
Distributed time-centric APIs with CLAPI

Paul Weaver and David Honour
Concert Audio Technologies Ltd.

Reading, UK
{paul, david}@concertdaw.co.uk

Abstract

Distributed control of applications by multiple si-
multaneous devices has traditionally been achieved
via protocols such as MIDI or OSC. These simple
protocols require additional semantics, often com-
municated out of band, in order to construct mean-
ingful APIs.

We present the Concert Light-weight API
(CLAPI) framework: a session-based pub/sub API
framework that aims to simplify the definition and
usage of semantic, time-centric distributed controls.

Keywords

API, Distributed, Pub/Sub, Semantics, Introspec-
tion.

1 Introduction

The Concert Light-weight API framework
(CLAPI) is one component of our larger dis-
tributed DAW project. It grew from our need
to control an audio engine from a heterogeneous
mix of clients simultaneously, with event-driven
feedback of the evolving state of the system.

1.1 Open Sound Control

Our original efforts sought to build semantics
on top of Open Sound Control (OSC) [Wright,
2002]. We had hoped to use OSC to communi-
cate instructions and state across the network.
However, we ran into some issues with that ap-
proach:

• TCP/session-oriented support was lacklus-
tre. This caused problems, for example,
when considering TLS/authentication.

• Establishing bidirectional communication
was hard (only OSC servers can receive
messages), which would complicate NAT
traversal.

• The semantics around variable length lists
of values weren’t standardised (if they were
even present at all).

• Only OSC bundles could be timestamped
(c.f. individual messages) and bundles
could be nested. This meant we couldn’t
always derive timing information when re-
quired.

• Bundle nesting also meant we had trouble
building sensible error semantics.

• The dispatch rules provided by existing li-
braries weren’t particularly dynamic.

In other words, whilst OSC is a perfectly good
protocol, it did not fit our pattern of compo-
nent communication as well as we’d have hoped.
This led us to consider the problem domain
more broadly, and start experimenting with our
own API protocol/framework.

2 Network API Paradigms

Before we consider our specific API require-
ments, we will briefly discuss three approaches
for controlling remote systems. We consider
both user-facing controllers, such as hardware
devices or software GUIs, and autonomous sys-
tems connected to the network.

2.1 Fire and Forget

Conceptually, unidirectional protocols like OSC
and MIDI [MIDI manufacturers association,
1996] are very simple. Once a connection has
been established, control data is transmitted
from the client (the party triggering the opera-
tion) to the server (the party doing the work)
when an action is desired. For example, MIDI
sends explicit instructional events like “Note
On”, which can be fairly directly translated into
method calls on an instrument or captured by
a recording device for later playback.

OSC is similarly intended to be used in an
instruction-centric way, albeit that it is more
agnostic in its design (no specific instruction-
s/methods are defined in the protocol itself).
Its human-readable metadata also offer a sub-



stantially more direct representation of seman-
tic intent.

The unidirectionality of these protocols has
some implications. They do not, for instance,
provide a mechanism for applications to report
errors. This is assumed to be noticed “out of
band”, frequently by the user. This “fire and
forget” mentality implies, in the absence of such
feedback semantics, a controller/executor rela-
tionship between the components of the system.

There have been attempts to create feedback
semantics for these protocols [Portner, 2017],
but they are far from universally supported.

Unidirectionality has the additional conse-
quence that every receiver must handle (even
if only by discarding) the union of all possible
messages, due to the sender being unable to de-
termine the recipient’s capabilities.

2.2 Remote Procedure Calls and
Request/Response

The most common kind of network API
paradigm arranges the exchanges between client
and server like that of a local function call: a
request is made by the client to named method
(“endpoint”) on the server with some arguments
and a response is received synchronously after
the action is completed.

The most widespread example of this re-
quest/response pattern is HTTP [IETF, 1999],
and many remote procedure call (RPC) API
frameworks are based on top of it [Winer, 1999;
W3C, 2000]. However, HTTP itself is an RPC
protocol in its own right, with a fixed set of ac-
tions (HTTP methods such as GET, POST etc.)
with their own arguments (headers), semantics
and responses (exit code and potential body).

Feedback to method is improved over unidi-
rectional communication as the client does not
have to assume that the invocation was suc-
cessful. This means that state can be kept in
sync without any out-of-band communication,
at the expense of more complicated client side
handling.

The Representational State Transfer (ReST)
philosophy [Fielding, 2000], of which HTTP is
an embodiment, attempts to limit the prolifera-
tion of ad-hoc methods by structuring requests
to the server in terms of resources, with a fixed
set of methods providing predictable behaviours
on those resources.

Formalisms like JSON schema [Andrews/I-
ETF, 2017], and HAL [Kelly, 2011], aim to aid
discoverability and introspection by building on

top of ReST principles.

2.3 Publish/Subscribe

Another form of API that has been gaining trac-
tion, particularly in distributed systems, is the
publication/subscription (pub/sub) model.

In APIs of this type clients (subscribers) com-
municate to providers (publishers) which data
they wish to be informed about. Any subse-
quent updates about the data are then sent to
the subscribers who have chosen to be notified.

Most commonly, pub/sub APIs are very scal-
able message queuing systems [ISO/IEC, 2014;
RabbitMq, 2018; MQTT, 1999; OASIS, 2015;
Hintjens et al., 2014a; Hintjens et al., 2014b],
and clients connect to an API broker, rather
than to the source of the data directly.

3 CLAPI’s Paradigm

We introduced each of the above network API
paradigms because CLAPI has a mixture of fea-
tures from all of them.

At its heart, CLAPI is an idempotent pub-
/sub API framework. Providers publish state
updates to an API broker (the “Relay”) and in-
terested clients subscribe to subsets of that state
to receive updates.

Unlike traditional message queues, the Relay
keeps a local cache of the application state in
memory, so that subscribers are notified of the
current state of data when they subscribe as
well as any future updates.

CLAPI, however, is not just a broadcast sys-
tem. Just as in traditional “fire and forget” sys-
tems, clients can push state update messages of
their own, and the Relay forwards them to the
provider of an API. Responses to these messages
are not received synchronously, as in regular
RPC, but rather through existing subscriptions.

These state update semantics give us a nice
mix of properties for building an event-driven
distributed application. Furthermore, CLAPI
incorporates discoverability, introspectability
and validation into the API framework from the
ground up.

In the next sections we detail the mechan-
ics of CLAPI and continue to contrast it with
the three prevailing paradigms we have covered
above.

4 Data model

The data communicated by CLAPI are con-
ceptually held in the leaf nodes of a tree and
are addressed by paths of names, such as



/api/version. The container nodes can also
be addressed, e.g. /api, and can be thought of
as containing data about the names and order-
ing of their children.

Each top level path (e.g. /api) is handled as
an isolated API namespace and is “owned” by a
single client, who is referred to as the provider
of that API. The provider may not subscribe
to their own API, but may subscribe to other
APIs over the same connection. Other clients
cannot directly modify the provider’s API, but
can publish update messages which are vali-
dated and forwarded to the provider only for
handling.

Before a provider can publish any data, it
must provide a collection of types that fully
specify the form of the data at every path. Un-
like most other API frameworks, this schema
is also event-driven and updates can be pub-
lished at any time. This allows providers, for
instance, to expose only session-loading controls
until a session is selected, or to defer providing
type information for a plugin until after it has
loaded.

4.1 Types of Time

There are two notions of time, often not ex-
plicitly distinguished, in session-based audio ap-
plications: wall-clock time and project time.
CLAPI distinguishes between them explicitly.

Wall-clock time is the time we experience—
the one shown by most clocks and watches.
It is monotonically increasing and cannot be
stopped.

Project time is the time between the start of
the recorded work and an event occurring. It
is mapped to wall-clock time by playback. This
is useful for talking about the relative positions
of events that will occur during playback (for
parameter automation, for instance).

The values at the leaves of a CLAPI tree can
change over project time, or they may be fixed.
If the data may change, we refer to the node as
a time series of time points. Time points consist
of a pair of time value and tuple of data values,
and are indexed in the series by UUID so that
we limit the impact of messages crossing on the
wire.

Times are stored in an NTP-inspired manner
as a pair of 64- and 32-bit unsigned integers
representing seconds past the Unix epoch and
the sub-second fraction respectively.

The structure of a CLAPI tree is fixed over
project time. Changes to both tree structure

Name Constraints
enum Option names (required)
time
word32 Bounds
word64 Bounds
int32 Bounds
int64 Bounds
string Regular expression
ref Type name (required)
list Item schema (required)
set Item schema (required)
ordSet Item schema (required)
maybe Item schema (required)

Table 1: Value schema types

and project-time data can be made at any point
in wall-clock time, and are always applied im-
mediately.

4.2 Schema

Leaf nodes in CLAPI are referred to as tuples,
and consist of either a single heterogeneously
typed tuple of values, or a time series thereof if
the value is to change over project time.

Container nodes can either be structs (with a
fixed set of heterogeneously-typed children) or
arrays (with a variable set of homogeneously-
typed children).

Because each of these entities has different
constraints, there are three kinds of type defini-
tion in CLAPI, as detailed below.

4.2.1 Tuples

The type definition for a tuple consists of a
documentation string, an ordered mapping of
field names to value schema and an interpola-
tion limit.

All documentation in CLAPI is intended for
human consumption when exploring an API,
and has no semantic meaning within the frame-
work.

Each value schema consists of the type of
value accompanied by any constraints on that
type. For example, it is possible to specify that
a value can be any 32-bit integer, or a list of
strings that conform to a particular regular ex-
pression. The supported value types and their
constraint options are shown in table 1. Note
that container schema like list are defined re-
cursively by constraining with an item schema
that is itself another entry from the table.

CLAPI can express interpolation between the
time-series data points in each tuple tree node.
This means that applications do not have to



send dense streams of data to produce smoothly
varying control values.

If the values in a tuple node can change over
time, each tuple of values in the project-time se-
ries is associated with interpolation parameters.
The permitted interpolations are:

Constant This tuple will remain as specified
until the next time point.

Linear This tuple is linearly interpolated to
the next time point.

Bezier This tuple is interpolated via a Bezier
spline (parameters supplied by the user) to
the next time point.

The interpolation limit, defined in the tuple
type definition, specifies what kinds of interpo-
lation parameters can be specified for each tu-
ple. If the values in the tuple will not change
over project time, the interpolation limit is
specified as uninterpolated. Otherwise, because
each of the above kinds of interpolation is more
expressive than those that precede it, the in-
terpolation limit simply takes the form of the
most expressive interpolation type allowed for
the tuple.

CLAPI does not attempt to restrict the choice
of interpolation limit according to value types—
it is perfectly possible for a provider to publish
an API that states it can do Bezier interpola-
tion on strings, and it’s the provider’s job to do
whatever would be expected of it in that situa-
tion.

4.2.2 Arrays

The type definition for an array consists of a
documentation string, and a type name and per-
mission information about the children of the
array. The type name specifies that any direct
child nodes of this container node will be of the
named type. We call the permission informa-
tion the liberty of the child nodes. It is selected
from the following enumeration:

Cannot The client cannot supply this data.
Should the client create a new array ele-
ment containing a path with this liberty,
the provider will generate a value for it.

May Paths with this liberty are editable.
Should the client create a new array ele-
ment containing a path with this liberty
without supplying a value the provider will
generate a default value.

Must Paths with this liberty are editable.
Should the client create a new array ele-
ment containing a path with this liberty
they must supply a value.

4.2.3 Structs

The type definition for a struct consists of a
documentation string and an ordered mapping
of child names to pairs of type name and lib-
erty. Structs in the tree must always contain
all their defined children. The liberty value,
however, allows for partial definition of struct
data by clients when inserting structs into ar-
ray containers, which providers must then fill
in. In other words, defining liberty values on
structs allows us to nest structured data within
arrays whilst keeping the semantics around de-
faults and read-only behaviour.

4.3 Attribution

Situational awareness is important in an appli-
cation with collaborative control. That is, we
want to know not only what changes have been
made, but by whom. CLAPI attaches an at-
tributee to each piece of data and each child in
arrays, in order to keep track of who is doing
what in the session.

4.4 Introspection

Because providers must publish a collection of
types that fully specify the type of every path in
their tree of data, and because the Relay pub-
lishes type information about the root node that
contains all the providers’ API namespaces, it is
possible to explore the entire CLAPI data space
beginning with a single subscription to the root
node.

This means that CLAPI APIs are both dis-
coverable and self-documenting, with a limited
and consistent set of semantics—desirable prop-
erties we detailed in our brief discussion of ReST
(section 2.2).

Type assignment messages are sent to clients
when they first subscribe to a path to prevent
them from having to infer the type of a path by
traversing down from the root node type.

4.5 Consistency

Data updates received by clients must always
lead to a self-consistent tree state. For example,
tuples must contain data of the correct type,
and data cannot be assigned to paths that are
not reported to be contained in a parent node.

Therefore, multiple changes may be commu-
nicated together and applied atomically. This



is similar to bundles in OSC. Because of the dy-
namism of our type system, it is often required
that type changes are accompanied by corre-
sponding data changes.

The kinds of operations that can be per-
formed in each set of changes differs with re-
spect to client role and communication direc-
tion, due to the restrictions laid out in section 4.
The kinds of information that can be transmit-
ted between each party are outlined in table 2.

Given these consistency restrictions, and our
general data type constraints, we include se-
mantics for error reporting in our message ex-
change. Error message strings are keyed in re-
lation to the API entity to which they pertain.
We call this key the error index and it can take
one of the following forms:

Global The error is not specific to any partic-
ular piece of data (e.g. an error decoding a
message).

Type The error is specific to a type (e.g. refer-
encing a type name that does not exist).

Path The error is specific to a path (e.g. at-
tempting to assign invalid project-time-
global data, or changing the child keys of a
struct).

TimePoint Indices of this type contain the
path and UUID for the point to which the
error pertains (e.g. attempting to assign in-
valid data to a specific point in a time se-
ries).

5 Other concerns

5.1 Time

Sometimes it is important for a client to know
when an event occurred even if that client
was not connected when that event happened.
CLAPI messages are timestamped to high preci-
sion so that the Relay may present its own API
with information about the time differences be-
tween clients.

5.2 Topology in Larger Deployments

API providers can subscribe to other APIs
within the same Relay, or even make connec-
tions to other Relays in order to collect infor-
mation about remote systems that they may
then choose to expose. This allows the for-
mation of substantially more complex topolo-
gies withut the requirement for consensus algo-
rithms in CLAPI.

6 Ecosystem

Our current implementation of CLAPI is writ-
ten in Haskell. We have written library code
that implements building blocks required to
write a CLAPI application [Concert Audio
Technologies, 2018b], including types for values,
definitions and messages, as well as serialisation.
We have implemented the Relay application us-
ing the library.

We have produced a dummy API provider in
Haskell for testing purposes. The audio engine
component of our application is currently writ-
ten in a mixture of C and Haskell, with the
Haskell portion providing the high-level API in-
teraction and control plane.

We are looking to provide a framework for
creating HTML5/WebSocket interactive fron-
tends for CLAPI applications. These take the
role of clients in the solution. This component
is in the early stages of development at the time
of writing [Concert Audio Technologies, 2018a].

We hope that the high degree of type intro-
spection possible with CLAPI can assist in cre-
ating a UI by allowing the dynamic generation
of widgets for controls. This should mean that
clients and providers do not need always to be
kept in tight version synchronisation. We aim to
blend this dynamism with some explicit layout
design in order to provide useful, customisable
interfaces.

7 Future

We are currently prototyping our distributed
DAW on top of the CLAPI framework. The
design of CLAPI is heavily influenced by what
we are trying to achieve in our application and
vice versa. As both the application and CLAPI
are still under very active development, we ap-
preciate that some details may change between
the time of writing and the conference.

We are curious as to whether the mixed-
paradigm approach and features like validation,
discoverability and introspection, which we have
tried to incorporate in the CLAPI framework,
are applicable to a wider range of applications
outside our problem domain. We’d also like to
explore further how these features impact the
design of applications, and whether there are
any technical considerations we may have over-
looked in CLAPI’s design.

Ultimately, we hope that CLAPI will be of
use to the community, either directly, or by
stimulating discussion about the kind of high-
level features we want in our APIs in the future.



Definitions Type Assignments Data Updates Errors
Relay→Client • • • •
Client→Relay •
Relay→Provider • •

Provider→Relay • • •

Table 2: Information each role can communicate to others in CLAPI

References

H. Andrews/IETF. 2017. Json schema
specification. http://json-schema.org/
specification.html.

Concert Audio Technologies. 2018a.
A Prototypical CLAPI web GUI.
https://github.com/foolswood/elmweb.

Concert Audio Technologies. 2018b. Clapi.
https://github.com/concert/clapi.

Roy Fielding. 2000. Architectural Styles and
the Design of Network-based Software Archi-
tectures. Ph.D. thesis, University of Califor-
nia, Irvine.

Pieter Hintjens et al. 2014a. Zeromq dis-
tributed messaging. http://zeromq.org/.

Pieter Hintjens et al. 2014b. Ze-
romq message transport protocol.
https://rfc.zeromq.org/spec:23/ZMTP.

IETF. 1999. Hypertext Trans-
fer Protocol 1.1 (RFC 2616).
https://tools.ietf.org/html/rfc2616.

ISO/IEC. 2014. ISO/IEC 19464
- Advanced Message Queuing Pro-
tocol (AMQP) v1.0 Specificiation.
https://www.iso.org/standard/
64955.html.

Mike Kelly. 2011. Hypertext application lan-
guage specification. http://stateless.co/
hal specification.html.

MIDI manufacturers associa-
tion. 1996. MIDI 1.0 standard.
https://www.midi.org/specifications/
item/the-midi-1-0-specification/.

MQTT. 1999. MQTT homepage.
http://mqtt.org/.

OASIS. 2015. Mqtt version 3.1.1 plus
errata 01. http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

Hanspeter Portner. 2017.
OSC additional semantics.
https://open-music-kontrollers.ch/
osc/about/.

RabbitMq. 2018. Rabbitmq
amqp implementation homepage.
https://www.rabbitmq.com/.

W3C. 2000. Simple object ac-
cess protocol 1.1 specification.
https://www.w3.org/TR/soap/.

Dave Winer. 1999. Xml-rpc specification.
http://xmlrpc.scripting.com/spec.html.

Matt Wright. 2002. Open
sound control 1.0 specification.
http://opensoundcontrol.org/spec-1 0.


