
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

CREATING A SONIFIED SPACECRAFT GAME USING HAPPYBRACKETS AND
STELLARIUM

Angelo Fraietta

UNSW Art and Design
University of New South Wales, Australia

a.fraietta@unsw.edu.au

Ollie Bown

UNSW Art and Design
University of New South Wales, Australia

o.bown@unsw.edu.au

ABSTRACT

This paper presents the development of a virtual spacecraft simula-
tor game, where the goal for the player is to navigate their way to
various planetary or stellar objects in the sky with a sonified poi.
The project utilises various open source hardware and software plat-
forms including Stellarium, Raspberry Pi, HappyBrackets and the
Azul Zulu Java Virtual Machine. The resulting research could be
used as a springboard for developing an interactive science game
to facilitate the understanding of the cosmos for children. We will
describe the challenges related to hardware, software and network
integration and the strategies we employed to overcome them.

1. INTRODUCTION

HappyBrackets is an open source Java based programming environ-
ment for creative coding of multimedia systems using Internet of
Things (IoT) technologies [1]. Although HappyBrackets has focused
primarily on audio digital signal processing—including synthesis,
sampling, granular sample playback, and a suite of basic effects–we
created a virtual spacecraft game that added the functionality of con-
trolling a planetarium display through the use of WiFi enabled Rasp-
berry Pis. The player manoeuvres the spacecraft by manipulating a
sonic poi1, which is usually played in the manner shown in Figure 1.
The poi contains an inertial measurement unit (IMU), consisting of
an accelerometer and gyroscope; and a single button. The goal of the

Figure 1: The conventional way of playing a sonic poi.

game is for a player to choose an astronomical object, for example a
planet or star, and to fly towards that object. This enables the player
to view other objects, including planets, moons, stars and galaxies in

1"Poi spinning is a performance art, related to juggling, where weights on
the ends of short chains are swung to make interesting patterns." [2, p. 173]

the field of view. For example, Figure 2 shows how the player might
view Saturn from Earth, while Figure 3 shows how the player may
view Saturn from their spacecraft. The sonic poi generates sound
that is indicative of the player’s field of view. Additionally, the poi
provides audible feedback when the player zooms in or out.

Figure 2: Saturn viewed from the ground from Stellarium.

Figure 3: A closer view of Saturn from Stellarium.

The University of New South Wales required a display for their
open day to showcase some of the work conducted in the Interactive
Media Lab. The opportunity to develop an environment whereby vis-
itors could engage with the technology we were developing would
not only facilitate attracting possible future students, it was also a
way to develop and test the integration of various research compo-
nents we were conducting. Many managers and business seek to en-
gage new customers through gamification [3]—in this case, prospec-
tive customers were potential students. Furthermore, research indi-
cates that visualisation and interpretation of software behaviour de-

https://artdesign.unsw.edu.au/
mailto:a.fraietta@unsw.edu.au
https://artdesign.unsw.edu.au/
mailto:o.bown@unsw.edu.au

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

veloped as part of a game is more memorable, which facilitates locat-
ing errors or developing methods for improvement [4]. Developing
a game, therefore, would not only engage the visitors, it would pro-
vide us with a more memorable way of seeing how our system was
behaving.

The technology to develop the game required two different ver-
sions of Raspberry Pi, installation of planetarium software onto one
of the Pis, and the creation of a Java API to join the different sys-
tems. This paper details the strategies and techniques to integrate the
different technologies and describes some of the workarounds for
unresolved issues. We also discuss the goals, rules and rewards used
to define the game and the methods we used to entice prospective
players. Finally, we lists areas where the research can be extended.

2. BACKGROUND TO RESEARCH

The research was inspired by a previous project developed by one of
the authors that correlated what a viewer saw in the night sky through
binoculars with data obtained from on-line astronomical data cata-
logues [5]. One installation, which was conducted in conjunction
with the Newcastle Astronomical Society on one of their field view-
ing nights, was particularly successful [6]. More than twenty mem-
bers of the public were enticed into viewing the night sky through
high powered binoculars while sound that was based on data from
the stars they were viewing was playing through loudspeakers on the
field.

Another set of performances was conducted with an improvis-
ing ensemble that featured various astronomical photos displayed as
a slide show [7]. The stellar data was mapped as MIDI and success-
fully functioned as inspirational impetus for the performers, but was
unsuccessful from an astronomical point of view. First, the ability
for viewers to look through the equipment was directly dependant
upon the weather. One performance, for example, had a night sky
complete with thick black cloud, heavy rain and lightning. More-
over, when the weather was favourable for viewing, the audience
were often content to just watch the performers rather than venture
out of their chairs to view through the binoculars [5]. The audience
feedback from the was that although they really liked the slide show,
many were unaware that the binoculars were even there for view-
ing. Instead of providing a slide show at the next performance, an
improvisation using Stellarium from a laptop computer was used on
the screen. The audience’s response was extremely favourable, in-
spiring the idea of using Stellarium as a visual stimulus instead of
binoculars.

2.1. Raspberry Pi

The Raspberry Pi was originally developed in 2011 [8] for educa-
tion by the Raspberry Pi Foundation, a UK based educational charity
[9][10]. The Raspberry PI has a very large user base and a signifi-
cant number of plug in sensors available for it [11], and supports a
128GB SD card, which can be used to store more than 200 hours of
high-quality audio. The Raspberry Pi foundation officially supports a
derivative of the Linux distribution Debian known as Raspbian [12].
Raspbian’s inclusion of compilers, support for multiple coding lan-
guages, and the ability to run multiple programs provides the flexi-
bility that enables a system to expand as an interactive platform as
newer technologies become available. The game project used two
different versions of Raspberry Pi and Raspbian. The sonic poi re-
quired a small form factor, low power consumption but did not re-
quire a GUI, and consequently, Pi Zero running Raspbian Stretch

Lite was selected. The device used to display the graphics required
significantly more power but did not have size restrictions, so a Rasp-
berry Pi B+ running the desktop version of Stretch was selected for
this.

2.2. HappyBrackets

HappyBrackets commenced as "A Java-Based remote live coding
system for controlling multiple Raspberry Pi units" [13] where a
master controller computer sent pre-compiled Java classes to selected
Raspberry Pi devices on a network. Unlike the Arduino sketch,
which is effectively a single program [14], the HappyBrackets com-
position is not a standalone executable program. The HappyBrackets
core has a thread that listens for incoming bytecode classes, and after
receiving the class, executes the new class’s functionality through a
Java interface. This allows for multiple concurrent compositions that
can be easily created or updated during composition or the creative
coding performance [1]. This research was extended with the de-
velopment of the Distributed Interactive Audio Device (DIAD) [15],
which contained an IMU consisting of an accelerometer, gyroscope
and compass. The devices were handled by the audience and incor-
porated into the environment. The DIADS not only responded to
user manipulation, they also responded to one another. Furthermore,
DIADS were configured to automatically connect to the wireless net-
work, and once a DIAD came into range of the network, became a
part of the DIAD multiplicity. The main focus of this development
was the implementation of a reusable platform that allowed creators
to easily develop interactive audio and easily deploy it to other de-
vices. Although HappyBrackets runs on many embedded platforms,
the main research has been with the Raspberry Pi, primarily due to
the availability and low cost of the devices. HappyBrackets is li-
censed under the Apache License 2.02 and is available through Git
Hub3.

A prebuilt disk image—which contains the Java Virtual Machine
(JVM), the I2C drivers to enable access to the IMU, and libraries to
access the GPIO—enables users to flash an SD card and start us-
ing HappyBrackets without ever having to connect their device to
the Internet. The licence for the Oracle JVM, however, appeared to
prohibit embedding the Oracle JVM into a prebuilt image and was
therefore legally problematic. We found that the AZUL Zulu JVM
was available under the GNU GPLv2 licence4, enabling an embed-
ded distribution within an image. Medromi et al. conducted a study
that compared the two JVMs [16]. Their tests revealed that Zulu
created more threads and classes than Oracle, indicating that Zulu
probably used more memory, making it more susceptible to garbage
collection issues. Furthermore, their tests showed that Zulu also used
a greater percentage of CPU, indicating greater power consumption.
The report, however, did not detail the difference in performance
speed between the two JVMs. Our own initial tests did not show
any difference between the two JVMs and there was no noticeable
performance degradation, however, this is an area we still need to
research. It is possible to change the default JVM used in the Rasp-
berry Pi from the terminal, which would make switching between
JVMs when performing comparative tests relatively easy.

2 www.apache.org/licenses/ [accessed November 2018]
3 github.com/orsjb/HappyBrackets [accessed November 2018]
4www.gnu.org/licenses/old-licenses/gpl-2.0.txt [accessed November

2018]

http://www.apache.org/licenses/
https://github.com/orsjb/HappyBrackets
www.gnu.org/licenses/old-licenses/gpl-2.0.txt
www.gnu.org/licenses/old-licenses/gpl-2.0.txt

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

2.3. Stellarium

The advancement of computing power over the last two decades
has made the availability of planetarium software available on both
desktop computers and mobile devices commonplace. Moreover,
many of these software packages—including RedShift5, SkySafari6,
StarMap7, The SkyX8, and Stellarium9—have become valuable tools
for astronomers. They facilitate the identification of objects and in
the planning of viewing and astro-photography sessions by enabling
sky simulation for any particular location, date and time [17].

Stellarium is an open source software project distributed under
the GNU General Public Licence with the source code available
through Git Hub10 . Stellarium functions as a virtual planetarium;
calculating positions of the Sun, moon, stars and planets based on
the time and location defined by the user. Moreover, the viewing
location does not even need to be on Earth. For example, Figure 4
displays Stellarium rendering Jupiter viewed from its moon Io.

Figure 4: A simulation of Jupiter viewed from Io.

Stellarium is used by both amateur and professional astronomers,
and is used by the European Organisation for Astronomical Research
in the Southern Hemisphere to facilitate distribution and sharing of
visual data among scientists [18]. Stellarium has a very high quality
graphical display, supporting spherical mirror projection that can be
used with a dome [19]. Stellarium is used in many schools and mu-
seums because it is both scientifically accurate and visually engaging
[18]. Moreover, it is suitable for demonstrating basic through to ad-
vanced astronomy concepts [18]. Stellarium has a built in library of
600 000 stars, with the ability to add an additional 210 million [19].
Moreover, Stellarium can display constellations from several differ-
ent cultures and has labels translated to more than 40 languages,
making Stellarium both culturally aware and inclusive [18].

Although it is quite straightforward to control Stellarium using
a keyboard and mouse, there are many plugins that allow third party
integration with the software. The plugin we were particularly in-
terested in to control Stellarium was the Remote Control, which en-
abled control of Stellarium through HTTP [21]. Stellarium also con-
tains a powerful scripting engine that enables one to program and
run complete astronomy shows. The scripts, written in JavaScript,

5www.redshift-live.com [accessed November 2018]
6www.southernstars.com [accessed November 2018]
7www.star-map.fr [accessed November 2018]
8www.bisque.com [accessed November 2018]
9stellarium.org [accessed November 2018]

10 github.com/Stellarium/stellarium [accessed November 2018]

control Stellarium through a series of objects that represent the Stel-
larium application components [20].

3. RELATED WORK

Video games rose from obscurity in the 1970s, into a video arcade
industry grossing $8 billion dollars in 1982 [22, p. 88]. The video
game moved from the arcade into the home with Nintendo and Atari
game consoles [22, 23]. Iconography games like Space Invaders,
Defender, Spaceward HO! and Star Wars were often replaced with
interactive games that became more realistic [23]. Wolf suggests
that there are more than forty different genres of video games [23],
however, we were only particularly interested in the "Training Sim-
ulation" genre.

One study showed that video game expertise developed over
long-term playing had a beneficial effect on the spatial skills in the
player, supporting the hypothesis that "video expertise could func-
tion as informal education for the development of skill in manipu-
lating two-dimensional representations of three dimensional space"
[22, p. 93]. The aerospace industry has employed training simulators
for many years, with the advancement in virtual reality environments
leading to the availability of a new technology known as "serious
gaming" [24, p. 655]. This technology exploits popular high-quality
computer games, making it available via Software Development Kits
(SDKs) to developers of "serious"[sic] applications such as defence,
surgery, education and aerospace [24, p. 686].

One particularly interesting training simulation project was a
prototype environment for training astronauts in a simulated zero
gravity environment for the purpose of controlling and handling ob-
jects [25]. Rönkkö et al. noted that astronauts discovered using a
laptop in a zero gravity environment was completely different to us-
ing it on Earth, and that the whole concept of a laptop computer in a
zero gravity environment was questionable [25, p. 183].

There have been various implementations of third party integra-
tion with Stellarium. Although it is possible to remotely control a
telescope using Stellarium as the master controller [26], some re-
searchers have developed projects whereby Stellarium becomes the
slave. Tuveri et al. developed two planetarium control systems
for driving Stellarium on a Laptop computer [27]. They extended
the Stellarium code in order to send it application messages before
the Remote Control plugin was available in the standard Stellarium
distribution. One interaction implementation was through a touch
screen, while the other was through a Kinect gesture controller [27].

The Remote Control Stellarium plugin was developed by "Flo-
rian Schaukowitsch in the 2015 campaign of the ESA Summer of
Code in Space programme" [20, p. 110], and was used for a vi-
sual art installation in the MAMUZ museum for pre-history [21].
The installation, STONEHENGE. A Hidden Landscape, consisted
of a single computer driving five projections onto a 15x4m curved
screen.The presentation was automated with a Raspberry Pi that trig-
gered a script via an HTTP request every twenty-five minutes via a
cron job. This Remote Control plugin is now a standard part of the
Stellarium installation. This use of both scripting and HTTP control
was the mechanism we employed in our game.

4. DEFINING THE GAMIFIED EXPERIENCE

One of the intentions of creating the gamified environment was to en-
gage visitors. In the gamified experience, four parties are involved:
players, designers, spectators, and observers [28]. The key to a de-

www.redshift-live.com
www.southernstars.com
www.star-map.fr
www.bisque.com
http://stellarium.org
https://github.com/Stellarium/stellarium

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

veloping successful gamified experience is to identify who the par-
ties are and how to engage them for the purpose of creating a positive
and memorable experience [3], each with different levels of involve-
ment or immersion [28]. Players were the visitors who physically
controlled the virtual spacecraft, and in a sense, were the competi-
tors and highly immersed in the experience. Spectators were people
who do not directly compete in the game, but instead, influenced the
game indirectly by encouraging the player and were also highly im-
mersed in the experience. Observers were other visitors in the space
that were passively involved and had no direct impact on the game.
They were, however, mildly involved and often moved to become
players or spectators [28].

Research indicates that the three main factors in developing an
enjoyable game were challenge, fantasy and curiosity [29]. We pro-
vided challenge in that we set a goal that had increasing levels of
difficulty. As the user was closer to the planet, the spacecraft be-
came more difficult to control.

We utilised fantasy in that we implement two modes of play:
terrestrial and spaceship. Terrestrial mode allowed the player to use
gravity in a familiar way, provided wide fields of view that showed
large amounts of sky and provided course control. Spaceship mode
showed less fields of view, displaying significantly less sky and pro-
vided finer control; however, the player was not allowed to use grav-
ity in their control. We enabled the player to zoom in and out by per-
forming a quick twist action of the ball around the string. If the gyro-
scope pitch value exceeded the set threshold, the field of view would
change, simulating a zoom in or out. When the user changed their
field of view to less than 30 degrees, the play mode went from ter-
restrial to spaceship. We provided an audible feedback that sounded
like a zipper when the level of zoom was changed.

The only controls available at the time on the poi were accelerom-
eter and gyroscope 11, while the only feedback was audio generated
by the poi and the Stellarium display. In the same way that a laptop
could not be used conventionally in a zero gravity environment [25],
a player would be unlikely to control the game successfully using
the poi by spinning it around their body [2]. Figure 5 shows the poi
with three axes of accelerometer and gyroscope on the left and right
respectively.

Figure 5: Sonic Poi accelerometer and gyroscope input.

In terrestrial mode, we wanted to simulate a viewer on the ground
lifting and turning their head to view the sky as one would on Earth,
which is essentially increasing the altitude and rotating the azimuth.
The player "lifts their head" by raising the ball of the poi in an arc,
using the point where the player holds the rope as the centre, and
measuring Y axis acceleration through the IMU in the poi. Rotating
the viewer’s head was simulated by detecting the pitch value of the

11The button control was added to the poi later.

gyroscope, as shown on the right side of Figure 5. Gyroscope val-
ues only change while the object is rotating, whereas gravitational
accelerometer values are maintained when the object is stationary.

In the spaceship mode, we wanted to simulate the player nav-
igating through space in a zero-gravity environment. The yaw and
the pitch were used as input, whereby the user had to roll the ball
in their hands to move the display. This was completely foreign to
users at first because there was no haptic feedback, nor any sense
of grounding for the user or the control. In a sense, it was similar
to balancing on a ball in space because you could not fall off—you
would just float in an unintentional direction. Furthermore, it was
not easy to detect which axis was which because the poi was a ball
shape. Furthermore, rotating one axis would affect the cognition of
the other axis. Consider a player in Figure 5 rotating the ball for-
ward around the X axis with the poi producing a positive yaw. If
the player then turned the poi 180 degrees around the string, rotat-
ing the ball forward again would now produce a negative yaw, which
would mean the screen would start moving in the opposite direction
to what they experience a moment earlier. The result was that con-
trolling the display required constant mental adjustment, which we
suggested might simulate to some degree the sense of strangeness an
astronaut may feel controlling objects in outer space [25, p. 183].

In order to run an attractive and engaging display that would trig-
ger the visitors’ curiosity when they entered the room, we ran Stel-
larium scripts that functioned as standalone astronomy shows. We
invited visitors to manipulate the poi and watch the display move
while the script was running. When we saw they were interested
and enjoyed the novelty of interacting with the display through the
poi, we offered them the opportunity to start from Earth and navi-
gate to one of the planets in our solar system. As they zoomed in
closer to Saturn, they became quite excited when they saw the rings
and realised that they could also see Saturn’s moons. For those who
were particularly enthusiastic, we suggested finding Jupiter next, in-
forming them that they would also be able to see the four Galilean
moons that night at home with a standard pair of binoculars. We also
asked them to imagine that rolling the ball to control their movement
might be as strange as moving about in a zero gravity environment.
Although a few of the players gave up after a few minutes, the ma-
jority of players continued for more than ten minutes, had a lot of
fun, and exhibited a sense of achievement in being able to navigate
into outer space.

5. DEVELOPMENT

The system was originally developed as a tool for evaluating the per-
formance, behaviour and suitability of networked control of Stellar-
ium as part of a potential interactive audio visual artwork. We in-
tended to calculate the azimuth and altitude position in space calcu-
lated from the rotation and manipulation of poi. These values would
be used as input to Stellarium on another device, sent via the net-
work, which would then display the sky based on those values. Ad-
ditionally, we sent commands to change the field of view on Stel-
larium, which effectively acted as a zoom function. The poi also
played audio as a series of ten uniformly distributed pseudorandom
sine waves between 500 and 550Hz, giving a sense of cosmic back-
ground microwave noise.

float freq = hb.rng.nextFloat() * 50 + 500;
Envelope envelope = new Envelope(1);
WaveModule soundGenerator = new WaveModule();

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

soundGenerator.setFequency(freq);
soundGenerator.setGain(envelope);
soundGenerator.connectTo(masterGain);
return envelope;

A metronome iterates though each of the envelopes, adding segments
that cause each frequency to momentarily pop out of the background
as a beep.

hb.createClock(5000).addClockTickListener((
offset, this_clock) -> {

Envelope e = envelopes.get(envelopIndex++ %
TOTAL_OSCILLATORS);

final float LOUD_VOL = 20;
final float LOUD_SLOPE = 20;
final float LOUD_DURATION = 200;

e.addSegment(LOUD_VOL, LOUD_SLOPE);
e.addSegment(LOUD_VOL, LOUD_DURATION);
e.addSegment(1, LOUD_SLOPE);
});

As the user zooms in, the metronome becomes faster, increasing
the beep rate, generating a sense of sonic tension.

5.0.1. Starting Stellarium

The first challenge was starting Stellarium on the Pi from within
HappyBrackets. HappyBrackets has a simple facility to execute shell
commands or create processes through both the Java Runtime exec
and the ProcessBuilder [30]. We attempted a script to run Stellar-
ium from a process command, which ran successfully when executed
from a terminal; however, we could not get HappyBrackets to run
the script after each fresh reboot of the device—the program was un-
able to access the display. Interestingly, If we killed the JVM and the
started HappyBrackets again from a terminal, then Stellarium started
from within HappyBrackets with no problem. The problem was that
the HappyBrackets installation script had configured the Raspberry
Pi to automatically start the Java application when the device first
boots by executing a script in /etc/local.rc as defined in the Raspberry
Pi documentation12. In order to run GUI programs from Java, the
Java program needs to be started when the desktop starts, which was
effected by moving the script command to /.config/lxsession/LXDE-
pi/autostart13. The HappyBrackets installation scripts were conse-
quently modified to detect whether a desktop version was used, and
added the HappyBrackets start-up script command accordingly.

5.0.2. Controlling Stellarium

Examples of controlling Stellarium through the Remote Control API
were provided on the plugin developer page14, which made use of
the cURL [sic]15 command line utility16 and executed via an SSH
terminal connection to the Pi. Although we did not intend to use curl
in our actual program because Java has its own networking interface,
curl was extremely useful for examining and diagnosing through the

12www.raspberrypi.org/documentation/linux/usage/rc-local.md [accessed
November 2018]

13www.raspberrypi.org/forums/viewtopic.php?t=139224 [accessed
November 2018]

14stellarium.org/doc/head/remoteControlApi.html
15curl.haxx.se
16cURL should not be confused with the curl programming language.

ec.haxx.se/curl-name.html [accessed November 2018].

terminal. Querying the state of Stellarium was performed by issu-
ing a curl GET command. For example, executing the following
command in the SSH terminal retrieves the current view direction of
Stellarium as a JSON encoded string.

curl -G http://localhost:8090/api/main/view
{"altAz":"[0.954175, 9.54175e-06,

0.299249]","j2000":"[0.240925, 0.147495,
-0.959271]","jNow":"[0.241334, 0.148053,
-0.959082]"}

Setting the position of Stellarium is executed with the curl POST
command, with the parameters added as JSON parameters. Execut-
ing the following command would set the display to horizontal by
setting the altitude to zero.

curl -d ’alt=0’ http://localhost:8090/api
/main/view

Having tested the functionality using curl through the terminal, we
implemented calls using the standard Java URL connections [31].
We sent control message from the poi via UDP to the slave using
HappyBrackets and then immediately sent the HTTP message on the
slave to Stellarium. We found that although the message arrived from
the poi to the slave in less than a few milliseconds, the time to execute
the post message on localhost, be actioned by Stellarium, and then
return typically took between 80 and 120 milliseconds. This pro-
duced accumulative latency when the player continually moved the
poi. The accelerometer and gyroscope typically update every 10ms,
so constantly rotating the device for two seconds would generate
approximately 200 messages. These values would become queued
inside the slave and sequentially executed, which would result in an
accumulating latency over a twenty second period. A method was re-
quired that would immediately send the last received position change
when the last message was complete, but would discard previous
values that were not yet actioned. We accomplished this through
an independent thread for executing the post command. This thread
would be effectively dormant while waiting for an event. When a
message arrives on a different thread, the event is triggered, at which
point the thread wakes and sends the message. We effected this
through the use of Java synchronisation objects. The functionality
that sends the post messages to Stellarium executes in an indefinite
loop, laying dormant through the altAzSynchroniser.wait
() call.

new Thread(() -> {
while (!exitThread) {

synchronized (altAzSynchroniser){
try {

altAzSynchroniser.wait();
} catch (InterruptedException e)

{
e.printStackTrace();

}
}
sendAltAz(currentAz, currentAlt);

}
}).start();

The thread will wait indefinitely until it receives a signal from
variable altAzSynchroniser. When a message to change the
altitude arrives from the poi, the class variable currentAlt is set
and the altAzSynchroniser object is notified, which in turn

www.raspberrypi.org/documentation/linux/usage/rc-local.md
www.raspberrypi.org/documentation/linux/usage/rc-local.md
www.raspberrypi.org/forums/viewtopic.php?t=139224
www.raspberrypi.org/forums/viewtopic.php?t=139224
stellarium.org/doc/head/remoteControlApi.html
curl.haxx.se
ec.haxx.se/curl-name.html

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

causes the thread shown above to wake and then call sendAltAz
with the new azimuth and altitude to the localhost.

public void changeAltitude(double
control_val) {

synchronized (altAzSynchroniser){
currentAlt = control_val / 2 * Math.PI;
altAzSynchroniser.notify(); }

}

We found that modifying the azimuth and altitude directly often
produced a jittery display due to the 100ms latency coupled with
discarding of values that were not actioned while waiting for the
sendPostMessage call to return. We reduced this problem sig-
nificantly by sending arrow key messages and moved the display left
and right instead of sending an azimuth. This produced a smooth
display rotation when rotating the ball. It was not possible to use
this for the altitude in the terrestrial mode because we were using the
accelerometer value to determine the height. In the spaceship mode,
however, this proved very effective as we were able to just send up,
down, left and right messages based on gyroscope action.

6. FUTURE WORK

There were several issues that we discovered through running the
game. The first problem was that the Raspberry Pi would often crash
when running the display after a certain period of intense manipula-
tion, however, we were able to run it for several days if we did not de-
mand too many rapid changes from Stellarium. We substituted the Pi
with a Mac Mini in order to determine where the problems were. We
found that we were able to reproduce an error in Stellarium on the
Raspberry Pi when running the script double_stars.ssc that comes
with Stellarium, however, the Mac ran with no errors. Running the
kernel journal showed errors indicating an inability to allocate mem-
ory within the GPU17. The VC4 OpenGL driver required to run Stel-
larium is still experimental, and it is probably that this is where the
error lies. Research and development in this area is still required to
make a stable Raspberry Pi installation of Stellarium.

We found that when the player started rotating the ball fast, the
zoom would activate, requiring them to stay within certain rotation
rates. We modified the game so changing zoom required the player
to hold the button down when performing a zoom action.

Messages are sometimes lost over UDP, which became evident
when a zoom message was sometimes not delivered to the slave.
We have performed some tests comparing different routers and dif-
ferent Raspberry Pis for packet loss. Additionally, we tested code
in both Java and C++. We discovered that as packet intervals ex-
ceeded 10ms, the percentage of packet loss increased. Interestingly,
we found that there was less packet loss using Java than C++ using
the standard compilers distributed with Raspbian. Furthermore, the
quality of router had a significant impact. Some routers, although
supporting multicasting, stopped sending multicast messages to de-
vices after about ten minutes. We intend to perform more tests re-
garding the packet loss, however, the real concern is that broadcast-
ing and multicastling of OSC over UDP is not satisfactory [33].

We found that the Just In Time (JIT) compiler took time to con-
vert the downloaded Java byte code into machine code [34], produc-
ing a brief stuttering effect when executed for the first time. The
problem became exacerbated when using the Pi Zero with ten os-
cillators running simultaneously due to the limited power of the Pi

17github.com/Stellarium/stellarium/issues/550 [accessed November 2018]

Zero. Once the JIT compiler had converted the code, subsequent
code changes were not affected. Although only an issue when the
program starts, we need to examine strategies to overcome this.

7. CONCLUSIONS

During our research we were able to integrate various open source
programs to create a system where we could develop and evaluate
Stellarium as a controllable display element, create inter process
and device communication using the HappyBrackets Java environ-
ment, and to experiment with the use of the sonic poi as a per-
formance tool. We used this system to create a gamified environ-
ment where visitors were engaged with our technology, providing
them with a positive and memorable experience. We capitalised on
this opportunity to observe and evaluate how our system was behav-
ing, which was more memorable to us by virtue of it being part of
a game that was played repeatedly. We leveraged the quality the
Stellarium display coupled with a wireless control device to create
a game that was challenging, fun, engaging and educational. More-
over, the technical goal was to be able to control Stellarium during
a performance with HappyBrackets, with an example available at
https://youtu.be/NhXRdd-MNoo

The research obtained from developing this game can be used
as a starting point for the development of an interactive educational
installation. Furthermore, we found a way to expose issues with
OpenGL driver on the Raspberry Pi, Java JIT, and UDP packet loss
and performance using both Java and C++.

8. ACKNOWLEDGEMENTS

A special thanks to Ben Cooper who designed and built the Sonic
Poi. Many thanks to the members of the Newcastle Astronomical
Society in their support and encouragement for this project. I would
like to acknowledge the support of Georg Zotti and Alexander Wolf
from the Stellarium development team for their advice and guidance
in using Stellarium.

9. REFERENCES

[1] Sam Ferguson and Oliver Bown, “Creative coding for the
Raspberry Pi using the HappyBrackets platform,” in Proceed-
ings of the 2017 ACM SIGCHI Conference on Creativity and
Cognition. ACM, 2017, pp. 551–553.

[2] Eleanor Farrington, “Parametric equations at the circus: Tro-
choids and poi flowers,” The College Mathematics Journal,
vol. 46, no. 3, pp. 173–177, 2015.

[3] Karen Robson, Kirk Plangger, Jan H Kietzmann, Ian Mc-
Carthy, and Leyland Pitt, “Game on: Engaging customers and
employees through gamification,” Business horizons, vol. 59,
no. 1, pp. 29–36, 2016.

[4] Nergiz Ercil Cagiltay, “Teaching software engineering by
means of computer-game development: Challenges and oppor-
tunities,” British Journal of Educational Technology, vol. 38,
no. 3, pp. 405–415, 2007.

[5] Angelo Fraietta, “Musical composition with naked eye and
binocular astronomy,” in Australasian Computer Music Con-
ference 2014. Victorian College of the Arts, 2014, p. 47.

https://youtu.be/NhXRdd-MNoo

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

[6] Angelo Fraietta, “Echoes from the fourth day - a segue through
the southern night sky for FM synthesiser and binoculars,”
2014, Performed in Brickworks Park in collaboration with the
Newcastle Astronomical Society.

[7] Colin Bright, “spa-c–e,” 2013, Performed live at Colbourne
Ave Glebe, Sydney, Australia May 23rd 2013 by The Colin
Bright Syzygy Band and Angelo Fraietta.

[8] Simon Monk, Raspberry Pi cookbook: Software and hardware
problems and solutions, " O’Reilly Media, Inc.", 2016.

[9] Samuel Aaron, Alan F Blackwell, and Pamela Burnard, “The
development of Sonic Pi and its use in educational partner-
ships: Co-creating pedagogies for learning computer program-
ming,” Journal of Music, Technology & Education, vol. 9, no.
1, pp. 75–94, 2016.

[10] Matt Richardson and Shawn Wallace, Getting started with
Raspberry Pi, " O’Reilly Media, Inc.", 2012.

[11] Ivica Ico Bukvic, “Pd-l2ork Raspberry Pi toolkit as a compre-
hensive Arduino alternative in k-12 and production scenarios.,”
in NIME, 2014, pp. 163–166.

[12] Maik Schmidt, Raspberry Pi: A Quick-Start Guide, Pragmatic
Bookshelf, 2014.

[13] Oliver Bown, Miriama Young, and Samuel Johnson, “A Java-
based remote live coding system for controlling multiple Rasp-
berry Pi units,” in ICMC, 2013.

[14] Yusuf Abdullahi Badamasi, “The working principle of an Ar-
duino,” September 2014, pp. 1–4, IEEE.

[15] Oliver Bown, Lian Loke, Sam Ferguson, and Dagmar Rein-
hardt, “Distributed interactive audio devices: Creative strate-
gies and audience responses to novel musical interaction sce-
narios,” in International Symposium on Electronic Art. ISEA,
2015.

[16] Hicham Medromi, Laila Moussaid, and FAL Laila, “Analysis
of the allocation of classes, threads and cpu used in embedded
systems for Java applications,” Procedia computer science, vol.
134, pp. 334–339, 2018.

[17] Joseph Ashley, “Computers and computer programs,” in As-
trophotography on the Go, pp. 151–161. Springer, 2015.

[18] K Berglund, “Using free, open source Stellarium software for
iya2009,” in Preparing for the 2009 International Year of As-
tronomy: A Hands-On Symposium, 2008, vol. 400, p. 483.

[19] Matthew Mc Cool, “Touring the cosmos through your com-
puter: a guide to free desktop planetarium software,” CAPjour-
nal,(7), pp. 21–23, 2009.

[20] Georg Zotti and Alexander Wolf, “Stellarium 0.18.0 user
guide,” 2018.

[21] Georg Zotti, Florian Schaukowitsch, and Michael Wimmer,
“The skyscape planetarium,” 2017.

[22] Patricia M Greenfield, Craig Brannon, and David Lohr,
“Two-dimensional representation of movement through three-
dimensional space: The role of video game expertise,” Journal
of applied developmental psychology, vol. 15, no. 1, pp. 87–
103, 1994.

[23] Mark JP Wolf, “Genre and the video game,” The medium of
the video game, pp. 113–134, 2001.

[24] Robert J Stone, Peter B Panfilov, and Valentin E Shukshunov,
“Evolution of aerospace simulation: From immersive virtual
reality to serious games,” in Recent Advances in Space Tech-
nologies (RAST), 2011 5th International Conference on. IEEE,
2011, pp. 655–662.

[25] Jukka Rönkkö, Jussi Markkanen, Raimo Launonen, Marinella
Ferrino, Enrico Gaia, Valter Basso, Harshada Patel, Mirabelle
D’Cruz, and Seppo Laukkanen, “Multimodal astronaut virtual
training prototype,” International Journal of Human-Computer
Studies, vol. 64, no. 3, pp. 182–191, 2006.

[26] Jitong Chen, Lingquan Meng, Xiaonan Wang, and Chenhui
Wang, “An integrated system for astronomical telescope based
on Stellarium,” in Advanced Computer Control (ICACC), 2011
3rd International Conference on. IEEE, 2011, pp. 431–434.

[27] Elena Tuveri, Samuel A Iacolina, Fabio Sorrentino, L Davide
Spano, and Riccardo Scateni, “Controlling a planetarium soft-
ware with a kinect or in a multi-touch table: a comparison,” in
Proceedings of the Biannual Conference of the Italian Chapter
of SIGCHI. ACM, 2013, p. 6.

[28] Karen Robson, Kirk Plangger, Jan H Kietzmann, Ian Mc-
Carthy, and Leyland Pitt, “Is it all a game? Understanding
the principles of gamification,” Business Horizons, vol. 58, no.
4, pp. 411–420, 2015.

[29] Thomas W Malone, “Heuristics for designing enjoyable user
interfaces: Lessons from computer games,” in Proceedings of
the 1982 conference on Human factors in computing systems.
ACM, 1982, pp. 63–68.

[30] JW van der Veen, R de Beer, and D van Ormondt, “Utilizing
Java concurrent programming, multi-processing and the Java
native interface,” Running Native Code in Separate Paral-
lel Processes,” Report on behalf of the Marie-Curie Research
Training Network FAST, 2012.

[31] Cay S Horstmann and Gary Cornell, Core Java 2: Volume I,
Fundamentals, Pearson Education, 2002.

[32] Matthew Wright, Adrian Freed, et al., “Open SoundControl: A
new protocol for communicating with sound synthesizers.,” in
ICMC, 1997.

[33] Angelo Fraietta, “Open sound control: Constraints and limita-
tions.,” in NIME, 2008, pp. 19–23.

[34] Anderson Faustino Da Silva and Vitor Santos Costa, “An ex-
perimental evaluation of Java JIT technology.,” J. UCS, vol.
11, no. 7, pp. 1291–1309, 2005.

	1 Introduction
	2 Background to research
	2.1 Raspberry Pi
	2.2 HappyBrackets
	2.3 Stellarium

	3 Related Work
	4 Defining the gamified experience
	5 Development
	5.0.1 Starting Stellarium
	5.0.2 Controlling Stellarium

	6 Future Work
	7 Conclusions
	8 Acknowledgements
	9 References

