Ingen: A Meta-Modular Plugin Environment

David E. Robillard
School of Computer Science, Carleton University
1125 Colonel By Drive
Ottawa ON K1S 5B6
Canada
d@drobilla.net

Abstract

This paper introduces Ingen, a polyphonic modular host
for LV2 plugins that is itself an LV2 plugin. Ingen
is a client/server system with strict separation between
client(s) and the audio engine. This allows for many dif-
ferent configurations, such as a monolithic JACK appli-
cation, a plugin in another host, or a remote-controlled
network service. Unlike systems which compile or ex-
port plugins, Ingen itself runs in other hosts with all edit-
ing facilities available. This allows users to place a dy-
namic patching environment anywhere a host supports
LV2 plugins. Graphs are natively saved in LV2 format,
so users can develop and share plugins with others, with-
out any programming skills.

Keywords
LV2, JACK, plugin, modular, synthesizer

1 Introduction

The Free Software world has long had pow-
erful visual programming environments like
Pure Data [Puckette, 1996], and higher level
modular synthesizers like Alsa Modular
Synth [Nagorni, 2003]. However, most exist-
ing software modular environments (or simply
modulars) do not integrate as well as possible
with other projects. Due to the limitations of
popular plugin APIs, most existing modulars are
primarily designed around built-in infernals, and
use a different interface themselves (e.g. running
only as an application). This situation results in
much effort spent building components that are not
widely useful across applications.

There are several typical forms for audio proces-
sors: a stand-alone software application, a software
plugin, or a remote device. Each has advantages de-
pending on the situation. Remote control is neces-
sary for hardware to integrate with a software envi-
ronment, and increasingly popular for software due
to the pervasiveness of tablets, powerful controllers,
and networks. An ideal system must be controllable
from any location to fit well in all these scenarios.
Consequently, the same must be true of the plugins
hosted within it.

This leads to the elegant conclusion that the ideal
form of a modular plugin host, and the ideal form of
a plugin within it, are one and the same. Ingen is an
exercise in chasing this ideal: a modular host that
has exactly the same external form as the plugins
used within it. The practical benefit of such a design
is that the user can build a device anywhere in the
system where plugins are supported. This makes it
possible to work around limitations in programs or
the lack of an available plugin to solve the necessary
problem. By making it simple for users to share
their creations, the community at large can benefit
from the pool of plugins created by users who would
not have done so if writing code was required.

Ingen takes advantage of the LV2 plugin APT’s
extensibility to achieve these goals. The two have
a symbiotic relationship: when Ingen itself requires
an API advancement, the improvement ideally be-
comes standardised in LV2. Other plugins may then
use this API, resulting in more powerful plugins for
use in Ingen, or other hosts. Likewise, Ingen bene-
fits from advancements originally designed for other
plugins.

This paper introduces Ingen as a useful tool for
users, and shares the general conclusions reached
over the years that led to its design, and conse-
quently the design of many aspects of LV2.

2 Features and Philosophy

2.1 Internals Considered Harmful

Ingen is designed around the principal that generic
plugins should be used wherever possible: internals
are a symptom of an inadequate plugin API. With
an open and extensible specification like LV?2, these
limitations can be addressed so progress needn’t be
stalled. This avoids a walled garden effect where a
large amount of effort is spent on internals that only
work in one program.

The minimalist ideal is for Ingen to have no
internals whatsoever, but currently a few are re-
quired for tasks that are beyond the capabilities of
generic plugins. In particular, LV2 currently lacks

mailto:d@drobilla.net

polyphonic voice control, so the Nofe internal per-
forms voice allocation, sending controls to partic-
ular voices based on MIDI input. Perhaps in the
future there will be sufficient developer interest in
(visibly) polyphonic plugins to develop an LV2 ex-
tension which will eliminate the need for a special
voice allocation internal.

2.2 Messages Considered Wonderful

The common combination of GUI-centric design
and direct memory access between plugins and their
GUISs results in several problems. In particular, a
large subset of many plugins’ functionality is inac-
cessible except via the custom GUI. This severely
limits the power of the system to intelligently au-
tomate or otherwise control plugins. In addition,
shared access to mutable data from multiple threads
is an infamously error-prone situation, made even
more difficult with the addition of real-time require-
ments. It is all too common for a poorly written
GUI to cause audio drop-outs, or crash the plugin
entirely. Direct access to plugin internals is occa-
sionally necessary (for visualisation in particular),
but is an inherently flawed approach to plugin con-
trol in general.

The solution to this problem is a classic one: sep-
arate the plugin and its user interface, and have the
two communicate via messages. If these messages
are meaningful (i.e. not opaque), the plugin can be
controlled in the same way from any source: the
GUI, the host, other plugins, scripts, and so on. Tra-
ditionally, MIDI is used for this purpose, but MIDI
has significant limitations. Ingen supports sending
arbitrary messages between hosted plugins and their
UlIs (including MIDI), and is controlled entirely via
messages itself.

Control via standard and portable messages is the
key to building audio components that can be de-
ployed in many different scenarios. Designing the
system fundamentally around this principle (rather
than “bolting on” partial support for remote control)
ensures that all interfaces to the system enjoy the
same power.

2.3 Polyphony

Though inspired by modular synthesizers, Ingen
does not seek to emulate the limitations of hard-
ware. Polyphony in particular is an important fea-
ture where software has a distinct advantage. This
is an area where extreme minimalism is counter-
productive: though it is possible to build a poly-
phonic synth manually in a monophonic modular
by replicating voices, this is a burden on the user.
Instead, Ingen implements polyphony internally.
Nodes can simply be flagged as polyphonic, and

they will be replicated as necessary. Polyphony! is
a property of the containing graph, i.e. if a graph
has polyphony p, all nodes in that graph have either
1 or p voices. Any connection between polyphonic
ports is a polyphonic connection, and any connec-
tion from a polyphonic port to a monophonic port
mixes down all voices.

2.4 Data Types

Ingen supports many data types, including audio,
“control voltage” (CV, audio-rate numeric controls),
and events in any format such as MIDI. A port
transmits either signals or sequences: audio and CV
are the only signal types, everything else is a se-
quence. Sequences are a series of “events” or “mes-
sages” transmitted in-band with audio. LADSPA-
style control ports are control-rate signals from the
point of view of the plugin, but in Ingen are exposed
as sequences of floating point numbers to allow con-
trol changes to be transmitted with sample accuracy.

The ability to work with many data types is pow-
erful, but requires the user to understand the types of
different ports. Ingen distinguishes port data types
by colour, and also adds hint symbols as shown in
Table 1. Signal and sequence ports are distinguished
by shape: signal ports have rounded borders (sug-
gesting continuous), and sequence ports have bev-
elled borders (suggesting discrete). A symbol is
also composed on the type hint, for example, a real
number signal (CV) is tagged ‘R’, and real number
messages are tagged ‘R’.

Symbol(s) | Data type

~ Audio (floating point)
R Real (floating point)
Z Integer

M MIDI

0, Boolean

= Patch message

Table 1: Type hint symbols for ports.

Despite the many different data types, Ingen at-
tempts to preserve the “anything to anywhere” abil-
ity of classic modular synthesizers wherever possi-
ble. For example, a float message output can be con-
nected to a CV input; Ingen will automatically write
the CV buffer as if the signal were continuous.

2.5 Inter-Plugin Communication

Many plugins must communicate both audio and
messages, a typical example being MIDI synthe-
sizers. Both are transmitted in Ingen in the same
context to allow sample-accurate real-time message

1 As opposed to the boolean polyphonic.

handling, and avoid threading issues. This is dis-
tinct from some systems, such as Pd, where mes-
sage transmission follows different rules than signal
transmission. In other words, messages in Ingen are
in-band with audio signals.

The benefit of this approach is a single consis-
tent concept of real-time: plugins have one run()
method which processes all inputs and emits all
outputs synchronously. However, some plugins
must perform non-real-time operations in response
to messages. For example, a sampler plugin may
need to load samples from disk.

The LV2 worker extension solves this problem.
The worker extension provides a simple API for
plugins to schedule a callback to be called “soon”
in a non-real-time thread, and a mechanism for re-
plying back to the audio thread in a later cycle. This
makes it possible for plugins to perform non real-
time operations, but the API is designed such that
its use is inherently real-time safe, and plugins do
not need to use any non-portable threading libraries.
Having this mechanism implemented by the host
has performance benefits as well, for example, the
host can share one ring buffer and worker thread for
all plugins. This can dramatically reduce the mem-
ory consumption when many plugins are loaded.

3 Architecture
3.1 Model

Ingen uses a simple data model to describe all com-
ponents of a graph. Each object has a unique path
(like /£x/verbl) and a set of key:value properties.
Keys are URIs (making state meaningful), and val-
ues may have any type. Essentially, everything is a
hierarchical tree of dictionaries.

The use of a consistent data model allows for
a very simple protocol to perform a large number
of operations. Rather than adding “commands” to
the interface for every new feature, changes are im-
plemented in terms of property changes. Only a
few methods are required to allow arbitrary property
changes, so this allows for a powerful yet stable pro-
tocol. There are no issues with breaking the number
or order of arguments, since properties have no or-
der. New information can be added freely without
requiring any changes to old code.

3.2 Protocol

The Ingen protocol itself is very similar. Messages
are built from LV2 Atoms [Robillard, 2014], par-
ticularly “Object”? which is a dictionary with URI
keys and any type of value.

2This is an “object” in the JSON sense, not as in object-
oriented programming.

The LV2 Patch extension defines several mes-
sages, similar to HTTP and DAV methods, which
can be used to access and manipulate the graph. The
simplest is a Get, which requests a description of
the given subject:

L
a patch:Get ;
patch:subject </osc> ;

]

The response describes the subject in the same
format, in this case the plugin instance, or block:

</osc>
a ingen:Block ;
lv2:prototype <urn:someplugin> ;
ingen:canvasX 42.0 ;
ingen:canvasY 24.0 .

Manipulation is similar. For example, a Put mes-
sage can be used to create the above block:

L

a patch:Put ;

patch:subject </osc> ;

patch:body [
a ingen:Block ;
1v2:prototype <urn:someplugin> ;
ingen:canvasX 42.0 ;
ingen:canvasY 24.0 ;

Syntactically, this says “I am a Put message, with
subject /osc,andbody [a ingen:Block ...]".
The definition of patch:Put and the associated
properties gives us the meaning: “put this block at
/osc”.

The short names here are abbreviations of
URIs, for example, patch:Put expands to
http://1v2plug.in/ns/ext/patch#Put. URIs
are used here to provide a global namespace, but
when properly documented, also provide trans-
parency. For example, the above URI leads to
documentation which describes the meaning of a
patch:Put. This documentation is also machine
readable to support intelligent tools. For example, a
patch:Put must have one patch:subject prop-
erty, and the same tools used for LV2 plugin vali-
dation can ensure this restriction is obeyed. Note,
however, that no Internet access is involved in han-
dling messages; properly documenting URIs is sim-
ply a best practice for convenience and tool support.

There are similar messages to delete elements, set
properties (including control values), and so on. All
messages are defined in the LV2 Patch extension,
which is also used by some plugins for control (for
example, the LV2 example sampler uses this vocab-
ulary to load samples).

http://lv2plug.in/ns/ext/patch#Put

3.2.1 Serialisation

Conceptually, Ingen uses the same protocol every-
where. However, the above text serialization would
only be used over a network, or shown for debug-
ging purposes. When running in the same pro-
cess, messages are instead serialised as binary LV2
atoms for increased performance. These two en-
codings are conceptually identical and differ only
in representation. Similarly, plugins inside Ingen
which communicate with atoms are connected di-
rectly, with no serialisation.

The same textual serialisation used in the remote
protocol is used when saving graphs. Conceptually,
the Ingen protocol can be considered a stream of
patches to the saved graph (hence the name of the
LV2 Patch extension). For example, the descrip-
tion of the /osc block returned by the server in Sec-
tion 3.2 could be a literal snippet of a saved graph
file. Ports use the standard LV2 vocabulary, so In-
gen graphs can be loaded by applications with LV2
support, with no special Ingen support required.

3.3 Event Handling

Building and manipulating a graph of plugins re-
quires operations that are not real-time safe. To al-
low live editing without dropouts, Ingen must avoid
all such operations (such as memory allocation or
mutex locking) in the audio thread.

Conveniently, message-based control lends itself
to an event-oriented implementation, which makes
for an elegant solution to this problem. All opera-
tions in Ingen are implemented as events which are
triggered by the receipt of some message. An event
has three phases:

1. Pre-Process: Upon receipt of the message, per-
form any non-real-time operations necessary
before the change can be applied (e.g. instan-
tiate a plugin). When finished, push the event
into a queue for the audio thread.

2. Process: In the audio thread, apply the changes
prepared in the pre-process stage (e.g. insert an
instantiated plugin into a graph). After this, the
change is effectively complete. When finished,
push the event (including references to any re-
sources that need to be freed) into a queue for
post-processing.

3. Post-Process: Clean up any necessary re-

sources, and broadcast the change to all clients.

4 Examples

The most straightforward use of a modular is to
build chains of effects plugins. Though simple,

even this provides an improvement over what is eas-
ily achievable in hosts with a strictly linear signal
path. For example, processing the left and right
channels separately in a DAW like Ardour can be
achieved this way without complicating the ses-
sion’s bus routing.

More interesting is to custom-build instruments.
Figure 1 shows an example of an extremely sim-
ple polyphonic synthesizer, with only one envelope,
saw oscillator, and low pass filter.

Ingen allows graphs to be nested, and has no re-
strictions on the type or number of ports present.
For example, Figre 2 demonstrates adding sidechain
compression to a synthesizer graph.

It can be useful to combine existing high-level
plugins with more low level components. For exam-
ple, Figure 3 shows a graph which contains multiple
instruments. A MIDI filter [Gareus, 2014] plugin is
used to send automatic chords to an electric piano,
while the input note is sent to a synthesizer.

5 Future Directions

Ingen is currently useful as an environment for host-
ing plugins with flexible routing. Its architecture
allows it to function in a diverse range of environ-
ments, which has been the focus of development to
date.

One goal for future development is to become a
more powerful programming environment. Since
plugins are free to communicate with arbitrary mes-
sages, the necessary infrastructure is already avail-
able, but an appropriate set of plugins is missing.
Existing systems like Max/MSP and Pd are very
mature in this respect, but use a different model than
Ingen and LV2. In particular, it will be interesting
to investigate how to exploit meaningful messages
to provide a powerful modular programming envi-
ronment.

References

Robin Gareus. 2014. midifilter.lv2.
https://github.com/x42/midifilter.1v2.

Matthias Nagorni. 2003. Alsa Modular Synth.
http://alsamodular.sourceforge.net/.

Miller Puckette. 1996. Pure Data: Another in-
tegrated computer music environment. Proceed-
ings of the Second Intercollege Computer Music
Concerts, pages 37-41.

David Robillard. 2014. LV2 Atoms: A data
model for real-time audio plugins. In Linux Au-
dio Conference 2014.

https://github.com/x42/midifilter.lv2
http://alsamodular.sourceforge.net/

Note

® Frequency
(R Number |
(® Velocity

Figure 1: A simple polyphonic synthesizer.

Saw VCO

(- Output}
R Frequency
[BSync)

Z Octave

R Lin FM gain

R LP filter)

Env

R Trigger
R Attack Time
R Decay Time

R Sustain Level)
R Release Time)

R Envelope Out |

Amplifier
R Gain
~ Sidechain ~Input
p
~ Output|
Synth
—{m Control
(= Left Out
~ Right Out

——

‘ LPF
Cput)
(~ Output
RFM

| R Resonance Mod)
R Input gain
R Frequency
R Exp FM gain
R Resonance

SC3

R Attack time (ms)
R Release time (ms)
R Threshold level (dB)

R Ratio (1:n)
R Knee radius (dB)

R Makeup gain (dB)
R Chain balance

@ Product
R Output gain Wplicand]
B Multiplier)
(® Product|i—{~ Audio Out 1)

~ Sidechain)

~ Left input)

- Rightinput) [~ Leftout) |
(= Left output
(= Right output

i~ Right Outi I

Figure 2: Adding sidechain compression to a synthesizer. The “Synth” block shown here is a nested Ingen
graph (which can be edited by double-clicking in the interface).

=N

[

| . D NP W,

MIDI Chord

= =

(]

D D D W W)
MDA ePiano

Figure 3: Simple MIDI processing to play the input root note on a DX10, and accompanying chords on an

ePiano. Shown in vertical mode.

	Introduction
	Features and Philosophy
	Internals Considered Harmful
	Messages Considered Wonderful
	Polyphony
	Data Types
	Inter-Plugin Communication

	Architecture
	Model
	Protocol
	Serialisation

	Event Handling

	Examples
	Future Directions

