Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

BROWSER-BASED SONIFICATION

Chris Chafe

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University, USA
cclccrma.stanford.edu

ABSTRACT

TimeWorkers is a programming framework for coding sonification
projects in JavaScript using the Web Audio API. It is being used for
sonification workshops with scientists, doctors, and others to facil-
itate ease of use and cross-platform deployment. Only a browser
and text editor are needed. Using Free and Open-source Software
(FOSS) the system can run standalone since No Internet is Required
for Development (NIRD). Workshop participants rapidly master prin-
ciples of sonification through examples and are encouraged to bring
their own datasets. All mapping code is contained in a project’s
.html landing page. A single generator function iterates over the
project’s data series and provides a fine-grained interface to time-
varying sound parameters. This loop and its internals are patterned
after similar constructions in the Chuck language used by the author
in earlier sonification tutorials.

1. INTRODUCTION

Sonification shares much with other kinds of computer music mak-
ing including the wide range of programming tools which can be
used. Sonification also shares in the kinds of decisions found in pho-
tography and soundscape recording. Gathering, selecting, framing
and contrast enhancement are a part of working with material from
the (outside of music) outside world. On the other hand, another
key part of creating a sonfication, mapping, has affinities with al-
gorithmic composition. TimeWorkers is a browser-based software
framework described in this paper which, while not limited to sonifi-
cation, provides in it’s initial rollout functional support for decisions
specific to such work.

Specialized programming languages have evolved and continue
to evolve which are custom-designed to express musical relation-
ships, especially timing and concurrency. I’ve used several over the
course of composing computer music with succeeding generations
of hardware platforms, for example, Pla[1]], MIDILisp[2], Common
Music[3] and Chuck[4], all of which are examples of computer mu-
sic languages with ways of programmatically expressing organiza-
tion of sound in time.

TimeWorkers is written in JavaScript and provides a readily avail-
able computation environment for my sonification workshops. To
give a glimpse of what will be explained later in detail, the name
comes from its use of the Web Worker API[5] for composing musical
layers or voices which unfold in time. The software uses browsers’
existing means for sound generation, in this case the built-in com-
puter music capabilities of the Web Audio API[6]. The added func-
tionality provided by TimeWorkers provides ways to compose higher-
level aspects of musical timing and texture.

Stepping back for a moment, it’s worth reflecting on how com-
puters and music have been mingling their intimate secrets for over
50 years. These two worlds evolve in tandem and where they in-
tersect they spawn practices that are entirely novel. One of these is

sonification, the practice of turning raw data into sounds and sonic
streams to discover new relationships within the dataset by listening
with a musical ear. This is similar to exploring data visualization
with strategies made for the eye to reveal new insights from data
using graphs or animations. A key advantage with sonification is
sound’s ability to present trends and details simultaneously at multi-
ple time scales, allowing us to absorb and integrate this information
the same way we listen to music.

Kramer, et al.’s prescient Sonification Report [7] (2010) merits
quoting here at length and will be revisited in the conclusion sec-
tion. The paper identified “three major issues in the tool develop-
ment area that must be tackled to create appropriate synthesis tools
developed for use by interdisciplinary sonification researchers.” The
TimeWorkers framework addresses some (but not all) of the follow-
ing points.

“Portability: Sonification scale places demands on audio hard-
ware, on signal processing and sound synthesis software, and on
computer operating systems. These demands may be more stringent
than the requirements for consumer multimedia. Researchers deal-
ing with problems that go beyond the limits of one system should be
able to easily move their sonification data and tools onto a more pow-
erful system. Thus, tools must be consistent, reliable, and portable
across various computer platforms. Similarly, tools should be capa-
ble of moving flexibly between real- time and nonreal-time sound
production.”

“Flexibility: We need to develop synthesis controls that are spe-
cific and sophisticated enough to shape sounds in ways that take ad-
vantage of new findings from perceptual research on complex sounds
and multimodal displays and that suit the data being sonified. In ad-
dition to flexibility of synthesis techniques, simple controls for alter-
ing the data-to-sound mappings or other aspects of the sonification
design are also necessary. However, there should be simple ‘default’
methods of sonification that allow novices to sonify their data quick
and easily.”

“Integrability: Tools are needed that afford easy connections to
visualization programs, spreadsheets, laboratory equipment, and so
forth. Combined with the need for portability, this requirement sug-
gests that we need a standardized software layer that is integrated
with data input, sound synthesis, and mapping software and that fa-
cilitates the evaluation of displays from perceptual and human fac-
tors standpoints.”

2. USING THE FRAMEWORK

Meant to be very hands-on, my 2-hour workshops ask the partici-
pants to bring their own laptop and headphones. I first take them
through a simple example which has a been an early “etude” assign-
ment in my course, “Computer Music Fundamentals ”’[8]], taught at
Stanford’s CCRMA. The goal is to get students to start working with
their own datasets as soon as possible and get them exploring a range

https://ccrma.stanford.edu/~cc
mailto:cc@ccrma.stanford.edu

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

of sonifications through experimentation.

A dataset to play with can be scouted out by searching the web
and copied or exported from a spreadsheet or other format. For
starters, it’s simply a single column of numbers in plain text. The

range of values doesn’t matter because it will be automatically rescaled

when read by the framework’s file input layer. In my own develop-
ment work, examples and code repository are all linux-based and
other operating systems work equally well.

2.1. Basic Sonfication How-to
2.1.1. What you’ll need

The browser can be a recent version of Firefox, Chromium, Chrome,
or Edge. A simple text editor like Gedit is all that’s required for
developing the code and preparing an ASCII data file.

2.1.2. Testing the demo

Open the demo URL https://ccrma.stanford.edu/~cc/
sonify]to see a page that looks like Figure[I] There’s a default
time series “tides.dat” that can be played by clicking on the demo
icon (the small globe is a button).

M basic sonification example X | +

stanford.edu

Drag a data file from
your desktop here to
play it in the browser

tides demo w
click to play data/tides.dat

Figure 1: An example page with options for playing a default time
series or dragging in a data file.

Alternatively, a data file can be dragged from the desktop onto
the page to sound it with the same preset sonification parameters.

The demo was created by Chris Hartley, a biologist who par-
ticipated in the first workshop (in 2016) at the University of British
Columbia. In it, “You can hear the rising and then falling chirp-
chirp-chirp of the major high tides, which get highest at the new
and full moons, and then the slightly lower trill of two roughly equal
high tides per day, which occurs during the quarter moons.” Hart-
ley’s sonfication plays a year’s worth of tidal data at a fast rate using
a sine tone.

After starting the demo or after loading a data file the stop and
play buttons on the web page become activated, Figure 2]

2.1.3. Modifying the demo

To practice modifying the demo, a good first goal is to make the rate
of running through the data much slower. To accomplish this, we’ll
make a local copy of the demo, test it and then edit it.

Gotoitsrepository https://cm—gitlab.stanford.edu/

cc/sonify|and download a snapshot. The downloaded .zip file

[basic sonification example X | +

<2 C @]

stanford.edu

I number-of-earthquakes-
per-year-m.dat

L-.§ _____ ;

Figure 2: Stop and play buttons become activated after starting the
demo or dragging in a data file.

will have a long name that depends on the version. Extract the con-
tents of the .zip file and open its index.html file in a browser (use
Firefox because it will allow the demo to run as a local file without
manual intervention).

This will allow you to test the local copy of the landing page in
a browser and make sure it’s working identically to the version on
the workshop’s web server. If it’s all good, then the local copy of the
landing page can be opened in a text editor. Search for the line

let dur = 0.005
and assign a new value, for example:

function* sonify(data) {
let dur = 0.05
// duration between data points in seconds

Save the modification in the text editor and then refresh the browser

page to load the changed file. The example can then be played as be-
fore but the rate will now be 10z slower.
Further modifications are quickly explored with the same work
flow of edit-save-refresh-play. For example, in the mapping function
map (v)
where, for a given value of v, sound parameters are determined for
pitch and loudness (respectively, kn in MIDI key number units and
db in a decibel range from —100 to 0). These in turn are used to
calculate values which will be applied to the sine tone’s frequency
(H z) and amplitude (range 0.0 to 1.0):

function map (v) {
let kn = 60 + v % 40
let £ = mtof (kn)
let db = =30 + v » 10
let a = dbtolin (db)
return {pit: £, amp: a}

map (v) returns pitch frequency and loudness amplitude in an
object created by an object initializer. Its argument, v, is expected
to lie in the range 0.0 to 1.0. In a hidden step which happens when
the data is loaded, the data series has been automatically normalized
to this range. map (v) is set so that the lowest data value will be
sounded at Middle-C (MIDI key number 60) and the highest will be
3 Octaves and a Major Third above. Intermediate values will be lin-
early interpolated across key number values (using fractional quanti-
ties, in other words, not quantized to integer key numbers). Code for

https://ccrma.stanford.edu/~cc/sonify
https://ccrma.stanford.edu/~cc/sonify
https://cm-gitlab.stanford.edu/cc/sonify
https://cm-gitlab.stanford.edu/cc/sonify

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

the utility functions mtof and dbtolin, respectively for conver-
sion from MIDI key number to frequency in H z and d B loudness to
amplitude, have been borrowed from Hongchan Choi’s Web Audio
API Extension (WAAX) project [9].

The sonify generator function sets a new target pitch when pro-
cessing each new data value and starts a glissando (a smooth fre-
quency ramp) to reach the target pitch in the length of time specified
by the data update period, dur. The ramp is a linear function which
updates the sine tone’s frequency each audio sample. Amplitude is
smoothly modulated in the same way.

The complete sonify generator function for this example is listed
below and includes a definition of the sound source along with a
mechanism for applying updates to its parameters. The new func-
tion Sin (timeWorker) instantiates a SinOsc and several meth-
ods which start the oscillator, apply parameter updates to it and stop
it. After instantiation as a local object s, it is initiated with the first
values from the mapping function and a gain of 0. Ramps are set
in motion and the process pauses until they reach their targets with
yield dur after which the loop continues and cyclically churns
through each data point until all have been “performed.” The last
few lines ramp the oscillator to 0 and then stop and finish.

function* sonify(data) {

let dur = 0.005

let datum = data.next ()

function map (v) {
let kn = 60 + v * 40
let £ = mtof (kn)
let db = =30 + v » 10
let a = dbtolin (db)
return {pit: £, amp: a}

}

function Sin (timeWorker) {
let s = new SinOsc (timeWorker)
s.start ()
this.setPit = function(freq) { s.freqg(

freq) }

this.setAmp = function(gain) { s.gain(
gain) }

this.rampPit = function (freq,dur) { s.
freqTarget (freqg,dur) }

this.rampAmp = function(gain,dur) { s.
gainTarget (gain,dur) }

this.stop = function() { s.stop() }

this.ramps = function (f,a,d) {

this.rampPit (£, d)
this.rampAmp (a,d)

}
let sin = new Sin(this)
if (withFFT) postMessage ("makeFFT ()")
let params = map (datum.value)
sin.setPit (params.pit)
sin.setAmp (0)
while (!datum.done) {
sin.ramps (params.pit, params.amp, dur)
yield dur
if (withSliderDisplay) postMessage ("
movelD ("+datum.value+")")
if (withChart) postMessage ("move2D()")
datum = data.next ()

params = map (datum.value)
}
sin.rampAmp (0,0.1)
yield 0.1
sin.stop ()
postMessage ("finish () ")

Workshop discussions are mostly focused on customizing the
above code and demonstrating extensions described later in this re-
port. What follows in the next section is a discussion of the Time-
Workers framework “under the hood.” This can be skipped if one’s
main interest is in customizing sonifications rather than digging into
the underlying system.

3. PROGRAMMING STRUCTURE AND SUPPORTING
FUNCTIONS

The framework has no dependencies. It is a lightweight project
which is Free Open-source Software (FOSS) and has the additional
feature of No Internet Required for Development (NIRD). Work-
shops and individual work are equally possible online and offline, for
example, during field work with no connectivity. A project’s .html
landing page loads a single associated script file, engine.js, which
contains all supporting functions. Files and modules are shown schemat-
ically in Figure[3]

index.html engine.js
landing page supporting functions
defines sonify
loop

sine J

generator

Ul elements Audio context

- -
I |
|

tides.dat I

[|
data file

Fl

Worker thread
runs sonify loop

Figure 3: Structure and modules.

The project landing page sets up web-related configurations, spec-
ifies the user interface (UI), loads the script file, engine.js, and is
where the sonification is “composed.” Various “hardwired” globals
need to be declared which will be communicated to the script file, in-
cluding a default value for dataFileName. Likwise, the script file
expects a “hardwired” generator function with the name sonify
(which should be defined using JavaScript’s function* syntax [[10]).

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

Table 1: project files

web landing page

supporting script

index.html

engine.js

Table 2: index.html elements

| <head> [<body> [<script> ‘
<meta> specifies metadata configures Ul elements sets global and local variables
(optional) <script> loads any auxiliary script files | (options to hide or expose) loads engine.js
e.g., graphing library e.g., drag and drop must define function* sonify(data)

Table 3: engine.js tasks, classes (and optional functionality)

| set locals [polish UIL [specify web worker(s) [set up spork mechanism [define DSP ugens
audio context | check browser capabilities WorkerThread Timelterator e.g., SinOsc
data source get UI elements uses inline definitions play / stop e.g., FM
timing cushion set UI element states (add graphing capability) nextEventAt uses setValueAtTime,
worker arrays (add drag and drop) (connect real-time Ul elements) uses async / await linearRampToValueAtTime

This function instantiates any unit generators (ugens) it will be us-
ing, for example with

new SinOsc (timeWorker)
as shown above, and specifies data-to-sound parameter mappings
which unfold through time.

For brevity’s sake the script file, engine.js, is not reproduced here
but can be found in js/ subdirectory of the project repository[11].
This script provides the TimeWorkers structure through its class def-
initions, functions and own variable settings. Any special tokens
which are referenced by the sonify generator function, e.g. SinOsc
will be resolved against what is defined or declared in the global
scope after engine.js has been loaded.

The script file contains several parts. Setting local variables, pol-
ishing the Ul and a system for “performing” sonifications composed
with the sonify generator function.

A WorkerThread interface sets up and runs this time-sensitive
apparatus in separate threads. The Timelterator class provides a
mechanism which waits between events in the sonify generator’s
loop and compensates for timing jitter. It uses the performance
.now () clock to compare real time with expected logical time. Fi-
nally, the ugen part of the script file defines any synthesis or DSP
patches which are used.

var context

is declared to hold the window.AudioContext which gets instantiated
at sound start and closed at sound stop,

var workerThreads = []
is the array containing the pool of WorkerThread instances and
var uwta = []

is a multi-dimensional array (whose name is shorthand for “ugen-
WorkerThreadsArrays”) that contains the set of all ugens in all Work-
erThreads.

A programming pattern often used in sonification in the Chuck
language [4]] has two aspects. The first is the spork function which
calls a given function in a parallel, separate thread with its own
logical timebase. (A child process spawned by a sporked function
can also spork its own child processes.) The second construct is a

means for looping over data, in Chuck this is usually a while loop
where event time advances each iteration. The loop executes in its
own thread. The present framework supports both features using its
WorkerThread and Timelterator constructs.

When makeWorkerThread (Table[I) creates a new instance,
the spawned JavaScript Worker [[12] is of a special inline type (as op-
posed to the more common type which is usually created by loading
a dedicated script file).

var blob = new Blob([script])
var worker = new Worker (URL.createObjectURL (
blob))

The script passed into the new Blob sets up a mechanism for dynamic
object definition. It calls addEventListener on the new worker
and sets how the worker will handle incoming messages. By telling
it to handle them with an eval (in the global scope), the worker’s
set of variables and functions is literally “grown” by posting message
strings to be evaluated which contain the desired definitions and set-
tings. One of these, for example, is the sonify function defined back
in the landing page. Dynamically defining timeWorkers in this way
allows the sonify function to also spork processes which will become
its own new child workers each of which runs in a separate thread.

The spork function itself instantiates a time-sensitive data iter-
ator with makeTimeIterator. A Timelterator will pause a gen-
erator for a given duration with its method next EventAt () which
is an async function utilizing JavaScript’s async / await ([13]]) paus-
ing functionality. When sporked, a sonify generator’s loop is started
with nextEventAt ("start") that executes its first cycle. A
subsequent yield in the sonification loop will set the amount of
time to pause on the next call to nextEventAt (which calls itself
recursively) and the loop continues.

In the definition below, £ star is the sonify generator defined in
the landing page and args contains a data iterator with the provided
data series (which has had its range normalized).

function spork(fstar, ...args) {
let ti = makeTimelIterator ()
ti.sporkScript = fstar.apply(ti, args)
ti.nextEventAt ("start")

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

To reiterate, calling spork with both a sonify generator and a
Timelterator containing the data as shown

spork (sonify,data)

will create a pattern comparable to a Chuck-based sonification which
consists of essentially the same parts: spork a new thread which sets
up a sound source and mapping strategy, and then loops through a
conditioned data series, pausing after each data point.

In Chuck, pausing is written using the syntax

dur => now;
whereas the TimeWorkers equivalent uses
yield dur

A yieldin the sonify generator loop invokes a JavaScript Promise
in the Timelterator object whose set Timeout is set to the duration
to await.

3.1. SinOsc ugen example

Custom ugens comprise patch definitions made with the Web Audio
API’s audio nodes. The makeSinOsc example shown here instanti-
ates an oscillator with gain control using the API’s createOscillator()
and createGain() methods[6].

function makeSinOsc ()

{

let o = context.createOscillator ()
let g = context.createGain()
o.type = "sine"

o.frequency.value = 440
g.gain.value = 0.1

o.connect (g)

g.connect (context.destination)
g.connect (dac)

return { osc:o0, gain:g }

The object gets instantiated in a wrapper called SinOsc which
when instantiated itself with new also includes methods to alter its
parameters, for example, by changing its frequency with the follow-
ing custom freq () method:

freq: function (hz) {
let n = this.dsp
postMessage (ugens+" ["+n+"] .osc.
frequency.setValueAtTime ("+hz+",
"+ (myThread.nowtcushion)+")")

}

this.dsp refers to the ugen itself which is held in the main
thread’s array ugens []. The message posted to the main thread
looks up the osc field of the ugen and changes its frequency using
the Web Audio API's setValueAtTime (which corresponds to
the worker thread’s “now” plus a constant offset). A full ugen def-
inition comprises instantaneous setters for all parameters, as well
as custom time-varying envelopes, for example made with the Web
Audio API’s 1inearRampToValueAtTime. Note that the patch
code also includes a connection from the patch’s summing point to a
global summing point called dac.

Different sound sources can be made available by expanding the
library of ugens defined in engine.js. Each would comprise a “make
the patch” portion and a wrapper (with the ugen name) which in-
cludes the set of parameter altering methods.

3.2. FM patch

For example, a simple two-oscillator FM patch could look like the
following:

function makeFM ()

{
let mod = context.createOscillator ()
let modGain = context.createGain ()
mod.type = "sine"
mod.connect (modGain)
let car = context.createOscillator ()
let g = context.createGain ()
car.type = "sine"
modGain.connect (car.frequency)
car.connect (g)
g.connect (context.destination)
g.connect (dac)
let cFreqg = 2200
let index = 33

let mRatio = .1

modGain.gain.value = cFreq * index
mod. frequency.value = cFreqg * mRatio
car.frequency.value = cFreq
g.gain.value = 0.1

return { osc:car, gain:g, mod:mod, modGain:
modGain }

All ugens need to be accessible in the timeWorker thread in
which the sonify loop is running. A last step, then, in ugen creation
is to add the ugen wrapper, for example FM, to the list of functions
which gets dynamically installed inline when a new WorkerThread
is instantiated.

4. EXTENSIONS

Changing the sound source, sounding multiple time series and adding
graphing capabilities are extensions which complement the basic ex-
ample described above[2}

4.1. Voicing

Changing to a more interesting sound source is possible in the sonify
generator itself. This approach relies on combinations of ugens de-
fined in the engine.js script. Where the basic example uses a single
SinOsc ugen as its instrument, the example here demonstrates ad-
ditive synthesis built by summing multiple sines which are harmon-
ically tuned. The new instrument Harmonics is defined directy
within the sonify generator.

function Harmonics (nSins, timeWorker) {
this.sins = new Array
for (let i = 0; i < nSins; i++) this.sins.
push (new SinOsc (timeWorker))
this.sins.forEach (function(x) { x.start ()
})

function fi(f,i) { return fx (i+1) }

function ai(a,i) { let h = (i+l); let odd =
(h%2) ? a ax0.1l; return odd/h }
this.setPitch = function(freq) { this.sins.

forEach (function(x,1) {x.freq(fi(freq,

i)y)N}

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

this.setGains = function(gain) { this.sins.
forEach (function(x,1i) {x.gain(ai(gain,
i))1}

this.freqTarget = function (freq,dur) { this
.sins.forEach (function(x,1i) {x.
freqTarget (fi(freq,i),dur) }) }

this.gainTarget = function(gain,dur) { this
.sins.forEach (function(x,i) {x.
gainTarget (ai(gain,i),dur) }) }

this.stop = function() { this.sins.forEach(
function(x) {x.stop()}) }
this.ramps = function (f,a,d) {

this.freqTarget (f,d)
this.gainTarget (a,d)

}

One of these instruments is then instantiated in the sonfication loop,
for example, with

let vox = new Harmonics (8,this)

to create an harmonic series of 8 SinOscs. Given a pitch frequency f
function fi (£, i) sets their tunings. Amplitude relationships
in function ai(a,i) create a clarinet-like structure favoring
odd harmonics. A convenience function ramps is provided which
applies frequency and amplitude updates to the entire additive syn-
thesis patch.

The following set of extensions are turned on or off with flags in
the index.html file. By default, the withDemo flag is set. Only one
option is allowed at a time, so remember to set

withDemo = 0

before exploring these others.

4.2. Polyphony from multiple data series

Multiple time series are interesting to sonify at the same time, for
example, to hear correlations by ear. Data can be input from two or
more separate data files as in this example which combines monthly
USA gross domestic product (GDP) from 1969 to 2016 and global
CO; level for the same period. The curves shown in Figure] have
been normalized to the same range.

GOP (red), CO? (green)

o " .
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
vear

Figure 4: GDP and CO.

The example landing page, index.html, has a provision for hear-
ing these two playing together, as two independent musical voices.
Change the state of withDemo and this flag for this to take effect:

withTwoFiles = 1

Two data files will now be specified and will spawn two Time-
Worker threads both using the single sonify generator as defined. In

this example, one can hear details like the 2008 financial downturn
and the seasonal flux in global CO,. Overall, the two quantities fol-
low a coincident rising trend.

4.3. Animated Chart

Similar to the interest in multi-modal data presentation described in
[[14], sonification in the present framework can be combined with
graphing. Chart.js is a FOSS project for interactive plotting in the
browser and is integrated into the project by loading a single script
file (which can be locally sourced for creating a NIRD environment).

Again, the example landing page, index.html, has a provision for
demonstrating this extension by changing withDemo and this flag:

withChart = 1

() n o %

Sound and Animation (15 seconds):
Running

Sea Ice Concentrations from
NSIDC Passive Microwave Data
(1979 -2015)

Figure 5: Simultaneous sound and graph of Arctic Sea Ice Minimum
per year.

Playing the sonification in Figure [5] animates the black dot on
the curve. Syncronized sound and animation is accomplished with
postMessage ("moveGraph () ") inside the loop in the sonify
generator. Each successive call advances the black dot to the next
data point in an array of 2D data points that was input from a multi-
column data file (columns are year and value).

4.4. Real-time FFT display

Likewise, change withDemo and the following flag in the example
landing page, index.html, and the sonification’s audio output will be
displayed as a time-varying spectrum.

withFFT = 1

An FFT analyzer computes the spectrum of the global summing
point dac in real time.

5. CONCLUSIONS

A 40+ year tradition has evolved a well-known pattern for sequenc-
ing scores and real-time synthesis in languages like Pla[1], Com-
mon Music[3]], Chuck[4] and others. The sonify generator’s loop is
a descendant written in JavaScript. Running in the browser, it al-
lows flexible programming using the full power of the language and
can be rapidly experimented with on any browser-equipped system.

Proceedings of the 17" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

Table 4: TimeWorkers framework in terms of goals suggested by Sonification Report [|]

[atribute | goal [now | soon | never |

Portability | consistent X

Portability | reliable X

Portability | portable across various computer platforms X

Portability | moving between real-time and non-real-time sound production X

Flexibility | simple controls for altering the data-to-sound mappings X

Flexibility | simple “default” methods of sonification that allow novices to sonify their data quick and easily X
Integrability | easy connections to visualization
Integrability | easy connections to visualization programs, spreadsheets, laboratory equipment
Integrability | standardized software layer

Sonifications created using the framwork run equally well on mobile
and other smaller systems.

Pla’s voices are analogous to sonify generator loops because they
constitute groups of time-ordered events which can themselves be
voices (recall that spork-ed child threads can spork their own chil-
dren). Other pertinent features of Pla also have bearing on the present
framework (these are distilled a 1983 description): “Higher levels of
musical control are implemented as voices and sections ...” ““...notes
that somehow belong together are grouped under the rubric of a
voice.” “Arbitrarily large groups of voices can be organized into a
section, which then becomes nearly equivalent to a voice.” “Another
kind of grouping is based on voices... voices can create other voices
to any level of nesting.”

Common Music’s similar features involve multiple types: “Thread
— A collection that represents sequential aggregation. A single time-
line of events is produced by processing substructure in sequential,
depth-first order.” “Merge — A collection that represents parallel ag-
gregation, or multiple timelines. A single timeline of events is pro-
ducted by processing substructure in a scheduling queue.” “Algo-
rithm — A collection that represents programmatic description. In-
stead of maintaining explicit substructure, a single timeline of events
is produced by calling a user-specified program to create new events.”

The TimeWorkers framework described here offers a way to con-
struct the above relationships in browser-based platforms and offers
solutions for some, but not all of the goals cited in Sonification Re-
port [1]]. Table[dlists the boxes it checks off.

In the future, faster-than-sound soundfile writing will be directly
supported though for now, file output is only by browser sound cap-
ture plug-ins (which run in real time). Faster-than-sound is a highly-
desirable feature and is something that’s been supported in both Com-
mon Music and Chuck. Regarding the former, ‘“Realization in Com-
mon Music can occur in one of two possible modes: run time and
real time. In run-time mode, realized events receive their proper
"performance time stamp,” but the performance clock runs as fast
as possible. In real-time mode, realized events are stamped at their
appropriate real-world clock time.” For the latter, Chuck’s “silent
mode” is the equivalent.

The recently standardized AudioWorklet [15ﬂwi11 be integrated
into the framework in the coming months. Of particular interest is
another recently proposed enhancement to Web Audio to support
multi-channel output.

Also for the future, direct real-time sonification from live sensor
data can be contemplated. This important feature opens up appli-

' As of this writing, only the Chromium browser family supports Au-
dioWorklet. It is expected soon in Firefox at which point the integration work
will commence.

cations such as bio-feedback [16]] or other kinds of feedback such
as providing real-time ‘“cracking” sounds to operators of fracking
pumps (where presently feedback is provided after the fact and one
can imagine the problems resulting from the over-stimulation of shale
gas wells). It has become vital in medical applications, even making
inroads on traditional treatment practices in cases where listening
to data provides equal or better sensitivity and specificity compared
to visual means. The brain stethoscope, for example, allows rapid
detection of non-convulsive seizures by non-specialists. [[17]]
Interest in sonification is burgeoning as sensors and data collec-
tions become an increasingly ubiquitous part of daily life. Employ-
ing well-known sound generation techniques from computer music,
sonification can play a role in the work of domain experts and stu-
dents in sciences and arts, as well as for general communication.

6. REFERENCES

[1] Bill Schottstaedt, “Pla: A composer’s idea of a language,”’
Computer Music Journal, vol. 7, no. 1, pp. 11-20, 1983.

[2] David Wessel, Pierre Lavoie, Lee Boynton, and Yann Orlarey,
“Midi-lisp: A lisp-based programming environment for midi
on the macintosh,” in Audio Engineering Society Conference:
Sth International Conference: Music and Digital Technology,
May 1987 (accessed February 2, 2019), http://www.aes.org/e-
lib/browse.cfm?elib=4659.

[3] Heinrich Taube, “An introduction to common music,” Com-
puter Music Journal, vol. 21, no. 1, pp. 29-34, 1997.

Ge Wang, Perry R. Cook, and Spencer Salazar, “Chuck: A
strongly timed computer music language,” Computer Music
Journal, vol. 39, no. 4, pp. 10-29, 2015.

[5] Moz://a MDN web docs, Using Web Workers, 2019 (accessed
February 6, 2019), https://developer.mozilla.
org/en-US/docs/Web/API/Web_Workers_API/
Using_web_workers.

[6] Moz://a MDN web docs, Web Audio API, 2018 (accessed
December 16, 2018), https://developer.mozilla.
org/en-US/docs/Web/API/Web_Audio_API.

[7] Bruce Walker Terri Bonebright Perry Cook Kramer, C.
and John H. Flowers, Sonification Report: Status of the
Field and Research Agenda, 2018 (accessed December
16, 2018), http://digitalcommons.unl.edu/
psychfacpub?utm_source=digitalcommons.
unl.edu%2Fpsychfacpub%$2F444s&utm_medium=
PDF&utm_campaign=PDFCoverPages.

[4

—

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
http://digitalcommons.unl.edu/psychfacpub?utm_source=digitalcommons.unl.edu%2Fpsychfacpub%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/psychfacpub?utm_source=digitalcommons.unl.edu%2Fpsychfacpub%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/psychfacpub?utm_source=digitalcommons.unl.edu%2Fpsychfacpub%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/psychfacpub?utm_source=digitalcommons.unl.edu%2Fpsychfacpub%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

[8] Chris Chafe, Music 220A, 2019 (accessed February 6, 2019),
https://ccrma.stanford.edu/courses/220a/.

[9] Honchan Choi, Web Audio API eXtension, 2019 (accessed Jan-
uary 28, 2019), http://hoch.github.io/WAAX/.

[10] Moz://a MDN web docs, Iterators and genera-
tors, 2018 (accessed December 16, 2018), https:
//developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Iterators_and_Generators.

[11] Chris Chafe, project software repository, 2018 (accessed De-
cember 16, 2018), https://cm-gitlab.stanford.
edu/cc/sonifyl

[12] Moz://a MDN web docs, Worklet, 2018 (accessed Decem-
ber 16, 2018), https://developer.mozilla.org/
en-US/docs/Web/API/Workletl

[13] Moz://a MDN web docs, async function, 2018 (accessed
December 16, 2018), https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/
Statements/async_function.

[14] Tianchu (Alex); Tomlinson Brianna; Walker Bruce N. Kondak,
Zachary; Liang, “Web sonification sandbox - an easy-to-use
web application for sonifying data and equations,” Proceedings
of 3rd Web Audio Conference, 2017.

[15] Hongchan Choi, Audio Worklet Design Pattern,
2018 (accessed December 16, 2018), https:
//developers.google.com/web/updates/2018/
06/audio-worklet-design-pattern,

[16] Jan-Torsten Milde Baumann, Christian and Johanna Friederike
Baarlink, Body Movement Sonification using the Web Au-
dio API, 2018 (accessed December 16, 2018), https:
//webaudioconf.com/demos—and-posters/
body-movement-sonification-using-the-web-audio-api/|

[17] Josef Parvizi, Kapil Gururangan, Babak Razavi, and Chris
Chafe, “Detecting silent seizures by their sound,” Epilepsia,
vol. 59, no. 4, pp. 877-884, 2018.

https://ccrma.stanford.edu/courses/220a/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://cm-gitlab.stanford.edu/cc/sonify
https://cm-gitlab.stanford.edu/cc/sonify
https://developer.mozilla.org/en-US/docs/Web/API/Worklet
https://developer.mozilla.org/en-US/docs/Web/API/Worklet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developers.google.com/web/updates/2018/06/audio-worklet-design-pattern
https://developers.google.com/web/updates/2018/06/audio-worklet-design-pattern
https://developers.google.com/web/updates/2018/06/audio-worklet-design-pattern
https://webaudioconf.com/demos-and-posters/body-movement-sonification-using-the-web-audio-api/
https://webaudioconf.com/demos-and-posters/body-movement-sonification-using-the-web-audio-api/
https://webaudioconf.com/demos-and-posters/body-movement-sonification-using-the-web-audio-api/

	1 Introduction
	2 Using the Framework
	2.1 Basic Sonfication How-to
	2.1.1 What you'll need
	2.1.2 Testing the demo
	2.1.3 Modifying the demo

	3 Programming Structure and Supporting Functions
	3.1 SinOsc ugen example
	3.2 FM patch

	4 Extensions
	4.1 Voicing
	4.2 Polyphony from multiple data series
	4.3 Animated Chart
	4.4 Real-time FFT display

	5 Conclusions
	6 References

