jackdmp: Jack server for
multi-processor machines




Main objectives

- To take advantage of multi-processor architectures: better use of
available CPUs

jackdmp : LAC 2005, 21/04/05




How ?

- Using a “data-flow” model for client graph execution

jackdmp : LAC 2005, 21/04/05




jackdmp : LAC 2005, 21/04/05




Data-flow model

- Data-flow models are used to express parallelism

- Defined by “nodes’” and “connections” o

jackdmp : LAC 2005, 21/04/05




“Semi’ data-flow model

- Currently tested: “semi” data-flow model where activation go in one
direction only until *all* nodes have been executed

- Execution is synchronized by the audio cycle

Audio In C(2) D(1) Audio Out (1)

jackdmp : LAC 2005, 21/04/05




Graph execution

- Graph activation state is re-initialized at the beginning of each cycle

jackdmp : LAC 2005, 21/04/05




State 1 State 2

D,

b JPLC2) g D(1) g Audio Out (1) PB.C(2) g D(1) g Audio Out (1)

D

CPU1

A(0) A(0)

Audio In C(1) D(1) =4 Audio Out (1) Audio in C(0) D(1) &4 Audio Out (1)
21(0) B(0)

jackdmp : LAC 2005, 21/04/05




Complete graph

- Some clients do not have audio inputs
* A “Freewheel” driver is connected to all clients

- Loops are detected and closed with a “Loop” driver

AQ2)

— e)—>C0)

B(2)

jackdmp : LAC 2005, 21/04/05




Engine cycle: synchronous mode

* Read Input buffers

- Activate graph: reset activation, timing...

ERE

AQ2)

Audio In C(3) 1 D(2) Audio Out
3103 (1)

FW Out

jackdmp : LAC 2005, 21/04/05




Engine cycle: asynchronous mode

- Read Input buffers

- Write output buffers from the previous cycle

ERE

AQ2)

Loop Out_

C(3) - D(2) Audio Out
B(2) ‘ (1)

_FWIn

FW Out

jackdmp : LAC 2005, 21/04/05



Engine cycle : freewheel mode

- Disconnect audio driver from the
clients, connect to FW out

S
A(2)
Audio In

B(1) CB) 51.D(?) Audio Out

FW Out (4)

jackdmp : LAC 2005, 21/04/05




“Lock-based” graph state
management

- The graph is “locked” whenever a read/write operation access it

jackdmp : LAC 2005, 21/04/05




“Lock-free” graph state management

- Avoid to lock the graph

jackdmp : LAC 2005, 21/04/05




What is “lock-free” programming?

« Avoid mutual exclusion when several threads access a data structure

jackdmp : LAC 2005, 21/04/05




Example

- Implementing AtomicAdd using CAS:

int AtomicAdd(int* value, int amount

jackdmp : LAC 2005, 21/04/05



Lock-free graph state management (1)

- Graph state (typically port connections) is shared between the server
and clients

- Only one writer thread in the server: (B)

jackdmp : LAC 2005, 21/04/05




Lock-free graph state management (2)

- Using two separated graph states

jackdmp : LAC 2005, 21/04/05




Lock-free graph state management (3)

- Write operations are “protected” using WriteStateStart and WriteStateStop

- Switching is done using TrySwitchState
- TrySwitchState returns the current state if called in the WriteStateStart/WriteStartStop window

jackdmp : LAC 2005, 21/04/05




Lock-free graph state management (4)

Server write thread

3 Graph state number: writer

jackdmp : LAC 2005, 21/04/05




Lock-free graph state management (5)

- Programming model similar to the use of Lock/Unlock/Trylock primitives

jackdmp : LAC 2005, 21/04/05




Client threading model (1)

« Current situation:

- a single thread is used for RT code and “notifications” (like graph order change...)
- this thread is RT even when executing notifications...

jackdmp : LAC 2005, 21/04/05




Client threading model (2)

—} A two threads model for clients:

jackdmp : LAC 2005, 21/04/05




Client failure handling

What happens when clients fail?

jackdmp : LAC 2005, 21/04/05




Recovery strategy: a two step process

- If the graph has not been completely executed, RT thread may still access
the current state, thus *do not* switch states

jackdmp : LAC 2005, 21/04/05




Recovery strategy: asynchronous mode

- “Sub-graph execution” is still possible : a “partial” output buffer can be
produced, the audio stream is not interrupted

Audio In Audio Out

jackdmp : LAC 2005, 21/04/05




Recovery strategy: synchronous mode

- The “wait for graph end” semaphore uses the time out

- When one client is blocked, the whole graph is blocked

jackdmp : LAC 2005, 21/04/05




XRun detection

- Global XRun : typically driver latency, notified to all clients

jackdmp : LAC 2005, 21/04/05




OSX version (1)

- C++ based version: recoded for easier experimentation

* Using mach semaphore for inter-process synchronisation

jackdmp : LAC 2005, 21/04/05



OSX version (2)

- Integration with CoreAudio : XRun detection...

- Asynchronous mode is preferred:

- time-constraint threads are not supposed to be suspended during the cycle

jackdmp : LAC 2005, 21/04/05



Linux version

- Using NPTL (Native POSIX Thread Library) futex based inter-process
semaphore (tested by Fons Adriaensen)

jackdmp : LAC 2005, 21/04/05




Summary

. Semi data-flow model for graph execution

jackdmp : LAC 2005, 21/04/05




Future ?

- Comments, feedback on the C++ version...

jackdmp : LAC 2005, 21/04/05




