
MRuby-Zest: a Scriptable Audio GUI Framework

Mark McCurry
DSP/ML Researcher

United States of America
mark.d.mccurry@gmail.com

Abstract
Audio tools face a set of uncommon user interface
design and implementation challenges. These con-
straints make high quality interfaces within the open
source realm particular difficult to execute on vol-
unteer time. The challenges include producing a
unique identity for the application, providing easy
to use controls for the parameters of the application,
and providing interesting ways to visualize the data
within the application. Additionally, existing toolk-
its produce technical issues when embedding within
plugin hosts. MRuby-Zest is a new toolkit that was
build while the ZynAddSubFX user interface was
rewritten. This toolkit possesses unique character-
istics within open source toolkits which target the
problems specific to audio applications.

Keywords
Interface Design, LV2, VST, Ruby

1 Introduction
MRuby-Zest was created to address long stand-
ing issues in the ZynAddSubFX[1] user inter-
face. The MRuby-Zest framework was built
with 5 characteristics in mind.

Scriptable: Implementation uses a first class
higher level language

Dynamically Resizable: Fluid layouts which
do not have any fixed sizes

Hot Reloadable: Reloads a modified imple-
mentation without restarting

Embeddable: Can be placed within another
UI without conflicts

Maintainable: Relatively simple to read and
write GUI code

Several examples of the toolkit can be seen in
Fig. 1, 2, 3, and 4.

Figure 1: Zyn-Fusion Add Synth

1.1 History
Historically the ZynAddSubFX interface was
written in FLTK[2] and the user interface pro-
cessed a number of usability issues as well as
look and feel consistency issues. Additionally
the multi-window FLTK design ZynAddSubFX
previously used did not embed cleanly into plu-
gin hosts. Mid 2014 a series of mockups by
posted online by Budislav Stepanov1. The
mockups provided an overhaul of the workflow
of the GUI, but it was a new design which did
not make use of any of the existing widgets, nor
widgets available in other toolkits. Since the
new interface was not small some tools would
be needed to increase the speed of development.

Figure 2: Zyn-Fusion Kit Editor

The first prototypes were written in the Qt
Meta Language (QML)[3; 4] QML is a domain

1http://www.kvraudio.com/forum/viewtopic.php?
f=47&t=412173

http://www.kvraudio.com/forum/viewtopic.php?f=47&t=412173
http://www.kvraudio.com/forum/viewtopic.php?f=47&t=412173


Figure 3: Zyn-Fusion Oscillator

specific language commonly used to describe a
group of components and properties within a
user interface. In addition to purely describing
components, QML can also define callbacks and
new functionality for widgets using a scripting
language. Within Qt, this scripting language is
javascript.

While prototyping ZynAddSubFX’s UI, the
prototype frequently ended up accessing the
C++ to QML layer of Qt which received
much less documentation than the pure QML
layer. Some of the logic/drawing routines for
the program ended up in C++ portion which
couldn’t be effectively hotloaded, which slowed
development. Additionally the barrier between
C++ and Qt’s javascript engine was non-trivial.
Overall, this process highlighted that for the
prototype and the version of QML used:

• QML’s javascript was not sufficiently flexi-
ble when extending widgets

• QML’s layout algorithms did not meet the
requirements of the new design

• None of the QML components were heav-
ily used beyond primitives (rectangles,
component-repeaters, etc)

Figure 4: Zyn-Fusion Pad Synth

QML at a high level was useful, concise,
and easy to dynamically manipulate. The in-
frastructure around it was limiting for the Zy-
nAddSubFX use case. So, at this stage of proto-
typing the question was posed: "Why does QML

need to be tied to Qt and the specific scripting
language of Javascript?"

QML within Qt was script-able, layout rou-
tines were flexible enough that resize-ability
wasn’t a major issue, and it was built with hot
loading in mind. Per embed-ability, Qt does
not embed well; specifically, loading two plugins
which use different Qt versions (e.g. Qt4/Qt5)
is known to cause issues with symbol name con-
flicts and global variable conflicts. When initial
prototyping was done with QML it was acknowl-
edged that eventually the project may need to
move away from Qt and MRuby-Zest was born.
MRuby-Zest took the QML language, replaced
the scripting language with Ruby, integrated it
with the nanovg OpenGL rendering library, and
began to leverage parameter metadata that Zy-
nAddSubFX produces via the rtosc library[5].

1.2 Prior Art

The problem of creating a good looking embed-
dable GUI isn’t a new task in the open source
audio realm. Audio plugins are a challenging
design space. Complex information needs to be
presented to a reasonably non-technical audi-
ence in a way that they can quickly understand
how to manipulate it. To facilitate this, an au-
dio plugin needs to differentiate itself from other
applications and provide a consistent and easy
to understand visual and interactive language
for the user to tune.

There’s certainly plenty of tools based upon
more standard toolkits like GTK or Qt. A
few of the open source audio plugin toolkits
include: AVTK[6], robtk[7], fffltk[8], DPF[9],
rutabaga[10], JUCE[11], and a few PUGL based
non-toolkit options also exist in some smaller
applications.

Compared to these toolkits, MRuby-Zest de-
sires to be generally built for larger more com-
plex applications as well as having a distinct
look and feel. Additionally the heavy use of
Ruby scripting makes MRuby-Zest more geared
towards rapid development of a large complex
interface.

2 Implementation

The MRuby-Zest framework is implemented
through a combination of different layers. This
includes QML parsing/processing, OSC commu-
nication, event handling, and the widget classes
themselves.



2.1 QML
QML is a domain specific language commonly
used to describe a group of components within
a user interface. More generally, QML defines
a tree of objects, methods on object instances,
a set of interrelated properties, and bindings
for the properties. Within Qt, QML runs on
Javascript on top of the normal tools that Qt
provides. MRuby-Zest’s QML uses Ruby for
scripting, but otherwise shares most structural
similarities.

Through the use of a dynamic language QML
gains a number of properties which make inter-
face development easier. First and foremost is
the conciseness of the language. Using C++ a
simple widget ends up being rather verbose:

Listing 1: C++ Widget
class SubWidget: public Rectangle
{

public:
SubWidget(void) {

fooVar = "foo";
barVar = true;
structure = new Structure;
model = new Model;
structure−>add_parent(this);
model−>add_parent(this);

}

~SubWidget(void)
{

delete structure;
delete model;

}

string fooVar;
bool barVar;
Structure ∗structure;
Model ∗model;

void fn(string args)
{

cout << args << endl;
structure−>method();

}
};

With ruby methods/callbacks QML would
look virtually the same. Indeed parsing all of
the QML I had written thus far didn’t depend
upon the scripting language at all. With ruby
it was possible to use QML to create something
like:

Listing 2: QML Widget
Rectangle {

id: window

property String fooVar: "foo"
property Bool barVar: true

Structure { id: structure }
Model { id: model }

function fn(args) {
puts args
structure.method()

}
}

And translate it to something similar to:

Listing 3: Ruby Widget Result
class Instance < Rectangle

attr_reader :structure, :model
attr_property(:fooVar, String)
attr_property(:barVar, Bool)

def initialize()
add_child(@structure =

Structure.new)
add_child(@model =

Model.new)
set_property(:fooVar, "foo")
set_property(:borVar, true)

end

def fn(args)
puts args
structure.method

end
end

While this transformation may seem triv-
ial, the organizational structure that QML’s Qt
Modeling Language provides is helpful at under-
standing complex widget hierarchies at a glance.

2.2 Hot-loading
When developing or maintaining a synth a con-
siderable amount of time is spent on improving
the user interface. GUI development can be slow
going work and compared to other tasks it can
be harder to obtain a fast feedback loop. Gen-
erally GUI development in these cases has the
loop of:

1. Build - Compile from source

2. Open - Launch the application



3. Navigate - Get to the part of the applica-
tion which is modified

4. Observe - See how the application behaves

5. Close - Close application

6. Modify - Change behavior

7. Repeat - From step 1 repeat

MRuby-Zest on the other hand makes it pos-
sible to load code into live instances of the user
interface. Hotloading code in MRuby-Zest is
possible since the vast majority of code can be
relatively simply converted to Ruby code and
loaded into the active Ruby VM during execu-
tion. Using hotloading the development loop
becomes:

1. Build - Compile from source

2. Open - Launch the application

3. Navigate - Get to the part of the applica-
tion which is modified

4. Observe - See how the application behaves

5. Modify - Change behavior

6. Repeat - From step 4 repeat until done

7. Close - Exit after desired behavior is ob-
tained

Reducing the feedback loop makes it much
easier to tune graphics, layout, and the feel of
input handling.

2.3 OSC Communications
Different GUI toolkits have different approaches
on communicating state to the rest of the ap-
plication outside of the interface (the back-
end). MRuby-Zest leverages Open Sound Con-
trol (OSC) to communicate to in-process and
out-of-process backends. This submodule is
known as the OSC-Bridge.

The OSC-Bridge controls communication to
the optionally-remote synthesis engine, and pro-
vides metadata for modeling parameters in the
user interface. The OSC interface specifies the
minimum value, maximum value, short names,
tooltips, and other information about param-
eters that can be accessed. Additionally, this
layer provides several mechanisms for tracking
and synchronizing the value of remote param-
eters. These mechanisms abstract away syn-
chronization mechanisms, simplifying the wid-
get programming.

2.4 Drawing model & events

MRuby-Zest is an OpenGL based toolkit which
uses PUGL[12] for platform specific event
handling and nanovg[13] for a drawing API.
OpenGL 2.1 (with the framebuffer extension)
was used to simplify embedding and enable com-
plex animations in future versions. NanoVG was
used to simplify drawing vector graphics, which
were necessary for simplified fluid resizing of the
GUI.

When drawing in the MRuby-Zest toolkit,
widgets are drawn depth first for each layer of
the user interface. These layers are:

• the background - where most widgets are
drawn

• the animation layer - simple drawings ex-
pected to update many times a second

• the overlay - drawing on top of the interface
(e.g. modals/dropdowns)

Overlay

Animation

Background

Figure 5: Framebuffer layers

Since the widgets define strict bounding boxes
for drawing, redrawing can be cheaply done.
First, the damaged part of the altered layer can
be masked. Then, all widgets which intersect
with the layer and damaged region are redraw.
Finally, the three framebuffer layers are redrawn
producing the final GUI.

On the event handling side, MRuby-Zest be-
haves fairly traditionally. At the time of writing
MRuby-Zest responds to:

• Key presses/releases

• Mouse presses/releases

• Mouse drags

• Mouse hovering

• Window resizing



2.5 Widgets
The current version of MRuby-Zest has 182 wid-
gets. These range from simple buttons, la-
bels, and boxes to complex views of parameters.
Two major types of widget that are available in
MRuby-Zest are layout widgets and parameter
controlling widgets.

In MRuby-Zest there are grid pack (Fig. 6),
module pack (Fig. 7), tab pack, vertically
packed, horizontally packed, and other lay-
out specific widgets. Historically the resizing
was taken care of by a constraint layout sys-
tem which solved a set of linear-equations via
GLPK[14], however this approach proved too
computationally expensive and was removed to
maintain a more consistent framerate.

Figure 6: Grid Layout

Figure 7: Control Rows Layout

There are also a wide array of options to rep-
resent parameters. This includes Knobs (Fig. 8),
sliders (Fig. 9), drop downs (Fig. 10), buttons,
plots (Fig. 11), text editors, piano keyboards,
and more.

Figure 8: Knob Widget

Figure 9: Horizontal Slider Widget

Figure 10: Drop down Widget

Figure 11: Envelopes/2D plotting Widget

3 Conclusion
Audio applications are a complex design and
programming domain. Existing toolkits pose
embedding challenges as well as difficulties
in rapid development. MRuby-Zest provides
one new approach to audio plugin GUI devel-
opment and is available at https://github/
mruby-zest/ under a mixed MIT and LGPL li-
cense. Using MRuby-Zest, the ZynAddSubFX
project has been able to build the new Zyn-
Fusion interface. This interface serves as a com-
plex example of the MRuby-Zest framework and
shows that the chosen approach can speed up
development on non-trivial designs.

References
[1] N. O. Paul, M. McCurry, et al., “Zy-

naddsubfx musical synthesizer.” http://
zynaddsubfx.sf.net/, 2018.

[2] B. Spitzak et al., “Fast light toolkit (fltk),”
1998.

[3] H. Nord, E. Chambe-Eng, et al., “Qt - soft-
ware toolkit.” http://qt.io/, 2018.

[4] Q. Contributors, “Qt - software
toolkit.” https://doc.qt.io/qt-5.
10/qtqml-index.html, 2018.

https://github/mruby-zest/
https://github/mruby-zest/
http://zynaddsubfx.sf.net/
http://zynaddsubfx.sf.net/
http://qt.io/
https://doc.qt.io/qt-5.10/qtqml-index.html
https://doc.qt.io/qt-5.10/qtqml-index.html


[5] M. McCurry, “rtosc - realtime safe
open sound control.” https://github.
com/fundamental/rtosc, 2018.

[6] H. van Haaren, “Avtk.” https://github.
com/openAVproductions/openAV-AVTK,
2018.

[7] R. Gareus, “robtk.” https://github.com/
x42/robtk, 2018.

[8] S. Jackson, “Infamous plugins.” https:
//github.com/ssj71/infamousPlugins,
2018.

[9] F. Coelho, “Dpf.” https://github.com/
DISTRHO/DPF, 2018.

[10] W. Light, “Rutabaga.” https://github.
com/wrl/rutabaga, 2018.

[11] “Juce.” https://juce.com/, 2018.

[12] D. Robillard, “Pugl - cross platform
windowing abstraction layer.” https://
drobilla.net/software/pugl, 2018.

[13] M. Mononen, “nanovg - canvas api
for opengl.” https://github.com/
memononen/nanovg, 2018.

[14] A. Makhorin, “Glpk linear programming kit
manual.” http://www.gnu.org/software/
glpk/glpk.html, 2014.

[15] Y. M. Matsumoto et al., “Mruby - embed-
dable ruby interpreter.” https://github.
com/mruby/mruby, 2018.

https://github.com/fundamental/rtosc
https://github.com/fundamental/rtosc
https://github.com/openAVproductions/openAV-AVTK
https://github.com/openAVproductions/openAV-AVTK
https://github.com/x42/robtk
https://github.com/x42/robtk
https://github.com/ssj71/infamousPlugins
https://github.com/ssj71/infamousPlugins
https://github.com/DISTRHO/DPF
https://github.com/DISTRHO/DPF
https://github.com/wrl/rutabaga
https://github.com/wrl/rutabaga
https://juce.com/
https://drobilla.net/software/pugl
https://drobilla.net/software/pugl
https://github.com/memononen/nanovg
https://github.com/memononen/nanovg
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://github.com/mruby/mruby
https://github.com/mruby/mruby

	Introduction
	History
	Prior Art

	Implementation
	QML
	Hot-loading
	OSC Communications
	Drawing model & events
	Widgets

	Conclusion

