
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

SEQUOIA: A LIBRARY FOR GENERATIVE MUSICAL SEQUENCERS

Chris Chronopoulos

Independent Developer
Cambridge, MA

chronopoulos.chris@gmail.com

ABSTRACT
Sequoia is a new software library for musical sequencing, with gen-
erative capabilities and sample-accurate timing. The architecture
supports a variety of techniques, including polymetric sequencing,
clock division, probability, and other parameters which can be ma-
nipulated in real time – or even sequenced themselves. The core
library is written in C and supports JACK MIDI; Python bindings
are also available.

1. MOTIVATION

In recent years, the electronic music community has shown a grow-
ing interest in the use of standalone hardware units, both for studio
production and live performance [1]. Among their many appeals,
these devices have the advantage of being modular - drum machines,
synthesizers, samplers, sequencers, mixers, and effects units can be
connected and re-connected in myriad ways to accomodate a variety
of workflows. Each component serves a unique role and interfaces
with other components through well-defined interfaces: line-level
audio, and control signals typically in the form of MIDI or CV (con-
trol voltage).

The Linux audio ecosystem is well-poised to emulate this paradigm
in software; audio routing libraries like JACK, and control signal
protocols like MIDI and Open Sound Control (OSC) provide a frame-
work for connecting standalone applications into software “rigs” suit-
able for composition and performance alike. Indeed, such modular-
ity is central to the Unix philosophy: programs should “do one thing
and do it well” [2]. True to form, numerous drum machines (e.g.
hydrogen, drumkv1), synthesizers (zynaddsubfx, amsynth, dexed),
samplers (shuriken, qsampler, petri-foo, sooperlooper), mixers (jack-
mixer, non-mixer), and effects (calf-plugins, guitarix) are available
from popular Linux repositories. Additional utilities exist for manag-
ing audio/MIDI connections (qjackctl, catia/claudia/carla) and sav-
ing/restoring sessions (lash/ladish/nsm/aj-snapshot).

Sequencers, however, are comparatively absent from this ecosys-
tem. Perhaps the best-established example is seq24 [3], which, albeit
stable and relatively comprehensive, has not been significantly up-
dated since 2010, and suffers from usability issues which hinder on-
the-fly composition. Various sequencers exist within larger DAW ap-
plications like Ardour [4], LMMS [5], Qtractor [6], Rosegarden [7],
and Muse [8], but these don’t fit into the modular paradigm described
here. Furthermore, the predominant interface for these software se-
quencers is the piano roll, which is well suited for editing live data
captured from a MIDI controller, but less appropriate for the quick
manipulation of drum patterns and arpeggios typical of dance music.
For this task, a traditional step sequencer is desired.

But step sequencers can be quite complex. They typically fea-
ture live sequence composition, real-time manipulation, and chain-
ing of sequences. More advanced examples include generative prop-
erties like probability, ratcheting, and meta-sequencing, in addition

to step-wise parameters like microtiming and control variable modu-
lation. With such a wide variety of features, it can be challenging to
design applications which cover all the bases – but this is primarily
a problem of interface design. The essentials of modern sequencing
– timing, synchronization, live manipulation, etc. – can be separated
from the problem of application design, and distilled into a general-
purpose library, as in the “model-view-controller” paradigm [9] This
is the motivation for Sequoia.

Figure 1: A Sequoia session is connected to two different client appli-
cations using JACK. Here ZynAddSubFX (zyn-fusion) and drumkv1
are being used to create a simple beat. Carla is used to manage
audio and MIDI connections.

2. DESIGN

The architecture of Sequoia is based on four object classes: session,
sequence, trigger, and port.

A sequence is a discrete series of events which steps in time
with a metronome. In this sense, Sequoia is a “step sequencer”, but
events are not required to be evenly spaced in time (see Section 4.1).
The length of a sequence is the number of steps that the sequence
contains. There is no limit (aside from memory) to the length of a
sequence, but once specified (via instantiation), it is fixed. This is
less of a constraint than it may seem, however, as sequences can be
chained together and “meta-sequenced” dynamically 5.3. Sequences
have several dynamic parameters: the mute state, transpose, clock
division, playhead position, playhead direction, and loop boundaries
can all be modified live during playback.

Triggers (or “trigs” for short) are the event objects which may
populate the steps of a sequence. They store information depending
on their type; the current trigger types are:

• Null: (an empty trig)

• Note: note value, velocity, length

www.chronopoulos.net
mailto:chronopoulos.chris@gmail.com

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

• CC: number, value

Each trigger also carries a channel number, a probability and a mi-
crotime. Microtime is a floating-point value in the range [−0.5, 0.5),
where the units are in steps. Thus a trigger can be placed half a step
before or after its nomimal timing, allowing for irregular rhythms,
“humanization”, and swing.

Sequences run within a Sequoia session, which controls the tempo
and transport (start/stop/pause) state applied to all contained sequences.
A session can have a number of ports for communicating with other
applications – including other Sequoia sessions. The ports can be
input (“inports”) or output (“outports”), have descriptive names, and
can be assigned to sequences individually, or on a many-to-one ba-
sis. For example, we may have 4 sequences (kick, snare, closed hat,
open hat) feeding into a single outport called “drums”, while another
melodic sequence feeds into an outport called “synth” – all sequenc-
ing in time within the same session.

3. API

Sequoia is implemented as a C library in the “object-oriented” style:
data structures are presented as custom types with associated meth-
ods for instantiation and mutation. All library functions and data
types are prefixed with sq_*. The full API is documented on the
associated GitHub wiki; here we present a simple example which
constructs and plays a 2-note sequence:

#include "sequoia.h"

#define STEP_RES 256

int main(void) {

sq_session_t sesh;
sq_session_init(&sesh, "My Session",

STEP_RES);

sq_sequence_t seq;
sq_sequence_init(&seq, 16, STEP_RES);

jack_port_t *port;
port = sq_session_create_outport(&sesh,

"My Port");
sq_sequence_set_outport(&seq, port);

sq_trigger_t trig;
sq_trigger_init(&trig);

sq_trigger_set_note(&trig, 60, 100, 4);
sq_sequence_set_trig(&seq, 0, &trig);
sq_trigger_set_note(&trig, 67, 100, 4);
sq_sequence_set_trig(&seq, 8, &trig);

sq_session_add_sequence(&sesh, &seq);
sq_session_set_bpm(&sesh, 120);
sq_session_start(&sesh);

return 0;

}

Here, STEP_RES is the step resolution, in ticks per step. This needs
to be the same for all sequences in the session – attempting to add
a sequence with incompatible step resolution will result in an error.
We create an outport for the session called “My Port” and set the
sequence to output events through it. We then create a placeholder
trigger object trig and use it to populate the sequence. Finally, we
add the sequence to the session, set the BPM, and start sequencing.

3.1. Python Bindings

The main C library is augmented with Python bindings which obey
a direct mapping between classes and methods. In Python, the ex-
ample above could be written as:

import sequoia as sq

STEP_RES = 256

sesh = sq.session("My Session", STEP_RES)
seq = sq.sequence(16, STEP_RES)
port = sesh.create_outport("My Port")
seq.set_outport(port)

trig = sq.trig()

trig.set_note(60, 100, 4)
seq.set_trig(0, trig)
trig.set_note(67, 100, 4)
seq.set_trig(8, trig)

sesh.add_sequence(seq)
sesh.set_bpm(120)
sesh.start()

4. IMPLEMENTATION

A Sequoia session registers as a JACK external client whose name
is the session name (specified during instantiation). Input and output
ports are created as JACK MIDI ports (also named) which are served
by the JACK processing callback. The API is compiled into a shared
library plus header files, and can be installed e.g. in /usr/local/ for
dynamic linking across multiple applications.

4.1. Timing

Timing is managed by the JACK processing thread as it executes
within the context of the Sequoia session. The session keeps track
of the frame count as it works to fill the JACK buffer with time-
stamped MIDI events. Events are managed by the sequences which
handle time as a grid of microticks – intervals of time much shorter
than the step length which enable the microtiming functionality of
the sequencer. In the code example in Section 3, the mictrotiming
resolution is set to 256 ticks per step. In theory, this resolution can
be set much higher, though in practice, it will be limited by CPU
performance. The number of frames per tick (fpt) is:

fpt = 15 ∗ sr
tps ∗ bpm

(1)

where sr is the sample rate, tps is the step resolution (ticks per step),
and bpm is the tempo in beats per minute. At 48 kHz with 256
ticks-per-step, there are 23 frames-per-tick at 120 BPM. At 4096

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Figure 2: Diagram visualizing the 3-tiered timing scheme used by Sequoia. At the highest level there are steps: 4 steps per beat (in the sense
of “beats per minute”), and one trig per step. Going down one level, each step is composed of several “microticks” which comprise the grid
for microtiming events. Here, only 8 microticks per step are shown for clarity, but a typical sequence may have 256 (or more) ticks per step.
Finally, there is the frame counter, which sweeps between the microticks until it reaches a tick boundary, at which point a trigger may be fired.

ticks-per-step, this becomes 1 frame-per-tick, which is the theoretical
maximum resolution for this tempo and sample rate.

4.2. Trig-to-Microtick Translation

Although the fundamental timing grid is managed at microtick reso-
lution, this implementation detail is hidden from the user by the trig
interface. The user manages the sequence data by setting its trigs
(one for each step); these trigs are then placed on the microgrid ac-
cording to their microtiming. The formula is:

tick index = (step + µtime) ∗ tps (2)

At this tick index, we place a pointer to the trig, which allows us to
look up both the trig parameters (e.g. probability, length) and the
sequence parameters (e.g. mute, transpose) at trig time, to ensure
that we send the correct MIDI event at the correct time.

4.3. Note-Off

While note-on and control change events are recorded in the micro-
grid at composition time (i.e. when the user calls
sq_sequence_set_trig()), note-off events are managed dif-
ferently. To see why, consider what would happen if a C note of
length 4 steps was recorded in the microgrid as a C-note-on plus a
C-note-off 4 steps later. Now imagine if the sequence transpose pa-
rameter were changed in the middle of that note. The note-off would
be delivered for the wrong note value, and the synthesizer down-
stream would be left with a hanging note. The same applies for play-
head manipulation, or any number of the other sequence parameters
which support live control.

The solution is to implement for each sequence a separate ring
buffer, specifically for note-offs, which is always running forward.
The length of this buffer is the maximum note length, which is also
the length of the sequence. The buffer gets populated with a note-
off (at the appropriate delay) whenever a note-on fires. When the
note-off is reached by the advancing buffer pointer, it is fired, and
then removed from the buffer. When a sequence (or the session) is
stopped, we can optionally call a “clean” command, which sweeps
through the off-buffer as quickly as possibly, delivering all remaining
note-offs.

4.4. Lock-Free Parameter Control

In a running Sequoia session, the JACK thread needs immediate ac-
cess to data that other threads (e.g. the UI thread) can manipulate
during playback. In a non-realtime application, this would be ac-
complished with mutex locks [10], but in realtime audio, this is un-
acceptable – the audio callback must never execute code that could
block for an indeterminate amount of time [11]. In lieu of mutex
locks, we synchronize data between threads via lock-free message
queues. For this, we use jack_ringbuffer_t as offered by the
JACK API. We then implement a simple messaging protocol that al-
lows for the UI thread to “set” or “get” critical data when the audio
thread enters the processing callback. This allows both threads to
access the data while avoiding any race conditions.

Message queuing offers a clean solution when the audio thread
is running, but it can present problems when the system is in a dor-
mant state. In this situation, for example, a queueing “getter” method
would block indefinitely, waiting for the processing callback to serve
the request. As another example, a user will commonly populate a
sequence with trigs before adding it to a running session. If the se-
quence length is longer than the message queue, this would overflow
the buffer and cause an error.

Ideally, the getters and setters would access data directly when
operating on a dormant structure, and use message queues when the
sequencer is running. In Sequoia, this branching behavior is handled
automatically – the data access methods are polymorphic according
to the running state of the system.

5. GENERATIVE TECHNIQUES

In addition to serving as a streamlined API for general-purpose, time-
critical sequencing with real-time control, Sequoia has been designed
from the ground-up with generative music techniques in mind. Here,
we describe just a few of these possibilities which Sequoia enables.

5.1. Polymeter

Since there’s no concept of a global step counter in Sequoia (only the
per-tick frame counter managed by the session), sequences are free
to run in and out of phase with each other, according to the least-
common-multiple of their lengths. For example, a 16-step sequence
played against a 15-step sequence will evolve through 240 steps of
variation before syncing back up and repeating itself.

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

5.2. Probability

Trig parameters include probability, a floating-point value in the
range [0, 1] which determines what fraction of the time a trig actually
fires. This applies to both note-type and CC-type triggers.

Figure 3: Meta-sequencing. A Carla patch showing a slow mod-
ulation sequence controlling the transpose parameter of a melody
sequence, which is driving the synthv1 synthesizer.

5.3. Meta-sequencing

Meta-sequencing, simply put, is “sequences sequencing sequences”.
Any of the sequence parameters – playhead, loop start, loop stop,
playback mode, transpose, mute state, clock divide – can be con-
trolled live from Sequoia’s MIDI-in ports. The way MIDI events
map to parameter controls is determined by a mapping defined by
the user upon sequence creation.

Combined with the concepts described above, this technique can
be very powerful – a single, monophonic sequence can be manipu-
lated by another (perhaps employing polymeter, probability, or clock
division) to generate a much longer, stochastically evolving sequence
(see Figure 3). Sequences can even be looped back into themselves
to give surprising results (Figure 4) – although care must be taken in
this case to avoid runaway conditions.

Figure 4: Auto-sequencing. A melody sequence is fed back into itself
(notice the looped-back red line from synth to input on the melody
client), and the result is used to drive synthv1. Depending on the
melody and the input mapping, this situation can “run away” to infi-
nite pitch. If it doesn’t, the results can be a surprising transformation
of the original melody.

5.4. Algorithmic Control

Obviously, the facility of inports and controller mappings allows for
external clients (e.g. Python scripts, Pure Data patches, Geiger coun-
ters with USB connections...) to control sequence parameters in any
way one might wish, thus allowing a huge variety of algorithmic
methods to modulate the sequencer.

6. STATUS

Sequoia is currently in active development. The core library (libse-
quoia) is in a viable state, and the source code is available on GitHub
under the GPL license (v3) [12]. We are also in the process of em-
bedding the library within Ziggurat, an existing GUI sequencer ap-
plication [13]. Future work will focus on developing bindings to
other languages, and improving documentation.

7. REFERENCES

[1] Connor Jones, A Live Performance Revolution is Taking Over
Electronic Music, 2016.

[2] Peter Salus, A Quarter Century of UNIX, Addison-Wesley,
1994.

[3] Wikipedia contributors, Seq24, 2019.

[4] Wikipedia contributors, Ardour (software), 2019.

[5] Wikipedia contributors, LMMS (software), 2019.

[6] Wikipedia contributors, Qtractor, 2019.

[7] Wikipedia contributors, Rosegarden, 2019.

[8] Wikipedia contributors, MusE, 2019.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, Design Patterns: Elements of Reusable Object-Oriented
Software, Pearson Education, 1994.

[10] Michael Kerrisk, The Linux Programming Interface, No Starch
Press, 2010.

[11] Ross Bencina, Real-time audio programming 101: time waits
for nothing, 2011.

[12] Chris Chronopoulos, https://github.com/chronopoulos/libsequoia,
2018.

[13] Chris Chronopoulos, https://github.com/chronopoulos/ziggurat,
2018.

	1 Motivation
	2 Design
	3 API
	3.1 Python Bindings

	4 Implementation
	4.1 Timing
	4.2 Trig-to-Microtick Translation
	4.3 Note-Off
	4.4 Lock-Free Parameter Control

	5 Generative Techniques
	5.1 Polymeter
	5.2 Probability
	5.3 Meta-sequencing
	5.4 Algorithmic Control

	6 Status
	7 References

