
Using Perlin noise in sound synthesis

Artem POPOV
Gorno-Altaysk,

Russian Federation,
art@artfwo.net

Abstract

Perlin noise is a well known algorithm in computer
graphics and one of the first algorithms for gener-
ating procedural textures. It has been very widely
used in movies, games, demos, and landscape gen-
erators, but despite its popularity it has been sel-
dom used for creative purposes in the fields outside
computer graphics. This paper discusses using Per-
lin noise and fractional Brownian motion for sound
synthesis applications.

Keywords

Perlin noise, Simplex noise, fractional Brownian mo-
tion, sound synthesis

1 Introduction

Perlin noise, first described by Ken Perlin in his
ACM SIGGRAPH Computer Graphics article
“An image Synthesizer” [Perlin, 1985] has been
traditionally used for many applications in com-
puter graphics. The two-dimensional version of
Perlin noise is still widely used to generate tex-
tures resembling clouds, wood, and marble as
well as procedural height maps.

Figure 1: 2D Perlin noise as rendered by Gimp
plugin “Solid noise”

Despite its popularity, Perlin noise has been
seldom used for creative purposes in the fields
outside the world of computer graphics. For
music applications, Perlin noise has been occa-
sionally used for creating stochastic melodies or
as a modulation source.

This paper is focused on synthesizing single-
cycle waveforms with Perlin noise and its suc-
cessor, Simplex noise. An overview of both algo-
rithms is given followed by a description of frac-
tional Brownian motion and several techniques
for adding variations to noise-based waveforms.
Finally, the paper describes an implementation
of a synthesizer plugin using Perlin noise to cre-
ate musically useful timbres.

2 Perlin noise

Perlin noise is a gradient noise that is built
from a set of pseudo-random gradient vectors of
unit length evenly distributed in N-dimensional
space. Noise value in a given point is calculated
by computing the dot products of the surround-
ing vectors with corresponding distance vectors
to the given point and interpolating between
them using a smoothing function.

Sound is a one-dimensional signal, and for
the purpose of sound synthesis Perlin noise of
higher dimensions is not so interesting. While
it is possible to scan Perlin noise in 2D or 3D
space to get a 1-dimensional waveform, it’s nec-
essary to make sure the waveform can be seam-
lessly looped to produce a musically useful tim-
bre with zero DC offset.

For one-dimensional Perlin noise, the noise
value is interpolated between two values,
namely the values that would have been the
result if the closest linear slopes from the left
and from the right had been extrapolated to the
point in question [Gustavson, 2005]. Thus, the
noise value will always be equal to zero on in-
teger boundaries. By sampling the resulting 1-
dimensional noise function, it’s possible to gen-
erate a waveform that can be looped to produce
a pitched tone (Figure 2).

3 Simplex noise

Simplex noise is an improvement to the original
Perlin noise algorithm proposed by Ken Perlin



Figure 2: Perlin noise (left) and Simplex noise
(right) with the gradients used for interpolation

himself [Perlin, 2001]. The advantages of sim-
plex noise over Perlin noise include lower com-
putational complexity, no noticeable directional
artifacts, and a well-defined analytical deriva-
tive.

Simplex noise is created by splitting an N-
dimensional space into simplest shapes called
simplices. The value of the noise function is a
sum of contributions from each corner of the
simplex surrounding a given point [Gustavson,
2005].

In one-dimensional space, simplex noise uses
intervals of equal length as the simplices. For
a point in an interval, the contribution of
each surrounding vertex is determined using the
equation:

(1 − d2)4 · (g · d) (1)

Where g is the value of the gradient in a given
vertex and d is the distance of the point to the
vertex.

Both Perlin noise and Simplex noise produce
very similar results (Fig. 2) and are basically
interchangeable in a sound synthesizer1. For
brevity, Perlin noise or noise will be used to
refer to both algorithms for the scope of this
paper, since Simplex noise is also invented by
Ken Perlin.

4 Fractional Brownian motion

Fractional Brownian motion (fBm), also called
fractal Brownian motion is a technique often
used with Perlin noise to add complexity and
detail to the generated textures.

Fractional Brownian motion is created by
summing several iterations of noise (octaves),

1In some cases Perlin noise adds additional low fre-
quency harmonics to the sound which may or may not
be desirable.

Figure 3: 3 octaves of Perlin noise (left) summed
to generate a fBm waveform (right)

while successively incrementing their frequen-
cies in regular steps by a factor called lacunarity
and decreasing the amplitude of the octaves by
a factor called persistence with each step [Vivo
and Lowe, 2015].

fBm(x) =
n∑

i=0

pi · noise(2i · x) (2)

Lacunarity can have any value greater than 1,
but non-integral lacunarity values will result in
non-zero fBm values on the integer boundaries.
To keep the waveform seamless in a sound syn-
thesizer, lacunarity has be an integer number.
A reasonable choice for lacunarity is 2, since
bigger values result in a very quick buildup of
the upper harmonics (Eq. 2).

Fractional Brownian motion is often called
Perlin noise, actually being a fractal sum of sev-
eral octaves of noise. While typically the same
noise function is used for every octave, different
noise algorithms can be combined in the same
fashion to create multifractal or heterogeneous
fBm waveforms [Musgrave, 2002].

5 Waveform modifiers

5.1 Gradient rotation

One technique traditionally used to animate
Perlin noise is gradient rotation [Perlin and
Neyret, 2001]. When gradient vectors in 2- or
more dimensional space are rotated the noise is
varied while retaining its character and detail.
This technique has been used for simulating ad-
vected flow and other effects. A similar tech-
nique can be applied to 1-dimensional noise to
introduce subtle changes to the sound.

Rotating gradients is a computationally ex-
pensive operation and cannot be used with 1-
dimensional noise, since the noise is built from
linear gradients instead of directional vectors.



Figure 4: Gradient offsets applied to fBm (left)
modify the waveform (right) while preserving
the timbre

It is still possible to apply this technique to
1-dimensional noise by adding a variable offset
value to the gradients and symmetrically wrap-
ping it when the maximum allowed gradient
value (1) is reached.

g′ =

{
2 − g, g > 1

−2 − g, g < −1
(3)

In a sound synthesizer, gradient rotation does
not change the timbre significantly. It does alter
the amplitudes of the upper harmonics slightly
(Fig. 4), adding variations that can be used in
a polyphonic (poly-oscillator) synthesizer.

5.2 Domain warping

Another classic technique for adding variation
to Perlin noise is called domain warping. Warp-
ing simply means that the noise domain is dis-
torted with another function g(p) before the
noise function is evaluated.

Basically, noise(p) is replaced with
noise(g(p)). While g can be any function,
it’s often desirable to distort the image of
noise just a little bit with respect to its regular
behavior.

Then, it makes sense to have g(p) being just
the identity plus a small arbitrary distortion
h(p) [Qúılez, 2002]. In the most basic case the
distortion can be the noise itself (Eq. 4).

f(p) = noise(p + noise(p)) (4)

For the purpose of sound synthesis it is bet-
ter to expose warping as an adjustable param-
eter. Warping modulation can be implemented
by adding a coefficient that is used to control
the warping depth (Eq. 5).

f(p) = noise(p + noise(p) · w) (5)

Figure 5: Simplex noise (left) with domain
warping (right)

Figure 6: Andes, a JUCE-based synthesizer us-
ing Perlin noise

Since the domain of noise is distorted with
the noise itself, the symmetry of the waveform
will remain generally the same as seen on Fig. 5.

6 Implementation

The presented ideas have been implemented as
a basic synthesizer plugin called Andes (Fig-
ure 6). The plugin has been developed using the
JUCE2 framework and is currently available in
the form of VST, AU, and standalone program
for Windows, MacOS, and Linux3.

At the time of writing, Andes supports gradi-
ent rotation, basic warping, up to 16 octaves of
noise, and adjustable persistence, which allows
a usable range of unique sounds to be produced.
The sound of noise is susceptible to aliasing at
higher frequencies, but oversampling has not
been implemented so far.

The resulting sounds resemble early digital
synthesizers, but also have a unique character
to them and can be described as “distinctively
digital”.

2https://juce.com
3https://artfwo.github.io/andes/

https://juce.com
https://artfwo.github.io/andes/


6.1 Predictable randomness

A synthesizer plugin cannot have completely
randomly sounding timbres when the synthe-
sizer is used in certain contexts such as a multi-
track DAW project. The amplitude and tim-
bre of the synthesizer cannot change in un-
predictable ways to make sure the track won’t
break the mix.

Predictable randomness in Andes is achieved
by saving the random seed for generating gra-
dients in the plugin state (preset). The 32-bit
Mersenne Twister 19937 generator from C++
standard library is used explicitly to make sure
the random numbers generated from the same
seed will stay the same across different architec-
tures and platforms.

The set of gradients covering the entire al-
lowed range of octaves is created and stored in
memory every time the plugin is instantiated or
when a new seed is created using the plugin UI.

The additional advantage of using precom-
puted set of gradients is that computationally
expensive random number generation is moved
out of the audio processing code.

6.2 Output level normalization

A big issue with Perlin noise is normalizing the
output level to fixed values. This issue is cur-
rently not resolved in Andes, but a possible di-
rection to explore is early computing of peak
values during the stage of generating gradients.

6.3 Waveform symmetry

The symmetry of waveforms is another thing to
consider when developing a noise-based synthe-
sizer.

Current Andes implementation uses com-
pletely random gradients. The first noise oc-
tave is built from 3 gradients (at points 0, 1,
and 2). Sometimes, this results in cusps and
unwanted distortion when the both outermost
gradients are either positive or negative. Alter-
nating signs for even and odd gradients in the
gradient table can further improve the synthe-
sizer usability.

Setting signs for even and odd gradients ex-
plicitly can also help reduce the domain range
for the noise function.

7 Conclusions

Perlin noise, Fractional Brownian motion and
multifractal synthesis are interesting directions
to explore for sound applications. Although
Perlin noise can be used to make sounds, the
approach still remains to be improved. Noise

level normalization is one of the biggest issues
yet to be resolved.

The general idea of using unconventional, i.e.
graphics algorithms in sound and music presents
a lot of challenges, but also opens many different
possibilities in both the technical and aesthetic
aspects.

8 Acknowledgments

The author would like to thank Maria Pankova
for helping the idea of making a noise-based
synthesizer to emerge and for assistance with
maths in the early stages of Andes develop-
ment. Thanks also goes to Alexey Durachenko
for suggesting useful optimizations to the Sim-
plex noise implementation.

References

Stefan Gustavson. 2005. Simplex noise de-
mystified. http://staffwww.itn.liu.se/

~stegu/simplexnoise/simplexnoise.pdf.

F. Kenton Musgrave. 2002. Procedural frac-
tal terrains. In Texturing and Modeling: A
Procedural Approach, chapter 9.

Ken Perlin and Fabrice Neyret. 2001. Flow
noise. In Siggraph Technical Sketches and Ap-
plications, page 187, Aug.

Ken Perlin. 1985. An image synthesizer.
SIGGRAPH Comput. Graph., 19(3):287–296,
July.

Ken Perlin. 2001. Noise hardware. In
M. Olano, editor, Real-Time Shading ACM-
SIGGRAPH Course Notes, chapter 2.

Íñigo Qúılez. 2002. Domain warp-
ing. http://www.iquilezles.org/www/
articles/warp/warp.htm.

Patricio Gonzalez Vivo and Jen Lowe. 2015.
Fractal brownian motion. The Book of
Shaders, https://thebookofshaders.com/
13/.

http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://www.iquilezles.org/www/articles/warp/warp.htm
http://www.iquilezles.org/www/articles/warp/warp.htm
https://thebookofshaders.com/13/
https://thebookofshaders.com/13/

	Introduction
	Perlin noise
	Simplex noise
	Fractional Brownian motion
	Waveform modifiers
	Gradient rotation
	Domain warping

	Implementation
	Predictable randomness
	Output level normalization
	Waveform symmetry

	Conclusions
	Acknowledgments

