
1

jackdmp: Jack server for
multi-processor machines

Stéphane Letz, Yann Orlarey, Dominique Fober
Grame, centre de création musicale

Lyon, France

2

Main objectives

jackdmp : LAC 2005, 21/04/05

• To take advantage of multi-processor architectures: better use of
available CPUs

• To have a more “robust” server:

- no more interruption of the audio stream

- better client failure handling

improved user experience: “glitch free” connections/disconnections…

3

How ?

• Using a “data-flow” model for client graph execution

• Using “lock-free” programming methods

• Redesigning of some internal parts: client threading model…

jackdmp : LAC 2005, 21/04/05

4

Graph execution model

jackdmp : LAC 2005, 21/04/05

Input

A

B

C D Output

ClientDriver

• The current version does a “topological sort” to find an activation order
(A, B, C, D or B, A, C, D here)

• There is a natural source of parallelism when clients have the same
 input dependencies and can be executed concurrently

5

Data-flow model

jackdmp : LAC 2005, 21/04/05

• Data-flow models are used to express parallelism

• Defined by “nodes” and “connections”

• Connections have properties

• The availability of the needed data determines the execution
of the processes

• Execution can “data-driven” (in => out) or “demand-driven” (out => in)

B

D
C

E

6

“Semi” data-flow model

jackdmp : LAC 2005, 21/04/05

• Currently tested: “semi” data-flow model where activation go in one
direction only until *all* nodes have been executed

• Execution is synchronized by the audio cycle

• Activation counters are used to describe data dependencies

• A synchronization primitive is built using the activation counter and
an “inter-process semaphore”

Audio In

A(1)

B(1)

C(2) D(1) Audio Out (1)

7

Graph execution

jackdmp : LAC 2005, 21/04/05

• Graph activation state is re-initialized at the beginning of each cycle

• The server initiates the graph execution by activating input drivers

• Activation is “propagated” by clients themselves until all clients have
been executed

8jackdmp : LAC 2005, 21/04/05

A(0)

B(0)

C(2) D(1)Audio in

A(1)

B(1)

C(2) D(1) Audio Out (1)

Audio In

A(0)

B(0)

C(1) D(1)

A(0)

B(0)

C(0) D(1)

CPU1
CPU2

State 1 State 2

State 3 State 4

Audio Out (1)

Audio in

Audio in

Audio Out (1)

Audio Out (1)

9

Complete graph

jackdmp : LAC 2005, 21/04/05

• Some clients do not have audio inputs

• A “Freewheel” driver is connected to all clients

• Loops are detected and closed with a “Loop” driver

A(2)

B(2)
C(3) D(2)

Feedback connection

Data connection

1 buffer delayLoop Out

Audio In

FW In

Loop In

Audio Out

FW Out

10

Engine cycle: synchronous mode

jackdmp : LAC 2005, 21/04/05

• Read Input buffers

• Activate graph: reset activation, timing…

• Activate drivers: Audio,FW,Loop

• Wait for graph execution end

• Write output buffers

Activating driver Waiting driver

A(2)

B(2)
C(3) D(2)

Loop Out

Audio In

FW In

Loop In

Audio Out
(1)

FW Out

11

Engine cycle: asynchronous mode

jackdmp : LAC 2005, 21/04/05

• Read Input buffers

• Write output buffers from the previous cycle

• Activate graph: reset activation, timing…

• Activate drivers: Audio,FW,Loop

 one buffer more latency
 one less context switch

A(2)

B(2)
C(3) D(2)

Loop Out

Audio In

FW In

Loop In

Audio Out
(1)

FW Out

12

Engine cycle : freewheel mode

jackdmp : LAC 2005, 21/04/05

• Disconnect audio driver from the
clients, connect to FW out

• The freewheel driver switches to a
 non-RT scheduling mode

• Activate graph at “full speed” in
synchronous mode

A(2)

B(1)
C(3) D(2)

Loop Out

Audio In

FW In

Loop In

Audio Out

FW Out (4)

13

“Lock-based” graph state
management

jackdmp : LAC 2005, 21/04/05

• The graph is “locked” whenever a read/write operation access it

• If the RT audio thread access the graph, it can not afford to wait for the lock

• A “null” cycle (silent buffer) is generated instead

• The reason for audio glitches when connecting/disconnecting

14

“Lock-free” graph state management

jackdmp : LAC 2005, 21/04/05

• Avoid to lock the graph

• The audio stream is never stopped for “normal” operations

• Only interrupted during important changes (buffer size…) or failure cases

15

What is “lock-free” programming?

jackdmp : LAC 2005, 21/04/05

• Avoid mutual exclusion when several threads access a data structure

• Avoid deadlocks, priority inversion, convoying….

• “Lock-free” and “Wait-free” (stronger)

• Need processor specific instructions:
- CompareAndSwap (CAS) : Intel
- LoadReserve/StoreConditionnal: PPC

16

Example

jackdmp : LAC 2005, 21/04/05

• Implementing AtomicAdd using CAS:

int AtomicAdd(int* value, int amount)
{

int oldValue;
int newValue;
do {

oldValue = * value;
newValue = oldValue + amount;

} while (! CAS(oldValue, newValue, value));
return oldValue;

}

17

Lock-free graph state management (1)

jackdmp : LAC 2005, 21/04/05

• Graph state (typically port connections) is shared between the server
and clients

• Only one writer thread in the server:
client access is serialized

• Multiple readers:
- RT threads in server and clients
- Non RT thread in clients

• All RT readers must see the *same* (activation) state during a cycle

A

Server

B

Connect (p1,p2)

PortRegister (« out »)
………..

18

Lock-free graph state management (2)

jackdmp : LAC 2005, 21/04/05

• Using two separated graph states

• Switching from current to next state can be done:
- when there is no more RT readers
- if no write operation is currently done

• Switching states is done by the RT server thread
at beginning of the cycle

Current Next

Read Write

19

Lock-free graph state management (3)

jackdmp : LAC 2005, 21/04/05

• Write operations are “protected” using WriteStateStart and WriteStateStop

• Switching is done using TrySwitchState
• TrySwitchState returns the current state if called in the WriteStateStart/WriteStartStop window
• Atomically switch from current to next state otherwise
• Further write operations will copy the “new current state” and continue

• Other RT threads use ReadState to access the current state

1 Write Write2 3

WriteStateStart WriteStateStop

TrySwitchState TrySwitchState

20

Lock-free graph state management (4)

jackdmp : LAC 2005, 21/04/05

1 Write Write

1 1 1 2

2

2 2 3

3Server write thread

Server RT thread
1 2 3 4 5 6 7

Graph state number: reader
Cycle number

Switch fails

Switch succeds

Graph state number: writer

21

Lock-free graph state management (5)

jackdmp : LAC 2005, 21/04/05

• Programming model similar to the use of Lock/Unlock/Trylock primitives

• Non RT readers use ReadState in a “retryloop” to check state consistency

• Consequences:
- write operations appear as “asynchronous” for clients
- if needed, they have to be made synchronous by “waiting” for the effective graph state
change (typically needed before notifying a “graph state change”)

22

Client threading model (1)

jackdmp : LAC 2005, 21/04/05

• Current situation:
- a single thread is used for RT code and “notifications” (like graph order change…)
- this thread is RT even when executing notifications…

• Since the server audio RT thread is never stopped anymore, notifications
need to be executed concurrently with the audio process code

23

Client threading model (2)

jackdmp : LAC 2005, 21/04/05

 A two threads model for clients:

• RT thread for audio process code

• Standard thread for notification code

• Is this model compatible with the way current client work?

• Possibly need client adaptation…

24

Client failure handling

jackdmp : LAC 2005, 21/04/05

What happens when clients fail?

• try to keep a “synchronicity” property: avoid to have client loose
some cycle (other strategies are possible)

• possibly avoid completely stopping the audio stream

• let the system possibly recover during a “time-out” value

25

Recovery strategy: a two step process

jackdmp : LAC 2005, 21/04/05

• If the graph has not been completely executed, RT thread may still access
the current state, thus *do not* switch states

• Allow a client to “catch-up” if it fails only for some cycles
- happens typically when abnormal system/scheduler latencies cause
a client to be late
- synchronization primitives “accumulate” activation signal
- a client can possibly execute the pending cycles to catch up
- but data may be lost

• Remove the failing client from the graph and switch to new graph state

26

Recovery strategy: asynchronous mode

jackdmp : LAC 2005, 21/04/05

• “Sub-graph execution” is still possible : a “partial” output buffer can be
produced, the audio stream is not interrupted

• Hope the client can start again and catch up during the time out

• Otherwise the failing client is disconnected: C in this example

Audio In
A

B

C D Audio Out

E F Blocked sub-graph

27

Recovery strategy: synchronous mode

jackdmp : LAC 2005, 21/04/05

• The “wait for graph end” semaphore uses the time out

• When one client is blocked, the whole graph is blocked

• The audio stream will be interrupted during the time out

• Hope the client can start again and catch up during the time out

• Otherwise the failing client is removed from the graph

28

XRun detection

jackdmp : LAC 2005, 21/04/05

• Global XRun : typically driver latency, notified to all clients

• Asynchronous mode : individual client XRun, detected at the
beginning of each cycle

• Synchronous mode : individual client failure will result in a
complete cycle failure, thus only global XRun occur and are notified

29

OSX version (1)

jackdmp : LAC 2005, 21/04/05

• C++ based version: recoded for easier experimentation

• Using mach semaphore for inter-process synchronisation

• Using MIG generated Remote Procedure Calls for server/client
communications

• RT threads are “time-constraint” threads (period, computation,
constraint)

30

OSX version (2)

jackdmp : LAC 2005, 21/04/05

• Integration with CoreAudio : XRun detection…

• Asynchronous mode is preferred:
- time-constraint threads are not supposed to be suspended during the cycle
- actually it works much better (less XRun at small buffer size…)

• API not complete: transport API is still missing

• Tested on dual 1.8 Ghz G5

• Tested with “native” Jack clients: Ardour, SooperLooper, Hydrogen… as well
as “Jackified” CoreAudio ones : iTunes, Max/MSP…

31

Linux version

jackdmp : LAC 2005, 21/04/05

• Using NPTL (Native POSIX Thread Library) futex based inter-process
semaphore (tested by Fons Adriaensen)

• Recode socket based server/client communication

• Or possibly use the new D-BUS system ?

32

Summary

jackdmp : LAC 2005, 21/04/05

. Semi data-flow model for graph execution

• Two execution mode:
- synchronous : less latency but less robust

- asynchronous : one buffer more latency but more robust

• New client threading model

• Client failure recovery strategy

33

Future ?

jackdmp : LAC 2005, 21/04/05

• Comments, feedback on the C++ version…

• What happens with the current C version ?

• What happens with pending Jack evolution: MIDI…. ?

