
Ableton Link – A technology to synchronize music software

Florian Goltz
Ableton AG

Schönhauser Allee 6-7
10119 Berlin,

Germany

Abstract
Ableton Link is a technology that synchronizes mu-
sical beat, tempo, phase, and start/stop commands
across multiple applications running on one or more
devices. Unlike conventional musical synchronization
technologies, Link does not require master/client
roles. Automatic discovery on a local area network
enables a peer-to-peer system, which peers can join
or leave at any time without disrupting others. Mu-
sical information is shared equally among peers, so
any peer can start or stop while staying in time, or
change the tempo, which is followed by all other
peers.

Keywords
Audio, Network, Peer-to-peer, Time, Synchronization

1 Overview of Common Sync
Technologies

Synchronizing media devices has been a challeng-
ing task for a number of decades. This section
provides an overview on existing standards and
approaches. No single sync technology has been
able to establish itself as a universal standard.
Depending on the context and actual require-
ments of a scenario, one ore more of the existing
standards are used.

1.1 SMPTE
In 1967, the Society of Motion Picture and Tele-
vision Engineers released a standard for the syn-
chronization of media systems [Rees, 1997]. In
this standard, time is described as an absolute
value separated into hour, minute, second, and
frame. A master machine generates the clock sig-
nal and sends it to a variable number of clients.
The clock signal can be sent across a dedicated
channel or embedded as metadata within the
media. SMPTE is still widely used today for
synchronization of video and audio systems.

1.2 AES/EBU
The Audio Engineering Society and the Eu-
ropean Broadcasting Union published the

AES/EBU standard in 1985 [Laven, 2004]. It
provides the same information as SMPTE but
is optimized for audio equipment. AES/EBU
can use a wide variety of transports, from XLR
cables to S/PDIF.

1.3 MTC
Midi Time Code was released in 1987 and em-
beds the same data as AES/EBU, but is opti-
mized to be transported via MIDI sysex mes-
sages. [Meyer and Brooks, 1987]

1.4 MIDI Beat Clock
Unlike the above standards, MIDI Beat Clock
is a tempo-dependent signal. It consists of 24
pulses per quarter note. This is probably the
most widely used sync signal in music software
and hardware today.

1.5 JACK Transport
The Jack Audio Connection Kit Transport
API [JackAudio, 2014] allows sharing sample ac-
curate timecode between its clients. While Jack
itself acts as a timecode master for its clients,
Jack Transport allows all its clients to start and
stop transport or seek the timeline. Using Net-
Jack [Hohn et al., 2009], it is possible to connect
multiple clients on a local area network to a mas-
ter. This way transport controls can be shared
among multiple applications running in different
computers. NetJack however only allows audio
output on the master machine.

1.6 OSC Sync
An OSC-based synchronization scheme has been
proposed [Madgwick et al., 2015] which has a
master send clock messages on a regular basis.
This scheme targets networked use cases such as
laptop orchestras.

1.7 Summary
All of the above technologies share the common
approach of having a master provide a clock



signal to a number of clients, though the repre-
sentation of time varies. Setting up such systems
involves routing the signal from the master to
the clients and/or configuring the master and
clients to send and receive via the appropriate
channels. In a master/client system, the master
application is usually the only one that has con-
trol over tempo and transport state. As soon
as the master fails, or the channel breaks, the
clients are in an undefined state.

2 Link Design Criteria
Three criteria drove the development of Link:

• Remove the restrictions of a typical mas-
ter/client system.

• Remove the requirement for initial setup.

• Scale to a wide variety of music applications.

These goals are achieved by designing a peer-
to-peer system that sends multicast messages on
a local network. Parameters are controlled mu-
tually and all peers converge to the same shared
timing information. The timing information is
designed in such a way that peers with different
capabilities such as a one-bar-looper or a fully-
featured DAW can map the shared information
to their specific needs. If peers are connected to
a Local Area Network there is no further setup
required.

3 Multicast Discovery
Link peers communicate using UDP multicast
messages in a local area IP network. Each peer
regularly sends messages that contain its unique
peer ID and a snapshot of its current musical
time. This way all peers and their state is known
by each peer on the local network.

The incoming messages are processed by every
receiver according to the same set of rules. If a
receiver decides to adapt the timing information
it has received, it updates its timing information
and broadcasts accordingly. As a result of this
peer-to-peer messaging, all peers on a network
always converge to the same shared description
of the current musical time.

Link regularly scans the available network in-
terfaces on the host computer. When a new
interface is discovered, multicast messages are
sent and received on it as well. As a result, a
Link peer that is connected to multiple networks
can act as a relay: when the timing informa-
tion from incoming messages on one interface

host time

be
at

tim
e

timeline A
timeline B

Figure 1: The new timeline B crosses the old
timeline A at the host time of the tempo change

is adapted, it is sent out on all available inter-
faces. This way, timing information is shared
with peers that are not directly connected.

4 Timeline
Link describes the timing information of the
session at a point in time as a tuple of three
values: the host time that the hardware provides,
a corresponding beat time, and a tempo that
describes the change of beat time over host time.
This tuple of values is referred to as a timeline.
The system’s beat time for a given host time
and vice-versa can be calculated with a simple
linear equation: BeatTime/HostTime = Tempo

When a peer intends to change the tempo
at a specific host time, it creates a new time-
line, describing a linear equation crossing the de-
sired time point, and shares it with the network.
When initializing Link, each peer creates such a
timeline and immediately shares it with the net-
work. This timeline then gets either adapted by
other peers on the network, or the peer adapts
a timeline it is receiving.

5 Host Time
Desktop operating systems usually provide calls
that allow applications to ask for the current host
time. Examples are clock gettime() [IEEE,
2008], mach absolute time() [Apple, 2005] or
QueryPerformanceCounter() [Microsoft, 2001].
The time stamps provided by those calls are
based on information that the CPU or special-
ized hardware provides. Their quality can differ
significantly in terms of accuracy and reliability.
Additionally, the speed of the clock may depend
on factors such as temperature and thus vary



host time

gl
ob

al
ho

st
tim

e

Figure 2: Measuring global host time against
local host time in bursts

over time.
To be able to derive the session’s beat time

from the current host time, it is important that a
peer has accurate knowledge of the system’s host
time. Some audio APIs provide accurate timing
information in the audio processing callback.
On other systems, it is necessary to query the
systems’ host time in the audio callback and filter
it to get reliable information. The reference time
Link uses is the ”host time at speaker”, which
refers to the time the audio is actually perceived
by the listener. To calculate this, software and
hardware latencies must be incorporated into
the host time provided by the system.

6 Global Host Time
Link establishes a reference host time that is
shared between all peers in a session. This is
referred to as the global host time. When a
peer initializes Link and starts the initial time-
line, its own host time is used as the reference.
Every peer joining the session uses ping-pong
messaging to calculate the offset of its own host
time against this reference time. The result of
this measurement, is a function that can con-
vert the local host time of the peer to the global
host time and vice versa. globalHostTime =
XForm.hostToGHost(localHostTime)

As soon as a peer knows the global host time,
it can function as a measurement endpoint for
other peers. As a result, the peer that originally
founded the session can leave, while the global
host time is still maintained. Peers regularly
measure their host time’s offset to the global
host time to compensate for speed variations.

0 4 8 12 16 20
beat time

Figure 3: Alignment of timelines with quanta of
4, 8 and 3 beats

7 Quantum
As mentioned above, one of the requirements for
Link is to scale to music applications with differ-
ent capabilities. This means it should work for
applications that have different representations
of musical time, e.g., loopers that only provide a
simple one bar loop, or full featured DAWs that
sequence a beat timeline and support different
musical measures.

Link takes the approach of allowing each
client to map the shared timeline to its own
purpose, e.g., a looper can map Link’s time-
line to a position within its loop by call-
ing phaseAtTime(localHostTime, quantum).
The quantum provided by the client describes
the alignment grid in beats. A looper with
a one bar loop in a 4/4 measure would pro-
vide a quantum of 4. Link also provides
beatAtTime(localHostTime, quantum) which
provides a monotonic timeline in a way that
would typically be used by a sequencer.

Link guarantees that clients using the same
quantum are phase synchronized. Peers with
different quanta can form a polyrhythmic Link
session, e.g., a peer using a quantum of 3 and
another peer using a quantum of 4 would be
share a downbeat every 12 beats.

8 Transactional API
Link provides lock-free capture() and commit()
functions to be used in the audio thread, and a
similar thread-safe pair of functions to be used
in other threads.

The capture functions provide a snapshot of
the Link session. This can be used to align the



client’s audio to the shared timeline. In case
the client wants to change the timeline, e.g., to
change the tempo, the captured state can be
modified and committed back to Link using the
commit function. The new state will then be
sent to the network and merged with the other
peers’ states.

9 Resources
Link is available as a header only C++11 li-
brary. It is dual licensed under the GNU-GPL
and a proprietary license. The source code
is currently available at http://github.com/
ableton/link. Explanation of the concepts
used in Link and technical documentation on the
API can be found at http://ableton.github.
io/link.

10 Conclusions
Existing technologies to synchronize music de-
vices, as described in Section 1, are all based
upon a master/client communication protocol.
It is the master’s responsibility to broadcast a
signal according to the specification. The clients
receiving the signal are dependent on the com-
munication channel not being interrupted.

Link introduces a different approach to syn-
chronize music devices. It creates a peer-to-peer
network where all peers share a global time refer-
ence and a beat timeline. Any peer can introduce
changes to the timeline in order to change the
state of the session. To establish and maintain
the shared state, it is important that all peers
follow the same set of rules. In this sense, Link
is not just a communication protocol, but a set
of rules for multiple actors to create a shared
musical session.

References
Apple. 2005. https://developer.apple.
com/library/content/qa/qa1398/_index.
html. Accessed: 2018-03-06.

Torben Hohn, Alexander Carôt, and Christian
Werner. 2009. Netjack - Remote music collab-
oration with electronic sequencers on the In-
ternet. LAC 2009, http://lac.linuxaudio.
org/2009/cdm/Saturday/22_Hohn/22.pdf.
Accessed: 2018-04-30.

IEEE. 2008. POSIX 1003.1-2008.
http://pubs.opengroup.org/onlinepubs/
9699919799/functions/clock_getres.
html. Accessed: 2018-03-06.

JackAudio. 2014. http://www.jackaudio.
org/files/docs/html/transport-design.
html. Accessed: 2018-04-30.
Philip Laven. 2004. Specification of the dig-
ital audio interface. https://tech.ebu.ch/
docs/tech/tech3250.pdf. Accessed: 2018-
03-06.
Sebastian Madgwick, Thomas Mitchell, Car-
los Barreto, and Adrian Freed. 2015. Sim-
ple synchronisation for Open Sound Con-
trol. http://eprints.uwe.ac.uk/26049/1/
03FinalSubmission.pdf. Accessed: 2018-03-
06.
Chris Meyer and Evan Brooks. 1987. MIDI
Time Code and cueing. https://web.
archive.org/web/20110629053759/http:
//web.media.mit.edu/˜meyers/mcgill/
multimedia/senior_project/MTC.html.
Accessed: 2018-03-06.
Microsoft. 2001. Acquiring high-resolution
time stamps. https://msdn.microsoft.
com/en-us/library/windows/desktop/
dn553408. Accessed: 2018-03-06.
Philip Rees. 1997. Synchronisation and
SMPTE timecode. http://www.philrees.
co.uk/articles/timecode.htm. Accessed:
2018-03-06.

http://github.com/ableton/link
http://github.com/ableton/link
http://ableton.github.io/link
http://ableton.github.io/link
https://developer.apple.com/library/content/qa/qa1398/_index.html
https://developer.apple.com/library/content/qa/qa1398/_index.html
https://developer.apple.com/library/content/qa/qa1398/_index.html
http://lac.linuxaudio.org/2009/cdm/Saturday/22_Hohn/22.pdf
http://lac.linuxaudio.org/2009/cdm/Saturday/22_Hohn/22.pdf
http://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html
http://www.jackaudio.org/files/docs/html/transport-design.html
http://www.jackaudio.org/files/docs/html/transport-design.html
http://www.jackaudio.org/files/docs/html/transport-design.html
https://tech.ebu.ch/docs/tech/tech3250.pdf
https://tech.ebu.ch/docs/tech/tech3250.pdf
http://eprints.uwe.ac.uk/26049/1/03FinalSubmission.pdf
http://eprints.uwe.ac.uk/26049/1/03FinalSubmission.pdf
https://web.archive.org/web/20110629053759/http://web.media.mit.edu/~meyers/mcgill/multimedia/senior_project/MTC.html
https://web.archive.org/web/20110629053759/http://web.media.mit.edu/~meyers/mcgill/multimedia/senior_project/MTC.html
https://web.archive.org/web/20110629053759/http://web.media.mit.edu/~meyers/mcgill/multimedia/senior_project/MTC.html
https://web.archive.org/web/20110629053759/http://web.media.mit.edu/~meyers/mcgill/multimedia/senior_project/MTC.html
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408
http://www.philrees.co.uk/articles/timecode.htm
http://www.philrees.co.uk/articles/timecode.htm

	Overview of Common Sync Technologies
	SMPTE
	AES/EBU
	MTC
	MIDI Beat Clock
	JACK Transport
	OSC Sync
	Summary

	Link Design Criteria
	Multicast Discovery
	Timeline
	Host Time
	Global Host Time
	Quantum
	Transactional API
	Resources
	Conclusions

