum channel). We also threw in
a rule to remap the modulation wheel (CC1) to the volume controller
on MIDI channel 10 (CC7-10).3

3The notation CC1= being used here provides a shorthand for two data

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[MIDI]
C4 C3-10
D4 C#3-10
E4 D3-10
F4 D#3-10
CC1= CC7-10

Note that we placed the MIDI translations into a special [MIDI]
section here. This is a default section reserved for applications ac-
cepting MIDI input. To make this work, you will have to invoke the
midizap program with the -o option. This enables the [MIDI] sec-
tion and equips midizap with an additional MIDI output port which
can be connected to the target application (like Fluidsynth in this ex-
ample). As long as your translations only output MIDI messages,
you then don’t have to worry about keyboard focus, as the applica-
tion will receive all data from midizap through the MIDI connection
(in fact the application does not need to have any X window at all in
this case).

The above example does a simple 1-1 mapping of MIDI events,
but in general the output sequence may consist of as many MIDI
messages of as many different types as needed, and you can also mix
MIDI and X keyboard and mouse output if you want. An interest-
ing use case for MIDI translations is Mackie emulation which we’ll
discuss in Section 4.

3. GETTING STARTED

Before we explore some of midizap’s more advanced features, let
us quickly go over the mundane technicalities of using midizap.4

midizap is a command line application, so you typically run it from
the terminal. However, it is also possible to launch it from your Jack
session manager (see Section 5 below) or from your desktop envi-
ronment’s startup files once you’ve set up everything to your liking.
In addition, for Emacs users there’s a midizap mode which makes it
very easy to edit and test your midizap configurations. It does syntax
highlighting, auto-completion of keywords, and also lets you launch
midizap in an Emacs buffer; please check the midizap-mode.el file
in the sources for details.

midizap uses Jack for its MIDI input and output, so you’ll need
to be familiar with Jack. We recommend using a Jack front-end like
QjackCtl which makes setting up Jack and doing MIDI connections
much easier. You’ll also need an ALSA-Jack MIDI bridge in order
to expose the ALSA sequencer ports as Jack MIDI ports, so that the
MIDI inputs and outputs of your controller and other non-Jack MIDI
applications can be connected to midizap. Jack’s built-in bridge will
work for this purpose (in the QjackCtl setup, select seq as the MIDI
driver), or you can use Nedko Arnaudov’s a2jmidid utility [8]. The
latter is easier to use with Jack2, and will work with Jack1 as well.

Running just midizap without any arguments launches midizap
with the default configuration and a single Jack MIDI input port
which you’ll have to connect to your MIDI controller. To utilize
MIDI output, run midizap -o; as already mentioned, this equips
midizap with an additional Jack MIDI output port to be connected to
the MIDI application you wish to control. You can also run midizap
with any other configuration file by simply specifying the name of
the file on the command line. There are a number of other options
and configuration file directives which let you set the Jack client

translation rules CC1- and CC1+ with the same right-hand side CC7-10.
4We don’t discuss installation here, which is very easy and, besides the X

libraries, only needs very few dependencies which should be readily available
on all Linux distributions; details can be found in the README file.

name, number of input and output ports and the desired MIDI con-
nections; see Section 5.

Moreover, midizap offers a fair amount of debugging options
which will be very helpful when you start developing your own con-
figurations. A good set of options to start with is -drkm; r prints
the class names and titles of selected windows which is useful to de-
termine which regular expressions to use in the section headers; k
prints out recognized translations so that you can check that midizap
is actually picking the right translation rules for some given MIDI
input; and m activates midizap’s built-in MIDI monitor which prints
out recognizable MIDI input in the same syntax that’s used in the
configuration file, which makes it easy to figure out which MIDI
messages you may want to create translations for.

The default configuration is really just an example, to help you
get started. You can either edit that file or create your own config-
uration. To start from a clean slate, create an empty file in a text
editor, say myconfig.midizaprc, and invoke midizap on it. The file
will be reloaded whenever you save it, so you can just keep on adding
translation sections and rules and try them out immediately, without
having to restart the program. If you’re an Emacs user, you will find
midizap’s Emacs mode most convenient to do all this.

Let’s walk through a simple example to show how this works.
We’ll use the Shotcut video editor (https://www.shotcut.org/)
for illustration, so let’s assume that you’ve already launched Shotcut
and loaded a video file in it. Next, make sure that Jack is running,
create the myconfig.midizaprc file, run midizap -drkm myconfig
.midizaprc, and connect your controller to midizap’s MIDI input.
With the Shotcut window selected, wiggle one of the controls on
your MIDI gear; I’ll take the modulation wheel as an example. In
midizap’s output you should now see something like:

Loading configuration: myconfig.midizaprc
[0] CC1-1 value = 40
no translation found for Untitled - Shotcut
(class shotcut)

This tells you the class name (shotcut) of the application win-
dow, as well as the name of the incoming MIDI message (CC1-1,
which can also be abbreviated as CC1 in the configuration, as 1 is
the default MIDI channel). Having identified the application and
the MIDI message we’d like to translate, we can now edit our con-
figuration in the myconfig.midizaprc file accordingly. Let’s add the
following section header and translations, and save the file:

[Shotcut] CLASS ^shotcut$
CC1- XK_Left
CC1+ XK_Right

midizap should automatically reload the file. Moving the modu-
lation wheel again (with the Shotcut window still selected) will now
change the playback position in Shotcut, while the translations we
just added are printed by midizap.

4. ADVANCED USES

One particularly interesting use case for MIDI translations is the em-
ulation of Mackie controllers. The Mackie control protocol (MCP)
has become a de facto standard for DAW programs, because it allows
the various track parameters to be mapped without requiring any
manual setup.5 Also, many Mackie-compatible devices offer feed-

5Although MCP is widely used, there doesn’t seem to be a publicly ac-
cessible specification of the protocol anywhere. A partial description can be
found at http://www.jjlee.com/qlab/MackieControlMIDIMap.pdf.

https://www.shotcut.org/
http://www.jjlee.com/qlab/Mackie Control MIDI Map.pdf

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

back, i.e., the ability to display current parameter values and other
kinds of status information using LEDs, motor faders, scribble strips
and the like, which makes them very convenient to use.

Some MIDI controllers have a built-in MCP mode, but many
don’t. Thus it is tempting to employ midizap to emulate this mode.
Even if a device already offers MCP, it may be lacking some features;
this is true especially for some of the cheaper and/or smaller devices
like the Behringer X-Touch Mini. In such cases midizap may be used
to beef up the device’s capabilities and/or modify its bindings so that
they better suit your workflow.

Emulating MCP usually requires remapping some or all of the
MIDI messages of the device, on both input and output (if the de-
vice offers some feedback capabilities). Especially the feedback part
often poses some challenges. The purpose of this section is to dive
into some of midizap’s more advanced features catering to these use
cases, using MCP emulation as a running example. Of course, these
features may also be helpful in other situations calling for compli-
cated translations.

4.1. Shift State

One issue we often face right away when designing a Mackie emu-
lation is the number of available controls. For instance, your device
might only provide you with 8 faders which must then be used to
emulate both the volume and the panning controls of a Mackie con-
troller. Or it may not have enough buttons for all the special MCP
functions that you need. In such cases it is useful to designate a spe-
cial shift key on the device which lets you switch between different
functions of the available controls.

midizap provides a special SHIFT token for this purpose which
can be used anywhere on the right-hand side of a translation. This
token doesn’t produce any output, it merely toggles an internal bit
indicating the current shift status. This is often used in a key transla-
tion as follows:

D8 SHIFT

Now, midizap will go into shift mode whenever the device gen-
erates the note D8 (which happens to be the shift key on an AKAI
APCmini device, cf. Fig. 1(8); but any available button-like control
will do). Pressing the D8 key again disables shift mode. Thus the
above rule implements a “CapsLock”-style shift button. You can
also do an ordinary shift button as follows:

D8 SHIFT RELEASE SHIFT

Here, the RELEASE token indicates an explicit release sequence
which will be invoked as soon as the D8 key is released (i.e., the
corresponding note-off is received). Hence pressing this key now
toggles on the shift status, and releasing it immediately toggles it off
again, just like an ordinary shift key on a computer keyboard.

Having defined the shift key, we can now use its current status in
other translations. The ^ character, when used as a prefix on the left-
hand side of a translation, tells midizap that the translation should
only be valid in shifted state. Thus we can now have two different
rules associated with each incoming MIDI message, depending on
the current shift status, effectively giving us about twice as many
controls as we had before.

Let’s take the AKAI APCmini as an example again. We can map
the first eight faders CC48 to CC55 on this device, cf. Fig. 1(4), to the
MCP encoders CC16 to CC23 in shifted mode as follows:6

6Note that the MCP encoders use relative values in sign-bit encoding; the

Figure 1: AKAI APCmini [9, p. 5].

^CC48= CC16~
^CC49= CC17~
...
^CC55= CC23~

The above translations will only be executed in shifted mode
(i.e., by holding the designated shift key while operating the faders).
In unshifted mode, the faders are still available to be mapped, e.g.,
to the MCP volume controls (PB-1 to PB-8). For instance:7

CC48= PB[128]-1
CC49= PB[128]-2
...
CC55= PB[128]-8

You will find very similar rules in the APCmini.midizaprc ex-
ample distributed with midizap. We’ve only sketched out the use
of a single shift key here, but midizap actually supports up to four
different shift states, which are denoted SHIFT1 to SHIFT4, with the
corresponding prefixes being 1^ to 4^. The SHIFT token and ^ prefix
we’ve seen above are in fact just shortcuts for SHIFT1 and 1^, re-
spectively. Thus midizap lets you have up to five different “layers”
of MIDI assignments (1 unshifted and 4 shifted states), which will
hopefully be enough for most purposes.

4.2. Feedback

Some MIDI controllers have motor faders, LEDs, etc., requiring
feedback from the application. To accommodate these, you can
use the -o2 option of midizap (or the JACK_PORTS 2 directive in
the midizaprc file, cf. Section 5), to create a second pair of MIDI
input and output ports. Use of this option also activates a second
MIDI default section in the midizaprc file, labeled [MIDI2], which

~ suffix on the output CC messages indicates that these messages should be
converted to that special encoding.

7The [128] suffix on the PB output messages denotes a scale factor here,
which scales up the 7 bit CC range to the 14 bit range of a pitch bend.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

is used exclusively for translating MIDI input from the second in-
put port and sending the resulting MIDI output to the second output
port. The control output from the application is then connected to
midizap’s second input port, and midizap’s second output port to
the input of the controller, so that the feedback from the application
passes through midizap on its way back to the controller.

If all this has been set up properly, MIDI feedback will eliminate
most problems with controls being out of sync with the application.
midizap has some built-in logic to help with this. Specifically, the
current state of controls received from the host application via the
second input port will be recorded, so that subsequent MIDI output
for data translations on the first output port will use the proper values
for determining the required relative changes. We refer to this as
automatic feedback. Some devices may provide you with sign-bit
encoders which don’t need any kind of feedback for themselves. In
this case the automatic feedback will be all that’s needed to keep
controller and application in sync, and you don’t even have to write
any translation rules for the feedback; just enabling the second input
port and hooking it up to the application will be enough.

Other controls such as motor faders will require explicit transla-
tion rules for the feedback in the [MIDI2] section, however. In the
simplest case these may just be the inverse of the rules in the [MIDI]
section. For instance, if the APCmini had motor faders (it doesn’t),
we might use rules like the following to translate MCP feedback
about the fader positions back to the device:

PB[128]-1= CC48
PB[128]-2= CC49
...
PB[128]-8= CC55

Translations can also generate their own feedback. To these
ends, any MIDI message on the right-hand side of a translation can
be prefixed with the ! character (or the ^ character, which works in
an analogous fashion, but has some special logic for dealing with
shift keys built into it). This outputs the message as usual, but flips
the output ports, so that the message will go to port 2 in a forward
translation destined for port 1, and vice versa to port 1 in a feedback
translation (in the [MIDI2] section) destined for port 2. We call this
direct feedback. For instance, we can equip the D8 shift key from the
previous subsection with direct feedback as follows:

D8 SHIFT ^D8 RELEASE SHIFT ^D8

This might then light up the LED of the corresponding button
when pressing and turn it off again when releasing the key.

Please note that any kind of controller feedback which goes be-
yond direct feedback requires that the target application already pro-
vides some level of MIDI feedback on its own. midizap is not capa-
ble of reading the internal state of a non-MIDI application by some
other magical means.

4.3. Mod Translations

Most of the time, MIDI feedback uses just the standard kinds of
MIDI messages readily supported by midizap, such as note messages
which make buttons light up in different colors, or control change
messages which set the positions of motor faders. However, there
are some encodings of feedback messages which combine different
bits of information in a single message, making them difficult or
even impossible to translate using the simple kinds of rules we’ve
seen so far. midizap offers a special variation of data translations to
help decoding such messages. We call them mod translations (a.k.a.

“modulus” translations), because they involve operations with inte-
ger moduli which enable you to both calculate output from input val-
ues in a direct fashion, and modify the output messages themselves
along the way.

One important task, which we’ll use as an example below, is the
decoding of meter (RMS level) data in the Mackie protocol. There,
each meter value is represented as a channel pressure (CP) message
whose value consists of a mixer channel index 0..7 in the “high nib-
ble” (bits 4..6) and the corresponding meter value in the “low nibble”
(bits 0..3). We will show how to map these values to notes indicat-
ing buttons on the AKAI APCmini (Fig. 1). Mod translations aren’t
limited to this specific use case, however; similar rules will apply to
other kinds of “scrambled” MIDI data.

In its simplest form, a mod translation looks as follows (taking
channel pressure as an example):

CP[16] C0

In contrast to the simple kinds of data translations we’ve seen so
far, there’s no increment (+ or -) flag here, so the translation does
not indicate an incremental change of the input value. Instead, mod
translations always work with absolute values, and the step size on
the left-hand side is treated as a modulus to decompose the input
value into two separate quantities, quotient and remainder. Only the
latter becomes the value of the output message, while the former is
used as an offset to modify the output message.

In order to describe more precisely how this works, let’s assume
an input value v and a modulus k. We divide v by k, yielding the
quotient (offset) q = v div k and the remainder (value) r = v mod
k. E.g., with k = 16 and v = 21, you’ll get q = 1 and r = 5 (21
divided by 16 yields 1 with a remainder of 5). The calculated offset
q is then applied to the note itself, and the remainder r becomes the
velocity of that note. So in the example above the output would be
the note C#0 (C0 offset by 1) with a velocity of 5. On the APCmini,
this message will light up the second button in the bottom row of the
8x8 grid in yellow.

Mod translations are midizap’s swiss army knife for dealing with
complicated translations. There are also some special elements in the
MIDI syntax which can be used in mod translations to make them
even more flexible:

• The empty modulus bracket, denoted [] on the left-hand side
of a mod translation, indicates a default modulus large enough
(16384 for PB, 128 for other messages) so that the offset q
always becomes zero and the translation passes on the entire
input value as is.

• The transposition flag, denoted with the ’ (apostrophe) suffix
on an output message, reverses the roles of q and r, so that
the remainder becomes the offset and the quotient the value
of the output message.

• The change flag, denoted with the ? suffix on an output mes-
sage, only outputs the message if there are any changes in
offset or value.

• Value lists, denoted as lists of numbers separated by commas
and enclosed in curly braces, provide a way to describe dis-
crete mappings of input to output values. The input value is
used as an index into the list to give the corresponding output
value, and the last value in the list will be used for any index
which runs past the end of the list. There are also some conve-
nient shortcuts which let you construct these lists more easily:
repetition a:b (denoting b consecutive a’s) and enumeration

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

a-b (denoting a,a± 1,. . .,b, which ramps either up or down
depending on whether a ≤ b or a > b, respectively).

We can’t go into all of this here, so we have to refer the reader
once again to the manual for details. But here’s how we can use a sin-
gle mod translation to map MCP meter feedback onto the APCmini’s
topmost five button rows, turning them into a colorful meter display:

CP[16] C2{0,1} G#2{0:3,1} E3{0:6,1} C4{0:9,5} G#4{0:12,3}

To understand how this works, one must know that the buttons of
the 8x8 grid, cf. Fig. 1(6), can be lit up by sending them the appropri-
ate note messages. Rows number 4 to 8 (counting from the bottom)
start at notes C2, G#2, E3, C4 and G#4, respectively. The velocities of
the notes indicate the colors (0 means off, 1 green, 5 yellow, and 3
red). The rule above will thus light up buttons in different rows in
different colors (depending on the low nibble of the channel pressure
value), and in different columns (depending on the high nibble of the
channel pressure value which ranges from 0 to 7 and indicates the
mixer channel).

Mod translations are surprisingly versatile and can be used for
various different purposes. In particular, they can also be called as
macros from other translations. This adds a (rather rudimentary) pro-
gramming facility to the configuration language, which isn’t needed
very often, but gives you some extra rope to tackle complicated trans-
lations. We won’t go into this here, so please check the manual for
details and many more examples.

4.4. Pass-Through

There are some situations in which it may be possible to keep most of
the controller input and pass it through unchanged. In particular, this
case arises in Mackie translations for devices which already support
MCP, but might need some minor touches here and there to make
them work exactly the way you want.

For instance, Behringer’s X-Touch Mini (Fig. 2) is a fairly nice
device with its eight encoders providing LED feedback, but its MCP
mode is somewhat lacking. One thing that many users of the device
complain about is that it doesn’t have any keys for changing mixer
banks. But in fact the device has two “layer” keys on the right which
seem ideal for that purpose; alas, the Behringer engineers decided
to have them assigned to some other less important MCP functions
instead. With midizap it’s very easy to fix this shortcoming, by just
reassigning the two keys to the much wanted bank change keys:

C7 A#3 # BANK LEFT
C#7 B3 # BANK RIGHT

We still need to make sure that everything else is passed through
unchanged. The most convenient way to do this is to just add the
PASSTHROUGH directive to the configuration. You can place this any-
where, but it’s most convenient to have this kind of stuff at the be-
ginning of the configuration file, before the first translation section.
The directive tells midizap to pass a message from the input to the
output port if it doesn’t have an explicit translation for that message.
So the final configuration will look like this:

PASSTHROUGH

[MIDI]
C7 A#3 # BANK LEFT
C#7 B3 # BANK RIGHT

[MIDI2]

Figure 2: X-Touch Mini [10, p. 16].

feedback for the BANK LEFT/RIGHT buttons
A#3 C7
B3 C#7

Here we also added two more translations in the [MIDI2] section
so that the feedback for the two remapped buttons works as expected.
To finish off that little example, you may want to add a few more di-
rectives, so that midizap automatically creates the feedback port and
auto-connects to the right device and applications; we will discuss
these in the next section. You can also find an enhanced version
of this example in the sources (XTouchMini.midizaprc), which adds
many other useful MCP functions.

Please note that the PASSTHROUGH directive only applies to nor-
mal (non-system) messages. In some cases it will be necessary to
also pass on system messages, such as system exclusive, which can
be done with the SYSTEM_PASSTHROUGH directive. System exclusive
messages are used in MCP to set the contents of the scribble strips.
The X-Touch Mini doesn’t have these, but other devices like the X-
Touch One do, and will thus need system pass-through to function
properly (see the XTouchONE.midizaprc example in the sources).

5. JACK INTERFACE

There are some additional directives and corresponding command
line options to configure midizap’s Jack setup in various ways. If
both the command line options and directives in the midizaprc file
are used, the former take priority, so that it’s possible to override the
configuration settings from the command line. Note that all these
options can only be set at program startup. If you later edit the corre-
sponding directives in the configuration file, the changes won’t take
effect until you restart the program.

5.1. Client Setup

The -j option and the JACK_NAME directive change the Jack client
name from the default (midizap) to whatever you want it to be.
To use this option, simply invoke midizap with -j followed by the
desired client name, or put a directive like the following into your
midizaprc file:

JACK_NAME "midizap-XTouchMini"

This option is useful, in particular, if you’re running multiple
instances of midizap with different configurations for different con-
trollers and/or target applications, and you want to have the corre-
sponding Jack clients named differently, so that they can be identi-
fied more easily.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

We’ve already seen the -o option which is used to equip the Jack
client with an additional output port. This can also be achieved with
the JACK_PORTS directive in the midizaprc file, as follows:

JACK_PORTS 1

The given number of output ports must be 0, 1 or 2. Zero means
that MIDI output is disabled (which is the default). You may want
to use JACK_PORTS 1 if the configuration is primarily aimed at doing
MIDI translations, so you’d like to have MIDI output enabled by
default. JACK_PORTS 2 or the -o2 option indicates that two pairs of
input and output ports are to be created. As already discussed in
Section 4, the second port is typically used to deal with controller
feedback from the application.

Not very surprisingly, at least one output port is needed if you
want to output any MIDI at all; otherwise MIDI messages on the
right-hand side of translations will be silently ignored.

5.2. MIDI Connections

Setting up all the required connections for the Jack MIDI ports can
be a tedious and error-prone task, especially if you have to deal
with complex setups involving feedback and/or multiple midizap in-
stances. It’s possible to automatize the MIDI connections, e.g., with
QjackCtl’s persistent MIDI patchbay facility, but this is often incon-
venient if you need to accommodate multiple midizap configurations
and you already have a complicated studio setup (or indeed a bunch
of them) which you don’t want to mess with.

Therefore midizap offers its own built-in patchbay functionality
using the JACK_IN and JACK_OUT directives which let you specify the
required connections in the configuration itself. The port number is
tacked on to the directive, so, e.g., JACK_IN2 connects the second
input port. If the port number is omitted then it defaults to 1, so
both JACK_OUT1 and just JACK_OUT connect the first output port. The
directive is followed by a regular expression to be matched against
the Jack MIDI ports of your devices and applications. For instance,
the following lines connect midizap to an X-Touch Mini device on
one side and Ardour’s Mackie control port on the other. (This kind
of setup is rather typical for configurations involving feedback. For
simple setups just specifying the JACK_IN and JACK_OUT directives
is often sufficient, or even just JACK_IN if the target application isn’t
MIDI-capable.)

JACK_IN1 X-TOUCH MINI MIDI 1
JACK_OUT1 ardour:mackie control in
JACK_IN2 ardour:mackie control out
JACK_OUT2 X-TOUCH MINI MIDI 1

A connection will be established automatically by midizap when-
ever a MIDI port belonging to another Jack client matches the regu-
lar expression, as well as the port type and I/O direction. This also
works dynamically, as new devices get added and new applications
are launched at runtime. Only one directive can be specified for each
port, but since midizap will connect to all ports matching the given
regular expression, you can connect to more than one application
or device by just listing all the alternatives. For instance, to have
midizap’s output connected to both Ardour and Pd, you might use a
directive like:

JACK_OUT1 ardour:MIDI control in|Pure Data Midi-In 1

All matches are done against full port names including the client-
name: prefix, so you can specify exactly which ports of which clients
should be connected. However, note that in contrast to the QJackCtl

patchbay, midizap does substring matches by default, so that, e.g.,
just “MIDI control” would match any Ardour MIDI control port,
in any instance of the program (and also ports with the same name
in other programs). If you want to specify an exact match, you need
to use the ^ and $ anchors as follows:

JACK_OUT1 ^ardour:MIDI control in$

5.3. Jack Sessions

midizap also supports Jack session management which provides a
convenient alternative way to launch your midizap instances. Once
you’ve finished a configuration, instead of running midizap manually
each time you need it, you just invoke it once with the right command
line options, and use a Jack session management program to record
the session. The session manager can then be used to relaunch the
program with the same options later.

Various Jack session managers are available for Linux, but if
you’re running QjackCtl already, you might just as well use it to
record your sessions, too. QjackCtl’s session manager is available
in its Session dialog. To use it, launch midizap and any other Jack
applications you want to have in the session, and then hit the “Save”
button in the Session dialog to have the session recorded. Now, at any
later time you can rerun the recorded session with the “Load” button
in the same dialog, and your most recent sessions are available in the
“Recent” menu from where they can be launched quickly.

6. CONCLUSIONS

I hope that you’ll enjoy using midizap for your MIDI mapping needs
as much as I do. I’d like to emphasize, however, that midizap is noth-
ing more (and nothing less) than a simple and practical solution to a
nagging problem that I have run into time and again (as presumably
many Linux MIDI users do). midizap has its limitations, and it is
definitely not intended as a replacement for more ambitious projects.
Ctlra [1] along with its Mappa component takes a much higher-level
approach based on the idea of abstracting device interfaces so that
basically any Ctlra client can be used with any Ctlra-supported de-
vice. This promises to scale much more easily, but it will take its
time to gather a critical mass of supported devices and applications.

In the meantime we now have midizap which is a much more
modest design, but can make any MIDI controller work with pretty
much any application out there, as long as the application can be
controlled with keyboard and/or MIDI commands. And you don’t
need to be a computer expert to use it; if you know how to use Jack,
a text editor, and the command line, you’re good to go.

Contributions are welcome; in particular, we’re looking for in-
teresting configurations to be included in the distribution. I consider
midizap itself finished at this point (ports, bugfixes and feature creep
notwithstanding), but one area which could still be simplified is the
configuration process. While experienced Linux users may actually
prefer the textual interface that midizap provides (especially when
using midizap’s Emacs mode), editing configuration files and watch-
ing debugging output in a terminal can be a bit daunting. So a GUI-
based configuration front-end (maybe something along the lines of
existing MIDI learn facilities) might be in order here.

As Ctlra matures, another interesting possibility is to have a di-
rect interface between Ctlra and midizap at some point. It’s already
possible to run midizap and Ctlra’s daemon program in concert, but
tighter integration could be achieved, e.g., by adding a Ctlra back-
end to midizap.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

7. ACKNOWLEDGMENTS

This program wouldn’t exist without Eric Messick’s prior work, so
a big thank you goes out to him. Thanks are also due to Harry van
Haaren for helping me with Ctlra, which is used in the NI Maschine
Mk3 Mackie emulation distributed with midizap. Last but not least,
I’d also like to thank the reviewers for helpful comments.

8. REFERENCES

[1] Harry van Haaren, “openAV-Ctlra: A plain C library to
program with hardware controllers,”
https://github.com/openAVproductions/openAV-Ctlra,
Sept. 2018.

[2] “MIDI Translator Pro | Bome Software,”
https://www.bome.com/products/miditranslator.

[3] Eric Messick, “ShuttlePRO: User program for interpreting
key, shuttle, and jog events from a Contour Design
ShuttlePRO v2,”
https://github.com/nanosyzygy/ShuttlePRO, Sept. 2018.

[4] Paul White, “Contour Designs Shuttle Pro v2,”
https://www.soundonsound.com/reviews/
contour-designs-shuttle-pro-v2, Oct. 2016.

[5] Albert Gräf, “ShuttlePRO fork,”
https://github.com/agraef/ShuttlePRO, Sept. 2018.

[6] Albert Gräf, “midizap: Control your multimedia applications
with MIDI,” https://github.com/agraef/midizap, Oct.
2018.

[7] “Binding Jump Prevention and Relative (Rotary) Encoder
Support - Cantabile - Software for Performing Musicians,”
https://www.cantabilesoftware.com/guides/
controllerEncoding.

[8] Nedko Arnaudov, “a2jmidid,”
https://repo.or.cz/a2jmidid.git.

[9] AKAI Professional, “APC mini - User Guide,” http://www.
akaipro.com/products/pad-controllers/apc-mini.

[10] Behringer, “X-TOUCH MINI Quick Start Guide,”
https://media.music-group.com/media/PLM/data/docs/
P0B3M/X-TOUCH%20MINI_QSG_WW.pdf.

A. CONFIGURATION SYNTAX

config ::= { directive | header | translation }
header ::= "[" name "]" ["CLASS" | "TITLE"] regex
translation::= midi-token { key-token | midi-token }

directive ::= "DEBUG_REGEX"|"DEBUG_STROKES"|"DEBUG_KEYS" |
"DEBUG_MIDI" | "MIDI_OCTAVE" number |
"JACK_NAME" string | "JACK_PORTS" number |
"JACK_IN" [number] regex |
"JACK_OUT" [number] regex |
"PASSTHROUGH" [number] |
"SYSTEM_PASSTHROUGH" [number]

midi-token ::= msg [mod] [steps] ["-" number] [flag]
msg ::= (note | other | "M") [number]
note ::= ("A" | ... | "G") ["#" | "b"]
other ::= "CH" | "PB" | "PC" | "CC" | "CP" | "KP:" note
mod ::= "[" [number] "]"
steps ::= "[" number "]" | "{" list "}"
list ::= number { "," number | ":" number | "-" number }
flag ::= "-" | "+" | "=" | "<" | ">" | "~" |

"’" | "?" | "’?" | "?’"

key-token ::= "RELEASE" | "SHIFT" [number] |
keycode ["/" keyflag] | string

keycode ::= "XK_Button_1" | "XK_Button_2" | "XK_Button_3" |
"XK_Scroll_Up" | "XK_Scroll_Down" |
"XK_..." (see /usr/include/X11/keysymdef.h)

keyflag ::= "U" | "D" | "H"
string ::= ’"’ { character } ’"’

https://github.com/openAVproductions/openAV-Ctlra
https://www.bome.com/products/miditranslator
https://github.com/nanosyzygy/ShuttlePRO
https://www.soundonsound.com/reviews/contour-designs-shuttle-pro-v2
https://www.soundonsound.com/reviews/contour-designs-shuttle-pro-v2
https://github.com/agraef/ShuttlePRO
https://github.com/agraef/midizap
https://www.cantabilesoftware.com/guides/controllerEncoding
https://www.cantabilesoftware.com/guides/controllerEncoding
https://repo.or.cz/a2jmidid.git
http://www.akaipro.com/products/pad-controllers/apc-mini
http://www.akaipro.com/products/pad-controllers/apc-mini
https://media.music-group.com/media/PLM/data/docs/P0B3M/X-TOUCH%20MINI_QSG_WW.pdf
https://media.music-group.com/media/PLM/data/docs/P0B3M/X-TOUCH%20MINI_QSG_WW.pdf

	1 Introduction
	2 Translation Syntax
	3 Getting Started
	4 Advanced Uses
	4.1 Shift State
	4.2 Feedback
	4.3 Mod Translations
	4.4 Pass-Through

	5 Jack Interface
	5.1 Client Setup
	5.2 MIDI Connections
	5.3 Jack Sessions

	6 Conclusions
	7 Acknowledgments
	8 References
	A Configuration Syntax

