Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

A CROSS-PLATFORM DEVELOPMENT TOOLCHAIN FOR JIT-COMPILATION IN
MULTIMEDIA SOFTWARE

Jean-Michaél Celerier

SCRIME
Université de Bordeaux, France
jeanmichael.celerier@gmail.com

ABSTRACT

Given the relative stagnation in single-thread performance of many
processors in the recent years, made even worse by the recent security
findings such as SPECTRE or L1TF which led to restrictions in ex-
isting features and decreased performance for the sake of security, it
is necessary to find new ways to improve the run-time performance
of dynamic multimedia systems. In this paper, we present the in-
troduction of a just-in-time compiler in the ossia score interactive
score authoring and playback software. We discuss in particular the
creation of a toolchain and software development kit for C++ just-in-
time compilation on the three major desktop platforms, the challenges
and benefits caused by the use of C++ in terms of standard library
requirement, but also the benefits that the system offers in terms of
live-coding.

Keywords: interactive scores, just-in-time compilation, toolchains

1. INTRODUCTION

Users of multimedia software demand two features which can be hard
to reconcile. On one hand, they ask for more performance, the ability
to run more tracks, add more effects, etc. On the other hand, they
request more dynamic behavior, and easily extensible systems — in
particular, systems which do not require the user to write Makefiles and
set-up a compilation toolchain. But such a dynamic behavior generally
comes at a cost: for instance, Javascript, Lua or Python are often
integrated with media environments, such as Blender, ossia score,
and Renoise. These languages can have undesirable properties in low-
latency audio environments: they can cause spurious dynamic memory
allocations, which prevents real-time guarantees to be ensured.

Ongoing advances in just-in-time compilation can to some extent
reconcile these needs. The LLVM project (7] provides simple APIs
to integrate compiler and assembler in C++ software, through the
MCIIT and OrcJIT sub-libraries.

The benefits of just-in-time compilation have been known for
a long time [2] ; of particular interest to us is the ability of just-
in-time compilers to adapt to the exact CPU type available in the
user’s computer. This can lead to great performance improvements:
modern compilers are able to generate correctly vectorized code for
vector instruction sets, such as SSE, AVX, AVX-2, AVX-512 on x86-
based platforms, or Neon on ARM platforms. But in the traditional
compilation model, the author of the software has to know beforehand
for which instruction set the software shall provide optimized routines,
and either write them manually in assembler or with intrinsincs, use
compiler-specific extensions such as GCC’s function multiversioning
or resort to manual run-time dispatch to the correct function according
to detection of the user’s CPU. This leads to an increase in executable

Ihttps://1lwn.net/Articles/691932/

size for all the users of the software, and can be quite time-consuming
for the developer. Thus, we propose to leverage JIT compilation for
some of the most performance-critical parts of media software so that
they can be compiled in the most optimal way for the user’s CPU.

The proposed system simply compiles C++ code. This is in con-
trast with many approaches such as Faust [|11] for audio signal process-
ing, PostgreSQL [[13]] for improvement of the SQL query performance
or the language created by Avramoussis et al. for transformation of
geometry assets in the VDB format [1]. These systems all provide
custom domain-specific languages (DSL) to solve a well-defined task.
This has the advantage of freeing oneself from C and C++’s compli-
cated legacy and generally simplify the language semantics, but also
means that:

* A large amount of work must be provided by the new language
authors.

* The language won’t necessarily be subject to new advances
in compiler development unless its authors keep working on
it: while some optimization phases can occur at later stage
if leveraging an existing compiler framework such as LLVM,
some optimizations require actual knowledge of the language’s
semantics and thus cannot be applied generically to any DSL.

» The language may not be able to leverage the existing corpus
of libraries available in C and C++.

The system is integrated in the ossia score software |6, 4| for
media creation. Part of the motivation is to improve run-time perfor-
mance while live-coding: the software currently features a Javascript
engine which can be leveraged to provide new behaviors at run-time.
While it is one of the software’s user-base’s favorite features, it comes
at a cost: no real-time safety due to the Javascript engine performing
many memory allocations, and huge “context switch” costs between
the native code world, and the interpreted Javascript engine world.
The objective is to improve the run-time performance, while retaining
some of the properties provided by live-coding: for this, Thor Mag-
nusson gives the hard criteria that a live-coding language should not
take more than five seconds between code and sound [[10].

We will first give a brief overview of the OSSIA project, and
of the way just-in-time compilation is introduced into the system.
Then, we will give some pointers towards the creation of a cross-
platform toolchain which allows to support JIT compilation in the
three major desktop operating systems, Linux, macOS and Windows.
Some performance metrics will be discussed.

2. OSSIA PROJECT

ossia E] is an open-source software suite composed of a library (/i-
bossia) and a graphical user interface (ossia score) for managing

Zhttps://ossia.io/

https://scrime.labri.fr
mailto:jeanmichael.celerier@gmail.com
https://lwn.net/Articles/691932/
https://ossia.io/

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

communication, mapping and time-scripting between various soft-
ware in interactive multimedia artworks. This toolset is cross-platform
(Windows, macOS, Linux), cross-protocol (OSC, MID], ...). The
libossia library has been ported to many creative coding tools (Able-
ton, Max/MSP, PureData, VVVV, Touch Designer, OpenFrameworks,
Processing...). It simplifies connecting and controlling various digital
production software together. Its main goals are to facilitate the devel-
opment of time-centric interactive artworks and lower the barrier of
entry to interactive media creation and authoring for emerging artists.

The ossia score software’s execution engine is based on a dataflow
architecture described in [3]]. The user interface part leverages a
modern C++ and Qt-based generic document framework which can
be easily reused for other document-centric software. It features an
extensible plug-in API, undo-redo with automatic recovery in case
of crash, interface injection, serialization, selection handling and
multiple document management. It is specifically well-tailored to
hierarchical document structures and enforces strong typing practices.

This framework has been used in an unrelated software as a test
of its flexibility: a point-and-click game editor (SEGMent, developed
with Raphaél Marczakﬂ).

00:00:00.000 » > = ©

Figure 1: ossia score, the main software leveraging this framework

3. C++ JIT

We chose to extend ossia score with a C++ just-in-time compilation
mechanism. The main motivations for this were:

* Using C++ allows reusing easily large amounts of existing
code ; for instance digital signal processing libraries such as
Gammal/12], KFRE| or FFmpe

* Due to the amount of software built using C++, compiler opti-
misations for this language are still an active research topic [}
9|, which guarantees “free” performance improvements in the
following years.

* ossia score was already integrating Faust, which itself uses
LLVM, and thus acted as a gateway drug of sorts.

4. PLUG-IN AND PLUG-IN APIS

ossia score already provides multiple plug-in APIs: a simple API
based on defining a unit generator with strong type-safety features

3https ://scrime.u-bordeaux.fr/Arts-Sciences/Projets/
Projets/SEGMent2-Study-and-Education-Game-Maker

4https://www.kfrlib.com

5https://www.ffmpeg.org

relating to the input and output ports of the unit generator, and a low-
level API which allows creating plug-ins that can modify every part
of the ossia score software: menus, panels, etc.

The JIT system leverages the existing plug-in APIs: the same
code can seamlessly be integrated either during the build of ossia
score, or at run-time. We give thereafter a brief overview of these two
APIs.

4.1. Safe process API

This API only gives the ability to provide a new unit generator to
the system. Inputs, outputs and controls are given as C++ constant
expressions, which generates the user-interface code at compile-time
and guarantee type-safety. The necessary boilerplate being relatively
low (for C++ code), it is viable to use in live-coding contexts. A
specific unit generator, for now simply named “C++ Jit process” in
the software, allows the user to input code using such API, which will
be live-recompiled ; the corresponding node will be instantiated.

Algorithmm provides an example of a “gain” node, which has
one audio and one floating-point input, one audio output, and applies
the gain to the input.

Algorithm 1 : A naive gain implementation in the “safe” plug-in
API. The inputs and outputs of the unit generator are declared in
the Metadata struct. A compile-time mechanism ensures that the
prototype of the run function conforms to the prototype, and that
the types of the arguments are correct. This increases type safety at
run-time when compared to the more traditional C-based solutions
where the programmer has to manually cast the inputs of the unit
generator into the correct type according to knowledge not part of the
type system.

struct Node
{
struct Metadata :
{
static const constexpr auto prettyName = "Gain"
static const constexpr auto controls
= std::make_tuple(Control::FloatSlider{"Gain", 0., 2., 1.});
static const constexpr audio_in audio_ins[]{"in"};
static const constexpr audio_out audio_outs[]{"out"};

5

Control: :Meta_base

using control_policy = ossia::safe_nodes::last_tick;

static void run(
const ossia::audio_port& p1, float g, ossia::audio_port& p2,
ossia::token_request, ossia::exec_state_facade)

const double gain = (double)g;
const auto chans = pl.samples.size();
p2.samples.resize(chans);
for (std::size_t i = 0; i < chans; i++)
{

auto& in = p1.samples[il;

auto& out = p2.samples[il;

const auto samples = in.size();
out.resize(samples);

for (std::size_t j = 0; j < samples; j++)
{
out[j] = in[j] * gain;

https://scrime.u-bordeaux.fr/Arts-Sciences/Projets/Projets/SEGMent2-Study-and-Education-Game-Maker
https://scrime.u-bordeaux.fr/Arts-Sciences/Projets/Projets/SEGMent2-Study-and-Education-Game-Maker
https://www.kfrlib.com
https://www.ffmpeg.org

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

4.2. General plug-in API

This API enables its user to introduce new elements in most parts of
the software:

* New menus, panels, etc.

* Run-time additions to existing data types of the software.
* File loaders.

¢ Network and hardware protocols.

At the source code level, it mainly leverages the Abstract Factory
design pattern. A plug-in can define a new interface, identified by an
UUID. An example is given in algorithm 2}

Algorithm 2 : An example of interface definition in ossia score. This
particular interface allows a plug-in to register the handling of new
file types in the “Library” panel.

class LibraryInterface : public score::InterfaceBase
SCORE_INTERFACE(LibraryInterface, "9b94d974-9f2d-4986-a62b-
b69e51a4d305")
public:
~LibraryInterface() override;

virtual QSet<QString> acceptedFiles() const noexcept;
virtual QSet<QString> acceptedMimeTypes() const noexcept;

virtual void setup(
ProcessesItemModel& model
, const score::GUIApplicationContext& ctx)
virtual bool onDoubleClick(
const QString& path
, const score::DocumentContext& ctx);
/7 ...

Plug-ins can then register implementations for these interfaces,
which can be listed and accessed through a global context object.

The majority of the ossia score codebase is based on this API, the
actual software being itself merely a set of plug-ins implemented on
top of the base plug-in framework. The JIT extension discussed here
isitself a plug-inﬁf

The original plan for ossia score was to rely on this plug-in API to

allow prebuilt extensions to be downloaded from a common repository.

Due to the ongoing development of the software, no ABI (Application
Binary Interface) stability guarantees are provided, which means that
plug-ins must generally be recompiled against the source code of
newer versions. This requires an extensive compilation architecture
which could not only rebuild and publish new versions of ossia score
but also the plug-ins regularly. Common service providers such as
Travis CI and Appveyor do not provide enough capacity for this to be
viable for an open-source, volunteer-led project.

Hence, the plan going forward is to distribute the plug-ins not
included in the base software under source code form. The JIT system
looks for addons on startup in the user library folder: for instance
~/Documents/ossia score library/Addons and simply compiles
all the source files of the addon together. This guarantees that API and
ABI breakage do not cause subtle run-time errors since the add-ons
are compiled against the exact source code that was used to build the
software, the headers being shipped as part of the package: if the API
has changed in a breaking manner, the add-on will not be compiled at
all and the user warned.

Shttps://github.com/0SSIA/score-addon-jit

5. A CROSS-PLATFORM TOOLCHAIN

ossia score being a cross-platform software, it is necessary to ensure
the same level of support on the three major operating systems: Win-
dows, macOS and Linux. The endeavor was relatively straightforward
on Linux thanks to the availability of the LLVM libraries and com-
pilers in package managers. In particular, the Linux implementation
of JIT compilation in ossia score is also able to use system libraries
instead of the ones provided by the toolchain. The official release of
ossia score is based on the Applmage mechanism which allows it to
work on many distribution: as such, it is also necessary to build a
recent toolchain to be able to target older systems, such as CentOS 7
or Ubuntu 12.04.

The complete toolchain, whose build scripts are available at
https://github.com/0SSIA/sdk|provides the following libraries:

LLVM 7.0.1 (8 svn on Windows due to previous versions not
working) , Qt 5.12 , FFMPEG 4.1 , PortAudio , JACK headers , SDL2
, OpenSSL , Faust.

5.1. Uniform C++ standard library

The C++ parts of the toolchain are built against the /ibc++ standard
library implementation on all platforms. This is for two reasons: uni-
formity, and licensing. Using a single C++ standard library across
all platforms guarantees less variance in behavior, which is still fairly
common for instance across the various implementations in the im-
plementation of standard algorithms, or complex libraries such as
<regex>. Especially on Windows, the standard library headers pro-
vided as part of Visual Studio are not freely redistributable. This
means that this would introduce an unacceptable dependency on a
Visual Studio installation into ossia score. Hence, we use the system
headers provided by the mingw-w64 project, along with the LLVM
libc++ standard library. The build process implies a first build of the
LLVM project, clang compiler and libc++ standard library, which are
then used to boostrap a second set of LLVM libraries. This is needed
due to the JIT implementation directly calling into LLVM’s OrcJIT
API: if we linked directly against the first set of LLVM libraries, there
would be a standard library mismatch which would in the best case
fail to link properly, and in the worst case fail at run-time.

The llvm-mingw projecﬂ greatly simplified the creation of the
Windows toolchain.

5.2. macOS and rpath handling

macOS is special in that libc++ is the default C++ library implemen-
tation. There is no equivalent to MinGW in the Apple world: the
only implementation of system headers is the one provided by Apple.
Those are not under a free license, to the exception of the C standard
library and Mach kernel headers.

In addition, the customized clang / libc++ provided by Apple is
slightly out-of-date when compared to other platform’s implemen-
tations and suffers from some artificial limitations: using various
C++17 standard library types, such as std: :any, std: :optional or
std: :variant restricts the deployment to the latest in date version of
macOS, 10.14, which is not acceptable for multimedia software users
often restricted to older system versions for the sake of compatibil-
ity. The macOS version of the toolchain thus provides its own clang /
libc++ build which overcomes this problem.

Tnttps://github.com/mstorsjo/1lvm-mingw

https://github.com/OSSIA/score-addon-jit
https://github.com/OSSIA/sdk
https://github.com/mstorsjo/llvm-mingw

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

A custom-built clang-based toolchain on macOS will by default
still link against the system libc++ implementation. The observed
behavior is as follows:

* No arguments passed: the compiler hard-codes an absolute
path to the system /usr/lib/libc++.1.dylib.

e -L$SDK/1ib -lc++ -lc++abi: the compiler links the soft-
ware to @rpath/libc++.1.dylib.

It is thus necessary to specifiy the rpath to get working binaries
during development: -L$SDK/1ib -lc++ -lc++abi -W1,-rpath,/
sdk/1ib.

6. BENCHMARKING

We provide a few performance tests of the system: what advantages
and what costs actually bring C++ JIT compilation. Benchmarks are
run on two machines, both running Linux (Kernel: 4.20.8-arch1-1-
ARCH):

¢ Machine 1: Intel(R) Core(TM) i7-6900K CPU @ 4.00GHz
(Broadwell architecture, desktop).

¢ Machine 2: Intel(R) Core(TM) i7-8750H CPU @ 4.00GHz
(Coftee Lake architecture, laptop).

6.1. Compile times

C++ is notorious for its slow compile times, due to large amounts of
header files to include, and the cost of the template instantiation mech-
anism. More recent C++ standards being oriented towards compile-
time computation of most values in a program also leads to an increase
in compile times.

On the test machine, a simple node such as the one provided in[T]
takes between 1.3 and 1.5 seconds to compile on an average of five
runs. A generic test addon providing mock implementations of a few
interfaces, comprised of 7 source files, 10 header files, for a total of
428 lines of code which themselves include part of the C++ standard
library and Boost, takes between 4.5 and 5 seconds to compile on an
average of five runs.

LLVM generates bitcode, which could be cached on-disk, and
be used to make following start-ups faster. This optimization is not
yet applied and a complete recompile cycle currently occurs for each
addon on startup.

The current “interactive” performance characteristics, while much
slower than what the Javascript interpreter provides, are thus still
viable for some level of live-coding.

6.2. Run times: benchmarking gain adjustment

‘We discuss here the runtime improvements provided by the system.
The following cases cases are tested:

¢ The gain node of algorithm|T]as provided pre-built in the ossia
score binary, which must work on a variety of systems and thus
is not optimized for any kind of vector instruction set outside
of the x86-64 SSE2 baseline.

* The same gain node, passed in the system presented in this
paper which operates at an -Ofast -march=native optimiza-
tion level and is thus able to take into account the user’s actual
CPU features.

* A manually optimized version of the gain node, done with
hand-written AVX intrinsincs.

We measure every time the time taken by the computation for
various common buffer sizes. Figure 2] gives the measurements for
the first machine, figure 3] for the second machine.

50— ‘ =

100 - .
50 I .
o| mmmll I |

T T T T T
64 128 256 512 1024

Array size

Time (ns)

Figure 2: Broadwell CPU: average time in nanoseconds to compute
a buffer. In blue: generic code with the default compilation settings.
In orange: generic code while built with the JIT system. In green:
manually-written AVX implementation.

100 |- 3
o/ mmmll I |

T T T T T
64 128 256 512 1024

Array size

Time (ns)

Figure 3: Results for the Coffee Lake CPU, following the same nomen-
clature than the Broadwell CPU.

FigureElpresents the improvements between the two CPUs, in
order to help the reader see the differences more clearly between

figures P2]and 3]

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

PR :
=]
£
=
o -2 .
=
£
g
g
8
T —4r N
<
[
E
F
—6 = T T T T T =
64 128 256 512 1024
Array size

Figure 4: Performance difference between the Coffeelake and the
Broadwell CPU: it is interesting to note that the buffer size heavily
influences which workloads benefits the most from the CPU improve-
ments.

6.3. Run times: benchmarking FFT

For this benchmark, we compare the run time of a Fast Fourier Trans-
form algorithm implemented in the KFR library mentioned earlier.
This library provides hand-optimized versions for many different in-
structions sets, ranging from SSE2 to AVX2. The results are presented
in[I] The test is done on a large array: 16384 double-precision floating-
point values.

Machine Generic JIT Time saved
Broadwell 214 ps 144 ps 32.7%
Coffeelake 172 ps 107 ps 37.8%

Table 1: Performance increases yielded by using the proper instruction
set.

6.4. Discussion
A few things are made apparent by the previous benchmarks:

* In simple cases, it is pointless to try to optimize better than
what the compiler can: the manually-written AVX version
is almost never faster than the simple for-loop version when
optimized by the compiler.

* The improvement in that case is fairly expected: AVX is able
to compute almost twice as many floats than SSE2 in the same
time.

¢ In the more complex, hand-optimized case of the FFT, there
are also important performance benefits.

¢ The C++ compile-times are certainly not negligible for large
amounts of code. Potential paths for improvement could be the
use of precompiled headers, or upcoming C++ modules.

In addition, we note that the system does not currently add any
performance benefits — nor drawbacks — versus compiling the whole
codebase at -Ofast -march=native. Thus, the system is mainly use-
ful performance-wise in the case where the end-user is not able to
rebuild the software himself. While on Linux systems this is generally
not a problem (even though users may use old distributions with com-
pilers unable to support recent editions of the C++ language required
by ossia score), this is tremendously useful for Mac and Windows
users where the default toolchain requires mutltiple gigabytes of disk
space and takes a long time to install.

7. CONCLUSION

We presented the integration of a C++ just-in-time compilation system
based on LLVM in an existing media authoring environment, ossia
score.

There are multiple further steps that we would like to reach for
the system:

¢ Correct live-reloading of addons. The main problem to handle
is that a JIT-compiled addon may instantiate new objects in the
system. These objects must be tracked, serialized and reloaded
whenever the addon code change: else, due to the ABI of
objects potentially changing, this will cause runtime crashes.

* Generation of cross-compiled code. An often requested feature
for ossia score is to support embedded architectures. While
the software already builds and run on such systems, it would
be useful to generate a minimal executable for such platforms
from a desktop machine, which only contains a given score
with implementations optimized for the exact system being
targeted.

* In longer time-scales, cross-unit-generator optimizations could
be interesting: in particular, how can the system integrate with
other languages also based on LLVM such as Faust ? The
Mozilla team is currently researching cross-language inlin-
ing between C++ and Rust for instance. Combining multiple
audio nodes written in different languages, and compile them
together in a single dataflow graph may open further optimiza-
tion opportunities.

Finally, the JIT denomination for the system could in practice be
argued: since ossia score is itself an interpreter for a visual language,
but the execution of the programs of this visual language are done
only once every part of the system has been compiled to assembly: for
reasons of safety, we prefer not to launch C++ compilations during
the execution of a score, since it may seriously hamper the available
performance of the system. The JIT process still allows this, but the
user must be aware of the risks in doing so if the score already uses
most of the machine’s cores for instance.

8. ACKNOWLEDGMENTS

We would like to thank Thibaud Keller and the SCRIME & OSSIA
teams for their tireless testing of new ossia score features, Martin
Storsjo for the development of the llvm-mingw toolchain and Stefan
Grinitz for simple examples on how to use LLVM’s OrcJIT APL.

Proceedings of the 1 7" Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23-26, 2019

References

[1] Nick Avramoussis et al. “A JIT expression language for fast
manipulation of VDB points and volumes”. In: Proceedings of
the 8th Annual Digital Production Symposium (DigiPro’ 18).
ACM. 2018.

[2] John Aycock. “A brief history of just-in-time”. In: ACM Com-
puting Surveys (CSUR) 35.2 (2003), pp. 97-113.

[3] Jean-Michael Celerier. “Authoring interactive media: a logical
& temporal approach”. PhD thesis. Bordeaux, 2018.

[4] Jean-Michaél Celerier et al. “OSSIA: Towards a Unified Inter-
face for Scoring Time and Interaction”. In: Proceedings of the
International Conference on Technologies for Music Notation
and Representation (TENOR). Paris, France, 2015.

[5] Jean-Michaél Celerier, Myriam Desainte-Catherine, and Jean-
Michel Couturier. “Graphical Temporal Structured Program-
ming for Interactive Music”. In: Proceedings of the Interna-
tional Computer Music Conference (ICMC). Utrecht, The Nether-
lands, 2016.

[6] Théo De la Hogue et al. “OSSIA : Open Scenario System
for Interactive Applications”. In: Proceedings of the Journées
d’Informatique Musicale (JIM). Bourges, France, 2014.

[7] Chris Lattner and Vikram Adve. “LLVM: A compilation frame-
work for lifelong program analysis & transformation”. In: Pro-
ceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimiza-
tion. IEEE Computer Society. 2004, p. 75.

[8] Juneyoung Lee et al. “Reconciling high-level optimizations
and low-level code in LLVM?”. In: Proceedings of the ACM on
Programming Languages 2.00PSLA (2018), p. 125.

[9] Juneyoung Lee et al. “Taming undefined behavior in LLVM”.
In: ACM SIGPLAN Notices 52.6 (2017), pp. 633-647.

[10] Thor Magnusson. “Algorithms As Scores: Coding Live Music”.
In: Leonardo Music Journal 21 (2011), pp. 19-23.

[11] Yann Orlarey, Dominique Fober, and Stéphane Letz. “Faust: an
efficient functional approach to DSP programming”. In: New
Computational Paradigms for Computer Music. Paris, France,
2007.

[12] Lance Putnam. “Gamma: A C++ sound synthesis library fur-
ther abstracting the unit generator”. In: Proceedings of the Joint
International Computer Music Conference (ICMC)/Sound and
Music Computing Conference (SMC). Athens, Greece, 2014.

[13] Evgeniy Yur’evich Sharygin et al. “Dynamic compilation of
expressions in SQL queries for PostgreSQL”. In: Proceedings
of the Institute for System Programming of the Russian Academy
of Sciences 28.4 (2016), pp. 217-240.

	1 Introduction
	2 OSSIA project
	3 C++ JIT
	4 Plug-in and plug-in APIs
	4.1 Safe process API
	4.2 General plug-in API

	5 A cross-platform toolchain
	5.1 Uniform C++ standard library
	5.2 macOS and rpath handling

	6 Benchmarking
	6.1 Compile times
	6.2 Run times: benchmarking gain adjustment
	6.3 Run times: benchmarking FFT
	6.4 Discussion

	7 Conclusion
	8 Acknowledgments

