
LASH Audio Session Handler: Past, Present, and Future

Juuso ALASUUTARI
LASH development team

http://lash-audio.org/
Juuso.Alasuutari@gmail.com

Abstract

The LASH Audio Session Handler is a framework
for saving and recalling the combined state of a
collection of running audio programs. It is a
central part of the Linux audio desktop, and its
success or failure may well shape the way Linux
audio software is received by a larger demography
of users. During the past year, LASH has become
more tightly integrated with modern desktop
environments and continues to evolve in this
direction.

Keywords

LASH, desktop, integration, usability.

1 Introduction

The LASH Audio Session Handler is arguably one
of the central components of the Linux audio
desktop. In principle, the concept behind LASH
can, when properly realized, open the doors to
widespread adoption of Free/Open Source audio
software on many fronts.

LASH establishes a common framework for
saving and recalling the combined state of a
collection of running audio programs [1]. That is,
with LASH (and a proper front-end) the user can
save and restore his/her audio desktop state with a
few mouse clicks.

After a period of stagnation the LASH project is
again making active progress towards the 1.0
milestone.

2 How LASH Works

LASH comprises two parts; the system service and
the client library. In this respect it is quite similar
to JACK [2].
For the client programmer, making use of LASH
amounts to implementing certain calls and
functions in the application and linking it against
liblash.so. Making an application LASH-aware
also comes with some requirements with respect to
how the program should behave.

On start-up a LASH-aware application should
contact the LASH service and provide it with some
information about itself. After this it is forbidden
of the application to act on its own with respect to
manipulating its state; instead, LASH will send it
commands which reflect the user's decisions.
By relinquishing certain aspects of their autonomy
and submitting to the LASH service, audio
applications can be choreographed to form a
coherent, desktop-wide session manageable via
common front-ends.

2.1 Highlights of the Current API

The current LASH API (found in LASH 0.5.4) is
based on receiving and sending events.

A program using the current stable API must
pass its command-line arguments to
lash_extract_args(), which parses them for any
relevant LASH settings. It then returns an object
that must be passed to lash_init(), which in turn
initializes the connection to the LASH daemon.

After lash_init() the client program must inform
LASH of its desired client name, its JACK client
name, and its ALSA client ID, if appropriate. After
these steps it becomes possible for the client to
check for, receive, and send back event objects.

The current API is scheduled to be replaced by a
more modern, callback-based one by the release of
LASH 1.0.

3 A Common LASH Use Case

In the most common LASH use case a user wishes
to save his or her work after using one or more
audio applications to compose a piece of music.
The user might have needed a sequencer, a
software synthesizer, and a drum machine for the
task.
In the above case, given that all relevant
applications are LASH-aware and that there exists
a capable LASH front-end sitting in the system
tray, the user may save the project by clicking the
front-end's icon and selecting “Save” from a pop-
up menu. A progress bar may appear, and the user

http://lash-audio.org/

will receive a notification when the save is
complete.
At a later time, perhaps after a reboot, the user
may select to reload the project he/she was
working on earlier. Again after clicking on the
front-end's icon, the user can navigate to a menu
that lists all previously saved projects, right-click
above the desired one, and select “Load”. LASH
will then launch the relevant audio applications,
instruct them to load their previously saved
settings, and reconnect their JACK and ALSA
ports accordingly.

4 Recent LASH Developments

Much has been going on in the LASH
development repository since the latest stable
version, 0.5.4, was released. The following is a
compilation of the most noteworthy developments
to date.

4.1 Summercode 2008

The LASH project received a stroke of fortune in
the form of a sponsorship by the Finnish Centre
for Open Source Solutions (COSS) in 2008 [3].

COSS organizes an annual, Google Summer of
Code-type event called Summercode where
students offer themselves to work on a project of
their choice for three months. The author of this
paper, Juuso Alasuutari was among the five people
selected, and consequently he spent the spring and
summer making several changes and adding new
features to LASH.

4.2 D-Bus Connectivity

LASH was transformed last year into a D-Bus [4]
service, effectively making it a seamless part of
any Freedesktop.org-compliant environment. At
the same time the LASH library's internal protocol
mechanism was switched over from TCP to D-
Bus.

The conversion to D-Bus of LASH follows in
the footsteps of the jackdbus project [5], now a
part of the JACK 2 server currently being
developed. It naturally follows that LASH now
uses D-Bus to communicate with JACK instead of
linking against libjack. This serves among other
purposes that of making the LASH daemon less
vulnerable to bugs in JACK.

D-Bus connectivity introduces many interesting
options for those planning to utilise LASH in their
programs or desktop activities. These include, but
are not limited to:

– Faster and more reliable automatic
launching of the LASH service,

– the ability to control LASH via D-Bus
browser applications, and

– the possibility to create LASH front-ends
or even reimplement the LASH client
library itself using any language for which
D-Bus bindings exist.

4.3 A New API

The existing event-based client API will
eventually be replaced with a more flexible
callback-based one. An unfinished but working
version of the API already exists in the current
development branch.

The principal motivation for this change has
been the alleged poor design of the old API, but
there are some useful and long wanted new
features for LASH clients and front-ends as well.

A compatibility layer for the old API is still
included with LASH and is currently built by
default.

4.3.1 Highlights of the New API

The most obvious change with respect to the old
API is the callback model. This change alone
brings LASH a step closer to JACK's already
familiar programming model. Moreover the new

Diagram 1: How LASH and JACK operate within a
D-Bus-enabled desktop setting. A client application,
which can be an audio application, a LASH front-end,
or a combination of both, links against liblash (and
libjack if it is required). The JACK and LASH service
daemons link against libdbus to gain desktop
messaging abilities. The LASH daemon communicates
with both the LASH library and with the JACK daemon
using D-Bus messages and signals, which are in turn
delivered by the session bus daemon. Shown within the
LASH and JACK boxes are the relevant D-Bus
interface paths.

LASH API has many functions that are named and
used similarily to JACK's.

A client registers itself with LASH using
lash_client_open(), and callbacks for various
purposes are set using the lash_set_*_callback()
functions.

Programmers wishing to create LASH front-
ends will find it a straightforward process. A front-
end will initiate its operation by calling
lash_client_open_controller() and setting the
required callback with lash_set_control_callback().
There are a handful of functions available for
sending control commands to the LASH service.

As a new feature, programs can register
themselves as both LASH clients and front-ends at
the same time. This is achieved by including the
LASH_Server_Interface flag in the parameters to
lash_client_open().

In addition to becoming more like JACK's, the
new API will do away with some requirements of
the old one, such as having to submit the client
program's command-line arguments to
lash_extract_args(). It will also become
unnecessary to separately inform LASH about
some previously required details, such as the
client's JACK client name.

4.4 Deterministic Launching of Clients

As an extra work for Summercode, a mechanism
was implemented in LASH for projects to specify
client launching order. Future LASH releases will
thus be able to launch clients in a completely
deterministic order, configurable in the project
settings.

4.5 Code Cleanups

The LASH codebase has been subjected to the
unforgiving (and occasionally destructive) hands
of the author of this paper for some time now. This
has resulted in fixes to sloppy memory allocations,
optimized algorithms, and the removal of assorted
redundancies and crud.

The codebase is also slowly approaching a state
where things mostly look uniformly designed.
(This might have already been the case before
Summercode 2008, but it certainly wasn't
immediately afterwards.)

4.6 Architectural Changes

Today's LASH development code is modular in a
much more consistent way than before. It also has
a rather nice internal logging framework, a safe
memory handling framework, and other
components useful in protecting one's sanity while
coding in C.

5 Current Status

At the time of writing the most recent stable
LASH version is 0.5.4. There have been a couple
of “pre-release versions” since, but the bugs are
still far too many for any serious use.

The current LASH team comprises Dave
Robillard, Nedko Arnaudov, and Juuso Alasuutari.

6 The Road Ahead

The objective of the LASH project is for LASH
support to have become a standard part of any pro-
audio application's feature list by the time LASH
reaches version 1.0. This calls for not only
concentrated effort on behalf of the LASH team,
but also continuing feedback and support from
external parties.

The feature list for LASH 1.0 is still a moving
target. Some of the following features are already
partly realized, but all are in need of some kind of
attention.

6.1 Template Projects

LASH 1.0 will have support for saving projects as
templates, and then using them as starting points
for newly created projects.

6.2 The Project Stack

Although the details are yet undecided, support is
planned for flexible management of more than one
project at a time. This will mean that a desktop's
state may consist of projects that are layered on
top of eachother or otherwise side by side in an
active state.

6.3 Studio Projects

Studio projects are in a way an extension of the
project stack idea. They are projects whose sole
purpose is to reside between the other projects and
the system output ports.

For instance, a studio project may consist of an
equalizer program whose parameters are adjusted
according to studio acoustics. It then follows that
LASH can be used not only for managing
transferable projects, but for adjusting the local
audio environment as well.

6.4 Support for Managing LASH-Unaware
Clients

LASH projects will eventually be able to include
audio applications that do not themselves
communicate with LASH.

Some restrictions apply to how these clients can
be controlled; for instance they cannot be
commanded to save their state. Instead, this feature

will be useful for including very simple clients for
which anything more complex would be overkill.

6.5 Networking Support

Support for managing audio sessions over the
network is planned for LASH 1.0. The objective is
to extend LASH's usefulness in the same way that
NetJack extends the usefulness of JACK.

6.6 Making LASH Aware of Available
Clients

The current development code has preliminary
support for keeping a list of available audio
applications. This will eventually make it possible
for users to browse, launch, and re-launch audio
applications from a LASH front-end.

LASH gathers its application list by parsing
standard desktop files, making it trivial for clients
to add support for “LASH visibility”.

6.7 Other Important Goals

Other noteworthy items on the LASH 1.0 checklist
include:

– Finalizing the new API,
– adding support for importing/exporting

projects,
– adding support for undo/redo

functionality,
– adding a data storage option for front-

ends,
– adding support for external storage

locations (such as the memory of a
hardware synthesizer),

– improving existing front-ends and tools
and creating new ones,

– implementing bugfixes and optimizations,
and

– improving code portability and possibly
adding C99 compliance.

7 Conclusion

LASH has the potential to become a central and
enabling part of Linux audio. Development is
ongoing, and the LASH team is always happy to
accept contributions.

8 Acknowledgements

The author of this paper would like to thank
LASH's original author, Robert Ham, for obvious
reasons, as well as Dave Robillard and Nedko
Arnaudov for contributing significant time and
effort to developing not only LASH, but many
other important Linux audio projects as well.

The LASH team would like to thank all Linux
audio software users and developers for their

continuing support, as well as the Finnish Centre
for Open Source Solutions for sponsoring the
development of the LASH with Summercode 2008
and also for sponsoring this presentation for LAC
2009.

9 References

[1] http://lash-audio.org/
[2] http://jackaudio.org/
[3] http://www.coss.fi/en/summercode/2008
[4] http://dbus.freedesktop.org/
[5]
http://nedko.arnaudov.name/wiki/moin.cgi/LADI#
head-
19659c1e9cdcebadccc6021f289942ae94a82632

http://nedko.arnaudov.name/wiki/moin.cgi/LADI#head-19659c1e9cdcebadccc6021f289942ae94a82632
http://nedko.arnaudov.name/wiki/moin.cgi/LADI#head-19659c1e9cdcebadccc6021f289942ae94a82632
http://nedko.arnaudov.name/wiki/moin.cgi/LADI#head-19659c1e9cdcebadccc6021f289942ae94a82632
http://dbus.freedesktop.org/
http://www.coss.fi/en/summercode/2008
http://jackaudio.org/
http://lash-audio.org/

	1 Introduction
	2 How LASH Works
	2.1 Highlights of the Current API

	3 A Common LASH Use Case
	4 Recent LASH Developments
	4.1 Summercode 2008
	4.2 D-Bus Connectivity
	4.3 A New API
	4.3.1 Highlights of the New API

	4.4 Deterministic Launching of Clients
	4.5 Code Cleanups
	4.6 Architectural Changes

	5 Current Status
	6 The Road Ahead
	6.1 Template Projects
	6.2 The Project Stack
	6.3 Studio Projects
	6.4 Support for Managing LASH-Unaware Clients
	6.5 Networking Support
	6.6 Making LASH Aware of Available Clients
	6.7 Other Important Goals

	7 Conclusion
	8 Acknowledgements
	9 References

