
Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

JACKTRIP ON RASPBERRY PI

Chris Chafe, Scott Oshiro

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University, USA

cc@ccrma.stanford.edu soshiro@ccrma.stanford.edu

ABSTRACT

The jacktrip application for wide area network music performance
has been ported to Raspberry Pi. The present setup runs Fedora 29
with the xfce desktop on a Model 3 B+ in conjunction with standard,
low-cost stereo USB soundcards. We describe all the steps from
initial OS installation through building and running jacktrip.

1. INTRODUCTION

Early study of internet acoustics at CCRMA[1] required the devel-
opment of a system for low-latency, uncompressed audio streaming
over IP. That software evolved into jacktrip[2] and is shared today as
an open-source application widely used for jamming, rehearsing and
concerts. Similar systems are discussed in a comprehensive review
of network music performance technologies in [3].

The JamBerry project [4] (2014) was the first “Stand-Alone De-
vice for Networked Music Performance Based on the Raspberry Pi"
and like the present system was also linux-based. JamBerry provided
uncompressed UDP audio streams and was in many ways an open-
source equivalent to a proprietary solution existing at that time called
jamLink[5]. Both involved custom software written for a system-on-
a-chip (SOC) combined with an I2S audio interface and both sup-
ported up to 4 peer-to-peer connections which were downmixed to
stereo on the receiving side.

JamBerry included adaptive queuing, an automatic solution for
tuning buffer size latency according to network conditions. The fea-
ture assisted musicians who would otherwise need to manually tune
the parameter (in jacktrip’s case, setting it’s “-q” queue length pa-
rameter). Its user interface (UI) was presented on a built-in touch-
screen and could also be operated via a remotetly-connected device
(PC, mobile, tablet, etc.). An additional JamBerry feature is an error
(packet loss) concealment procedure (reportedly an implementation
of the algorithm used in the Opus Codec[6]).

The present project is simply a demonstration of running the
standard release of jacktrip on generic, low-cost hardware, identi-
cal in all ways to running it on a linux-based PC (and functionally
equivalent to running it on macOS or windows 10). The project dif-
fers from JamBerry on the audio and UI sides – it uses off-the-shelf
USB sound cards, has less sophisticated packet loss concealment and
no UI. The basic mode of operation provides a stripped-down, peer-
to-peer bidirectional streaming engine with its usual command line
incantations.

I/O ports on the the Raspberry Pi 3 Model B+ (rp3B+)1 make it
well-matched for the project. The built-in ethernet, HDMI and mul-
tiple USB ports make it simple to connect wired ethernet, display,
mouse, keyboard and soundcard.

1https://www.raspberrypi.org/products/raspberry
-pi-3-model-b-plus/

The following is a full guide for those wishing to try jacktrip
on the rp3B+. We also detail a musical demo of a more complex
topolgy than simple peer-to-peer, an experiment involving multiple
devices connected in a real-time waveguide mesh.

2. HOWTO

Before digging into installation details in the following sections, the
first item we’ll present is how to run jacktrip on an already prepared
rp3B+.

Running is easy, it’s equivalent to running jacktrip on more ex-
pensive hardware. But installing and building are different – these
heavier operations are relatively sluggish and you need to plan for
the time it takes. The approach detailed here uses the rp3B+ for all
steps including a native compile. Fortunately, it’s extremely easy to
replicate the finished work simply by copying the image of a fully-
prepared system for use on another rp3B+ device. How to make that
happen will be explained, as well.

2.1. Running jacktrip on a fully-prepared rp3B+ (it’s just the
usual)

The application runs as described elsewhere[7] – nothing special is
required. First, start qjackctl, a GUI-based application for setting
up and starting the local jack audio server. Click on “Setup” and set
the following: (example choices shown)

• select the desired (soundcard) Interface (M-Audio M-Track)

• Sample Rate (48000)

• Frames/Period (256)

• Periods/Buffer (3)

Click on “Ok” and click on “Start.” The GUI’s real-time status
should start updating.

Next up, start jacktrip. Presumably, jacktrip has been installed
system-wide (the last step in building jacktrip 4.1). You can check
that it is there by opening a terminal and typing:

jacktrip -v

The result should show the current version.
As always, for this rp3B+ and each host it will connect to, the

desired UDP port must be open for incoming traffic (the default port
is 4464). This caveat is nicely satisfied in our Fedora environment
by opening the Firewall application (requires administrator priv-
ileges), selecting the wired ethernet interface and setting its zone to
FedoraWorkstation. See 4.2 for details.

To run your host as a jacktrip server, type:

jacktrip -s

Or, to run as client, type:

https://ccrma.stanford.edu/~cc
mailto:cc@ccrma.stanford.edu
mailto:soshiro@ccrma.stanford.edu
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

jacktrip -c <ipaddr>

where <ipaddr> corresponds to another host which is the jacktrip
server you’ll connect to. Type <ctrl>c to exit.

This howto now continues this with step-by-setp instructions for
starting from scratch: installing the OS and build tools, obtaining
source code, building and installing it, and configuring the environ-
ment.

3. INSTALLING FEDORA 29

We used 32G microSD cards for our demo and recommend working
with the same. (As of this writing, a 32G microSD is now less ex-
pensive than a 16G microSD card.) Here are the steps we’ll use to
install a current version of the Fedora Linux operating system with
the xfce desktop environment. Briefly,

• (laptop) download the image for arm7
• (laptop) flash it to a microSD card (18’)
• (rp3B+) insert the microSD card, then power up the device
• (rp3B+) resize the image partition
The first two steps are accomplished on another computer, for

example, a laptop and the next two are done on an rp3B+ which has
been connected with wired ethernet, display, mouse and keyboard.

3.1. download the image for arm7 (using another computer)

(1.2G – about 8 minutes on a commodity ISP)

The base image we’ll start with is a “spin” of Fedora 29 for
armhf (ARM hard float) that’s been pre-loaded with the xfce desktop
environment. Download the compressed image here:
https://download.fedoraproject.org/pub/fedora/
linux/releases/29/Spins/armhfp/images/Fedora-X
fce-armhfp-29-1.2-sda.raw.xz

3.2. flash it to a microSD card (using another computer)

(about 18 minutes on an i7 laptop)

Use the GUI application Etcher2 to flash the image to a mi-
croSD card. Insert the microSD card into a laptop USB port using
an adapter, launch Etcher, select the .xz file and select the 32G card.
Flashing requires administrator privileges. When done, the adapter
and microSD card can be removed.

3.3. insert flash, boot the rp3B+

(about 6 minutes with initial configuration steps)

It’s advised to never insert or remove a microSD card while the
rp3B+ is powered on. Insert the card and then turn on the power to
boot the system. The user setup screen will boot into the xfce dektop
environment. Specify a root password and a username and password.

3.4. resize the 4.7G partition

The initial image is too small for our purposes, so the next step
is to resize it using the gnome-disks application which can be
launched from a terminal. Select the largest current partition (Parti-
tion 3) at 4.7G and resize it to the maximum allowed.

2https://www.balena.io/etcher/

3.5. install build tools, libraries, utilities and applications

(about 25 minutes)

Open this document on the rp3B+ and enter the following com-
mands as root in a terminal via copy and paste:
dnf -y install qt5-devel
dnf -y groupinstall "C Development Tools and Libraries"
dnf -y groupinstall "Development Tools"
dnf -y install jack-audio-connection-kit-devel alsa-lib-devel
dnf -y install iperf qjackctl audacity

4. PREPARING JACKTRIP

Here’s what’s remaining in order to to fully prepare jacktrip.

4.1. download, build and install the latest version of jacktrip

(about 9 minutes)

The current version of jacktrip is 1.2 and can be downloaded
from its repository
https://cm-gitlab.stanford.edu/cc/jacktrip

To build the project,

• navigate to your download directory and extract the .zip file

• open a terminal in the jacktrip/src directory

• issue the command ./build which runs the build script

• and then sudo make install to install the executable
system-wide

4.2. open the UDP port

As previously mentioned, the network interface needs the incom-
ing UDP port(s) used by jacktrip to be opened. Run the command
firewall-config (or select “Firewall” from the Applications
: Administration menu) and under “Options” do “Change Zones
of Connections” for the Connection, Wired connection 1 (eth0), to
make it be “FedoraWorkstation” (and switch it to “Permanent,” if so
desired, using “Options : Runtime to Permanent”).

4.3. configure the rest of the environment

Good stuff to have includes permanent ssh service, realtime priv-
ileges and allowing remote soundcard access so that operating the
device remotely is more useful. In the following, insert the desired
account name where <user> is indicated:

systemctl start sshd.service
systemctl enable sshd.service
groupadd realtime
gpasswd -a <user> realtime
gpasswd -a <user> audio
echo "@realtime - rtprio 99" > /etc/security/limits.d/99-realtime.conf
echo "@realtime - memlock unlimited" >> \
/etc/security/limits.d/99-realtime.conf

https://download.fedoraproject.org/pub/fedora/linux/releases/29/Spins/armhfp/images/Fedora-Xfce-armhfp-29-1.2-sda.raw.xz
https://download.fedoraproject.org/pub/fedora/linux/releases/29/Spins/armhfp/images/Fedora-Xfce-armhfp-29-1.2-sda.raw.xz
https://download.fedoraproject.org/pub/fedora/linux/releases/29/Spins/armhfp/images/Fedora-Xfce-armhfp-29-1.2-sda.raw.xz
https://www.balena.io/etcher/
https://cm-gitlab.stanford.edu/cc/jacktrip

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

Also choose your desired power save and screen saver config-
uration (automatically blanked screens during a performance are ir-
ritating). The rp3B+ is now fully-prepared any can be given a try
using the instructions in 2.1.

5. REPLICATING AND MAINTAINING

5.1. replicating the image to another microSD card

A fully-prepared rp3B+ microSD card can be copied identically to
another microSD card. Insert the source microSD card in another
computer, for example, a laptop using a USB adapter. Then, taking
care to select the correct storage volume, do a “dd” disk copy from
the source microSD card to the laptop’s own storage. It’s essential to
check the volumes on the laptop via a terminal command

df -h

and determine by experiment which volume gets added / removed
when the microSD card is plugged / unplugged. For example, a vol-
ume named /dev/sdb1 may be correlated with this behavior indi-
cating that a device /dev/sdb will be the source image (input file)
we want to copy from. Choose a suitable output file path and name.

Again, beware! Realize that the following command is only an
example. It refers to /dev/sdb and that may be incorrect if your
particular setup at the time you launch the command has the mi-
croSD card showing as a different volume. For example, if you have
another USB drive under that name and if it’s really big, the opera-
tion could fill up your home directory (written from experience).

sudo dd if=/dev/sdb of=~/rp1.img status=progress

When done the output image file can then be flashed to a new mi-
croSD card using the Etcher application mentioned in 3.2 above. Se-
lect the output image (output file) from “dd” as the source.

6. TESTING RESULTS

The rp3B+ has been compared side-by-side with an i7 laptop using a
method developed for determining the quality-of-service (QoS) un-
der a jacktrip load. The host being tested connects to a loopback
server [8] which echoes back the host’s own audio. While so doing,
the server records elapsed time between packets (inter-packet inter-
vals) arriving from the test device. Ideally, these would be absolutely
regular but in practice cannot be. Network and host characteristics
affect the degree of deviation.

In Figure 1 the rp3B+ registered 2 inter-packet intervals exceed-
ing the input buffer queue cushion shown by the black line and the
laptop registered 1 exceeding this deadline (after approximately 25k
packets). The test was conducted over a local network via the ether-
net ports of a 5-year old commodity-grade router (D-Link DIR-655).
Network QoS factors in other setups may mask the differences be-
tween the two devices tested but in this case fine-grained differences
are apparent. If this test were run over a commodity wide area net-
work like cable or over a local wifi connection it would clearly show
the effects of congestion in the former and hardware in the latter. See
[9] for a comparative “Evaluation of Network Music Technology on
Public and Private Networks.”

Figure 1: A comparison of regularity of streams transmitted by an
rp3B+ (red) and a Lenovo P51 i7 laptop (grey). The Y-axis shows
the inter-packet intervals in ms of packets arriving at a jacktrip host
which logged approximately 25k packets over 60 seconds. Nominal
period (blue line) is 2.67ms (128 samples / packet at 48kHz sample
rate). Black line corresponds to maximum input buffer latency (-q 2
is shown).

7. THE LAC DEMO: A WAVEGUIDE MESH SYNTH USING
RASPBERRY PI’S

An ensemble of Rapsberry Pi’s was tethered in common to an iso-
lated LAN. They were remotely operated via SSH login from the
demo laptop which connected them to each other to create a stream-
ing waveguide mesh configuration.

Figure 2: Irregular waveguide meshes of arbitrary complexity can
be made with network nodes running jacktrip. Reprinted from [10],
“Portion of a digital waveguide network, and enlarged views of its
principal components: (a) a bidirectional delay line, of delay dura-
tion T and admittance Y (accepting two waves v and v output from
scattering junctions, delaying them, and producing two waves v and
v each of which is then incident on a scattering junction); (b) a scat-
tering junction connected to five waveguides of admittances Y ; ... ;
Y , (accepting, in this case, five input waves v ; ... ; v , and yielding
five output waves v ; ... ; v); and (c) a self-loop.”

Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019

The demo was inspired by the concept of irregular digital waveg-
uide networks, such as shown in Figure 2 (reprinted from [10]). Ar-
bitrary meshes can be created of nodes interconnected by bi-directional
streams. The sound that results is a resonant object that when im-
pulsed or otherwise excited rings in more or less complex ways de-
pending on the topology chosen. The simplest 3-node structure con-
sists of a central scattering node junction (a jacktrip server running
-S) with two edge nodes connected to it (jacktrip clients running -C).
Audio arriving at the edge nodes from the server is looped back to it
and the server itself implements a 2-port scattering junction by sum-
ming both incoming streams, attentuating the result and sending that
signal to the clients. At least one of the edges includes a low-pass fil-
ter in its loopback path. The nodes are operating in a hub-and-spoke
topology described in [8].

8. REFERENCES

[1] Chris Chafe, Scott Wilson, and Daniel Walling, “Physical
model synthesis with application to internet acoustics,” in Proc.
2002 Intl. Conference on Acoustics, Speech and Signal Pro-
cessing. 2002, pp. IV–4056–IV–4059, IEEE.

[2] Juan-Pablo Cáceres and Chris Chafe, “Jacktrip: Under the
hood of an engine for network audio,” J. New Music Res., vol.
39, no. 3, pp. 183–187, 2010a.

[3] Cristina Rottondi, Chris Chafe, Claudio Allocchio, and Au-
gusto Sarti, “An overview on networked music performance
technologies,” IEEE Access, vol. 4, pp. 8823–8843, 2016.

[4] Florian Meier Marco Fink and Udo Zoelzer, “The jam-
berry - a stand-alone device for networked music per-
formance based on the raspberry pi,” in Linux Au-
dio Conference, May 2014 (accessed February 18, 2019),
http://lac.linuxaudio.org/2014/papers/6.pdf.

[5] Scott Kahn, MusicianLink jamLink, 2012 (accessed February
18, 2019), https://musicplayers.com/reviews/l
ive_sound/2011/1111_jamLink.php.

[6] Koen Vos Jean-Marc Valin and Timothy B. Terriberry, “Defini-
tion of the opus audio codec,” Internet Engineering Task Force,
vol. RFC 6716„ 2012.

[7] Chris Chafe, “I am streaming in a room,” Frontiers in Digital
Humanities, vol. 5, pp. 27, 2018.

[8] Juan-Pablo Cáceres and Chris Chafe, “Jacktrip/soundwire
meets server farm,” Computer Music Journal, vol. 34, no. 3,
pp. 29–34, 2010b.

[9] Trevor Henthorn Chris Chafe and Sarah Weaver, “Evalua-
tion of network music technology on public and private net-
works,” in NowNet Arts Conference, 2018 (accessed Febru-
ary 18, 2019), https://ccrma.stanford.edu/~cc/
deck.js/nownet2018performanceData/.

[10] Stefan Bilbao and III Julius O. Smith, “Finite difference
schemes and digital waveguide networks for the wave equation:
Stability, passivity, and numerical dispersion,” IEEE Transac-
tions on Speech and Audio Processing, vol. 11, no. 3, pp. 255–
266, 2003.

https://musicplayers.com/reviews/live_sound/2011/1111_jamLink.php
https://musicplayers.com/reviews/live_sound/2011/1111_jamLink.php
https://ccrma.stanford.edu/~cc/deck.js/nownet2018performanceData/
https://ccrma.stanford.edu/~cc/deck.js/nownet2018performanceData/

	1 Introduction
	2 HowTo
	2.1 Running jacktrip on a fully-prepared rp3B+ (it's just the usual)

	3 Installing Fedora 29
	3.1 download the image for arm7 (using another computer)
	3.2 flash it to a microSD card (using another computer)
	3.3 insert flash, boot the rp3B+
	3.4 resize the 4.7G partition
	3.5 install build tools, libraries, utilities and applications

	4 Preparing jacktrip
	4.1 download, build and install the latest version of jacktrip
	4.2 open the UDP port
	4.3 configure the rest of the environment

	5 Replicating and Maintaining
	5.1 replicating the image to another microSD card

	6 Testing Results
	7 The LAC demo: a waveguide mesh synth using Raspberry Pi's
	8 References

