
Timing issues in desktop audio playback infrastructure

Alexander Patrakov
SkyDNS LLC

Office 500, House 2, Kulibina Street,
620137 Yekaterinburg,

Russia
patrakov@gmail.com

Abstract

In year 2008, a feature with the name “timer-based
scheduling” (also known as “glitch-free”) has been intro-
duced into PulseAudio in order to solve the conflicting
requirements of low latency for VoIP applications and
low amount of CPU time wasted for handling interrupts
while playing music. The novel (at that time) idea was
to use timer interrupts instead of sound card interrupts
in order to overcome the limitation that the ALSA pe-
riod size cannot be reconfigured dynamically. This idea
turned out to hit some corner cases, and workarounds
had to be added to PulseAudio. Despite its age, the im-
plementation of the idea is still not 100% correct. This
paper explains why it is the case and what can be done
to improve the situation.

Keywords

PulseAudio, timing, rewinds

1 Introduction

Traditionally, ALSA playback chain was based on
ALSA plugins sitting on top of the hardware device
(represented by the “hw” plugin).

Hardware devices have circular buffers in memory,
and there are two pointers that point to this buffer:
the hardware pointer and the application pointer.
The hardware periodically reads a sample pointed
to by the hardware pointer and sends it to ana-
log or digital outputs, then increments this pointer.
The application writes samples to the memory area
pointed to by the application pointer and moves it
past the just-written samples.

There are multiple mechanisms provided to the
application to write sound data to the sound card:
classical unix-style writes via snd pcm write*()
functions, mmap-based access, and the dangerous
callback-based API. Still, with any of them, the end
result is the same: application pointer tracks the
first unwritten position in the soundcard buffer.

If the hardware pointer crosses the application
pointer, an underrun happens. To avoid underruns,
an application must supply new audio samples in a
timely manner.

The hardware notifies the kernel when the hard-
ware pointer crosses some predefined positions (pe-
riod boundaries) in the circular buffer. There
are, again, multiple mechanisms (blocking writes,

poll()) how these notifications can be passed to the
application, so that it doesn’t have to busy-wait.

A whole lot of other behavior (format-conversion,
resampling, mixing) is provided on top of the raw
hardware devices by means of ALSA plugins [1]. The
general idea (a circular buffer with hardware and
application pointers and per-period wakeups), how-
ever, remains. As a result, applications can trans-
parently use a large subset of ALSA API when work-
ing with such plugins.

This playback model was popular in the dmix era,
and thus applications developed during that time
gained dependency on some of the properties of this
model. E.g., an assumption is common that wakeups
due to the audio device happen regularly (exactly
once per period) and can be used as a clock. An-
other common assumption is that the default buffer
and period sizes are suitable for the application’s
purpose. In fact, there was no way to change them
programmatically in the default “plug:dmix” setup.

There is certain latency (influenced by the audio
buffer size) between the time when an audio sample
is written to the API and when it is actually played
back through the speakers. Low latencies are gen-
erally expected when an application reacts to user
input. E.g., when a user changes equalizer settings
in the audio player, they should take effect imme-
diately. This is even more important for games: a
gunshot sound should be heard as soon as the shot is
made. Voice over IP applications are also sensitive
to latency. So, with the traditional playback model,
due to the fact that the latency is fixed, low latencies
are generally used.

On the other hand, low latencies are not opti-
mal for music players. First, low latencies make
applications sensitive to process scheduler decisions,
increasing the chance of audio dropouts. Second,
low latency means high rate of interrupts from the
sound card and application wakeups, which is bad
for power saving. So, music players and games are
under two conflicting requirements related to la-
tency.

2 Timer-based scheduling
The traditional solution was to accept frequent (as
required for the worst case) wakeups as a necessary
evil, because there is no way to reconfigure buffer
and period size on the fly. However, in some cases, a



better (albeit more complex) solution exists to this
conflict of requirements. The solution (“timer-based
scheduling” [2], implemented in PulseAudio [3] and
CRAS [4]), involves the use of a dynamically recon-
figurable timer instead of sound card interrupts as a
source of wakeups.

PulseAudio has a client-server architecture. The
server interacts with ALSA devices and performs
mixing and routing of sound data received from
client applications. Each time the timer fires, the
sound card is asked about its current playback po-
sition, and, based on this information a decision is
made how much data to request from applications in
order to maintain their desired latency and to avoid
underruns. Note that, if there are low-latency appli-
cations playing, the buffer will never be full.

A new stream can appear at any time, or an ap-
plication can request volume change of an exist-
ing stream. The server is expected to deal with
such requests quickly, i.e. without waiting for the
already-buffered sounds to play out. Indeed, wait-
ing for these sounds could take more than a second,
which is too much. Thus, the server has to discard
already-mixed samples from the sound card buffer
and replace them with a new version, which takes
the new stream or the volume change into account.
Such operation is called a “rewind”. It is an essen-
tial ingredient in an implementation of a dynamic-
latency sound server, unless a tight limit is placed
on the amount of buffered audio data. PulseAu-
dio rewinds. CRAS doesn’t, but Chrome/Chromium
never requests latency high enough to cause a prob-
lem.

As the timer-based approach is more complex
than the traditional approach, there are more ques-
tions to be answered by the implementation (such
as PulseAudio) and parameters to be decided upon.

• Total sound card buffer size.

• The amount of time to sleep after writing sound
data.

• The amount of old data to leave in the buffer
“just in case” when rewinding.

• What latency limits to export to clients.

• How much data to ask from a client at a time.

3 Buffer and timing constraints

PulseAudio uses a large buffer (up to 2 seconds,
if the hardware allows) by default. This is good
for the purpose of providing high latencies for
music players and thus for reducing the rate of
CPU wakeups. The default can be overridden
with the tsched buffer size parameter that is ac-
cepted by module udev detect, module alsa card,
module alsa sink and module alsa source. The
unit of the tsched buffer size parameter is mi-
croseconds.

This default, however, poses a problem1 if any
part of the audio processing pipeline inside the
PulseAudio process turns out to be CPU-intensive.
Examples of CPU-intensive steps include conver-
sion to a compressed format such as DTS. When
PulseAudio is running under Valgrind, or on a weak
embedded CPU, even resampling becomes a prob-
lem.

The problem is related to the fact that PulseAudio
only has a finite budget of time it can run with real-
time priority without making blocking system calls.
rtkit contains a hard-coded limit that doesn’t allow
expanding this budget past 200 ms. This limit exists
for safety reasons, because a misbehaving real-time
application can otherwise wedge the whole system.
Thus, in the worst case (which always happens at
the start of a high-latency stream) PulseAudio has
to finish its processing of two seconds of audio in 200
ms, or it gets killed.

The situation is further aggravated by the fact
that the cpufreq subsystem considers “low” (i.e.
less than 80%) load as an excuse to keep the CPU
frequency at the lowest possible value.

A solution that a user affected by the problem can
apply is to set the buffer size to a lower value, such
as 200 ms.

4 Wakeup timings

In the traditional timing model, the application usu-
ally is woken up once per period. The period size
comes from application settings or from the defaults.
There is not much that can be done beyond that (e.g.
in response to underruns), because buffer and period
sizes are not dynamically reconfigurable.

With timer-based scheduling, better reaction to
underruns is possible, and PulseAudio implements
that. It looks at the sink’s latency (which is just the
amount of time until it underruns unless supplied
with new data), subtracts the scheduling watermark,
and sleeps for that time. The default watermark is
20 ms. It is increased if an underrun or a near-
underrun happens, and decreased if sufficient time
has passed without such bad events2.

This logic is further complicated by the fact that
the requested latency is specified in the sound card’s
clock domain, while sleeping is done using the sys-
tem clock domain. If the sample rate reported by
the card is not precise, then these two values can dif-
fer. PulseAudio contains a “smoother”3 that takes
timestamps in both clock domains, estimates the ac-
tual sample rate, and then converts the intervals as
needed.

1https://plus.google.com/+ColinGuthrie/posts/
EG7nT9TXTpd

2See http://cgit.freedesktop.org/pulseaudio/
pulseaudio/tree/src/modules/alsa/alsa-sink.c, func-
tions check left to play(), decrease watermark() and
increase watermark()

3http://cgit.freedesktop.org/pulseaudio/
pulseaudio/tree/src/pulsecore/time-smoother.c

https://plus.google.com/+ColinGuthrie/posts/EG7nT9TXTpd
https://plus.google.com/+ColinGuthrie/posts/EG7nT9TXTpd
http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/src/modules/alsa/alsa-sink.c
http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/src/modules/alsa/alsa-sink.c
http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/src/pulsecore/time-smoother.c
http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/src/pulsecore/time-smoother.c


The traditional solution for mapping between
soundcard and system clock domains would be us-
ing a delay-locked loop with a filter containing some
integrators in it [5]. This solution works for JACK,
but cannot be employed in PulseAudio, because the
timestamp reports are assumed to be regular in time,
which is valid only if the traditional period-based
timing scheme is used. Therefore, the smoother in
PulseAudio uses a 10-second window and builds a
least-squares linear approximation between the sam-
ple count and the wall-clock timestamp based on
data within that window.

A special rule (that cuts the sleeping time in half)
is applied until one buffer worth of sound data is
played. This is needed because some sound cards
contain a hardware FIFO queue that consumes the
initial portion of data much faster than one would
expect according to the size of that portion and the
sample rate.

All of the above assumes that the sound card
can accurately report its hardware pointer at ar-
bitrary point in time. However, this assumption
is false on cards that do double-buffering of audio
data transfers. Such cards can be distinguished us-
ing the snd pcm hw params is batch() ALSA API
function. Typically, such batch cards provide posi-
tion reports that are accurate to only one period,
and timer-based scheduling makes a period as large
as possible to avoid useless CPU wakeups from the
interrupts originating from the sound card. Since
position reports are totally inaccurate, one just can-
not obtain an estimation of time-to-sleep accurate
up to 20 ms.

Currently, PulseAudio disables timer-based
scheduling on batch cards4, because it cannot save
the CPU from unneeded wakeups.

CRAS does not have this watermark-based logic
and does not use the mapping between soundcard
and system clock domains for the purpose of wakeup
timing. Indeed, CRAS doesn’t have to do so, be-
cause it respects the client’s idea how many frames
should remain in the soundcard buffer when asking
for more data, instead of asking as late as possible,
and thus stays far from any edge cases.

5 Rewinds

As already explained, rewinds are needed in order to
provide low-latency reaction to unpredictable events
such as new streams and volume changes, while
keeping the average latency high in order to save
power. Rewind handling is an especially problematic
area, with a lot of code written but never properly
tested.

5.1 Rewind-related APIs

Both ALSA and PulseAudio offer APIs that let ap-
plications rewind their audio streams.

4http://cgit.freedesktop.org/
pulseaudio/pulseaudio/commit/?id=
826c8f69d34ef49e86fe0ab6c93c1ffba8916131

As already mentioned, ALSA’s view on play-
back devices is based on the notion of a circular
buffer in memory, with the hardware pointer and
the application pointer associated with it. Here are
the rewind-related API functions offered by ALSA:
snd pcm rewindable(), snd pcm rewind().

The snd pcm rewind() function tries to move the
application pointer backwards by the specified num-
ber of samples, and returns the (possibly lower)
number of samples that the pointer has actually been
moved by. Of course, attempting to request rewind-
ing into the already-played portion of the buffer does
not make sense. The snd pcm rewindable() func-
tion returns the maximum safe amount of rewind-
able samples5.

PulseAudio does not base its playback model on
a mmap-able circular buffer. Instead, it has one
stream-oriented function that clients use to submit
samples: pa stream write().

Seeking is done at the same time as writing
new samples, using the last two arguments. Un-
like ALSA, which supports only rewinds relative to
the application pointer (“write index”, as PulseAu-
dio calls it), PulseAudio API can also be used to
rewind to an absolute position in time, or relatively
to the “read index” (the sample that is currently
being played). The raw read index and write in-
dex can be obtained in the pa timing info struc-
ture via the pa stream update timing info() and
pa stream get timing info() pair of functions.

OSS does not support rewinds in ways other than
the (deprecated) mmap interface, which only works
on top of raw hardware devices. I.e. no resampling,
no channel remixing, only exclusive access to the
sound card.

JACK, SDL, libao and the waveOut family of Win-
dows APIs do not support rewinds at all. Android’s
AudioTrack API and CRAS don’t support them, ei-
ther.

5.2 Testing rewinds

Rewind operations can be used by software only if
they actually work as described. E.g., a perfect im-
plementation of rewinds needs to ensure that, after
rewinding over some samples and writing exactly the
same samples back, the audible result is exactly the
same as if the rewind didn’t happen at all.

Currently, for ALSA, the most common applica-
tion that does a lot of rewinds is PulseAudio, and it
does that only in response to dynamic events such
as new stream appearing or volume changing, where
a user already more-or-less expects a glitch and thus
may not realize that something is wrong. So, in
order to really ensure that rewinds work, a more
systematic testing methodology is needed.

A simple ALSA-based program6 has been thus
written that exercises the snd pcm rewind() func-

5There are disagreements on the intended meaning of the
word “safe”.

6http://permalink.gmane.org/gmane.linux.alsa.
devel/122179

http://cgit.freedesktop.org/pulseaudio/pulseaudio/commit/?id=826c8f69d34ef49e86fe0ab6c93c1ffba8916131
http://cgit.freedesktop.org/pulseaudio/pulseaudio/commit/?id=826c8f69d34ef49e86fe0ab6c93c1ffba8916131
http://cgit.freedesktop.org/pulseaudio/pulseaudio/commit/?id=826c8f69d34ef49e86fe0ab6c93c1ffba8916131
http://permalink.gmane.org/gmane.linux.alsa.devel/122179
http://permalink.gmane.org/gmane.linux.alsa.devel/122179


tion in such a way that is impossible to confuse the
correct operation and a glitch. The program uses a
buffer with four periods. After the initial filling of
the buffer with silence, the application uses block-
ing writes, as follows. Each time it gets a chance
to write a period worth of samples, it rewinds one
period, writes one period of silence and one period
of square waves. Therefore, if rewinds are imple-
mented correctly, the hardware pointer only sees si-
lence, and nothing should be heard from this appli-
cation. Any non-silent output (without the applica-
tion complaining that the rewind did not yield the
expected result, and without near-underruns) is an
indication of a bug somewhere.

Hardware ALSA devices pass this simple test.
Many other devices currently don’t.

It would also be nice, for similar reasons, to test
the correct operation of the snd pcm rewindable()
function. However, no valid test can be devised at
this time, because there are disagreements about
the semantics of the return value. As this function
only recently stopped crashing on some plugins7,
PulseAudio does not use it, and uses an approxi-
mation based on snd pcm avail delay() instead.

5.3 Causes of incomplete rewindability in
hardware

Currently, for the “hw” plugin the .rewindable
callback is implemented, effectively, as a difference
between the application pointer and the hardware
pointer. That is, “you can rewind up to the hard-
ware pointer”. However, the hardware pointer in-
formation is only updated either on period bound-
aries, or on explicit request (via snd pcm avail())
from the application. Failure to perform such
request would lead to alsa-lib basing its calcu-
lations on an outdated value of the hardware
pointer, and, thus, to the overestimated results for
snd pcm rewindable().

There is a disagreement whether the
snd pcm rewindable() function should indeed
return the difference between the application
pointer and the hardware pointer. PulseAudio
contains a safeguard that does not allow the re-
wound application pointer to come too close to the
hardware pointer, because8

some DMA controllers go nuts (such as
breaking the stream, causing interrupt
storms, or something else seriously buggy)
when trying to write to data that the DMA
controller is just about to transfer.

The default safeguard is the largest of 256 bytes
or 1.33 ms.

On some cards, the hardware pointer position is
not known exactly. For example, ymfpci updates its
hardware pointer using a timer that fires every 5 ms.
Therefore, the hardware pointer position reported to

7Most of the fixes are in alsa-lib 1.0.28 and one is in 1.0.29
8http://permalink.gmane.org/gmane.linux.alsa.

devel/127256

userspace may lag behind the real one by up to 5 ms,
and the number of rewindable samples may be also
overestimated by the same amount.

Also, the hardware itself may report the hard-
ware pointer position imprecisely. E.g., on com-
mon Intel HD Audio controllers, the granularity of
the reported pointer position (as measured by call-
ing snd pcm avail() and snd pcm rewindable()
repeatedly) is 32 or 64 bytes. This is probably re-
lated to the DMA block size.

An idea was expressed that alsa-lib should take
the above sources of uncertainty over the hardware
pointer position or DMA engine weirdness into ac-
count when returning the number of rewindable
samples.

An opposite viewpoint is expressed by Clemens
Ladisch9:

It would make sense to report
the pointer update granularity, but
not to adjust the return value of
snd pcm avail/rewindable().

However, on many cards, the pointer update gran-
ularity is simply unknown. A set of patches has been
posted by Pierre-Louis Bossart10 (and later merged)
that are expected to help assessing the granularity
of pointer updates at runtime. Still, nobody so far
has tried to use the information exposed by these
patches in PulseAudio.

5.4 Rewindability of self-contained ALSA
plugins

User-grade programs (i.e. everything except sound
servers) usually don’t talk to hw devices. Instead,
they use ALSA PCM plugins for functionality like
mixing, channel remapping, sample rate conversion
and software-based volume control. There are also
more exotic plugins for tasks like software AC3 or
DTS encoding, or spectrum equalization. Finally,
there are plugins that allow ALSA programs to talk
to sound servers like PulseAudio or JACK.

The implementation of rewinds is the simplest in
plugins where each sample sent to the slave is de-
termined only by the corresponding input sample.
That is, the plugin never looks at non-current sam-
ple and doesn’t keep any state. In this case, the
implementation of the rewind operation should just
rewind the slave by the same amount of samples.
Also, to answer the question “how many samples can
be rewound safely”, the plugin should just ask the
slave and forward the answer. Here are the plugins
where this logic or a simple variation of it applies:
alaw, asym, copy, empty, hooks, lfloat, linear,
mmap emul, mulaw, multi, route. These plugins are
indeed rewindable. The softvol plugin is rewind-
able for the same reasons as long as nobody changes
the volume.

9http://permalink.gmane.org/gmane.linux.alsa.
devel/127290

10http://permalink.gmane.org/gmane.linux.alsa.
devel/133961

http://permalink.gmane.org/gmane.linux.alsa.devel/127256
http://permalink.gmane.org/gmane.linux.alsa.devel/127256
http://permalink.gmane.org/gmane.linux.alsa.devel/127290
http://permalink.gmane.org/gmane.linux.alsa.devel/127290
http://permalink.gmane.org/gmane.linux.alsa.devel/133961
http://permalink.gmane.org/gmane.linux.alsa.devel/133961


The iec958 plugin is used by some old cards (such
as ATIIXP and CMI8338) to convert raw PCM to
IEC958 frames and back. Each IEC958 subframe
corresponds to one audio sample and one channel.
Besides the PCM sample itself, the subframe con-
tains a preamble, and one bit for each of Validity
(for DAC), User data, Channel status and Parity.
Different subframes use different types of preamble.
This is needed to distinguish between left and right
channels, as well as to mark the beginning of user
data and channel status. The whole audio block
contains 384 subframes.

Therefore, the plugin needs to keep a simple in-
ternal state: the number of subframes sent since the
last subframe with the Z-type preamble (which is
used to mark the left-channel subframe which also
contains the beginning of the first channel status
word). Before alsa-lib 1.0.28, rewinds didn’t affect
the state. Therefore, right after a rewind, a wrong
type of preamble was used, and wrong bits (not con-
tinuing what was sent before) of channel status were
sent down the link. This could cause a momentary
resynchronization glitch on some receivers. As of
alsa-lib 1.0.28, this is fixed by updating the state af-
ter each rewind, and thus the iec958 plugin fully
supports rewinds now.

The adpcm plugin converts between linear PCM
and IMA ADPCM, which is only useful for ancient
ISA cards. Again, the conversion is not stateless:
the per-channel state includes the predicted sam-
ple value and the step size index, and is updated
at each new sample according to simple table-based
rules. As of alsa-lib 1.0.29, rewinds don’t change the
state. It is a bug. To solve it, one has to make this
state per-sample per-channel, organized in a circu-
lar buffer similarly to the sound samples. This is not
done yet.

The dmix and dshare plugins currently fail the
rewind-correctness test for unknown reason. On
them, the snd pcm rewind() function returns ex-
actly the same number of samples as requested, how-
ever, the test program produces non-silent output.

As dsnoop is a capture-only plugin, it is not re-
viewed here. The share plugin could not be tested
due to unrelated bugs, but, according to the source
code, its .rewindable callback always returns 0.

5.5 External plugins

ALSA comes with two SDKs for building third-party
plugins. The ioplug framework is for building plug-
ins that output sound to some external systems, and
extplug is for building filters. Also there is a ladspa
plugin that wraps, well, third-party LADSPA plug-
ins. There are two big problems in this area.

First, the plugin is not notified about
rewinds at all. There is simply no such call-
back in the snd pcm ioplug callback and
snd pcm extplug callback structures. The
common code (wrongly) pretends that ioplug-based
plugins are fully rewindable, but the rewind oper-
ation merely moves the application pointer back

by the specified number of frames, and returns
that number. Extplug-based plugins, as well as
the ladspa plugin, simply forward rewind-related
requests to the slave.

An important special case is that rewinds do not
work (i.e. do nothing, “successfully”) in the pulse
ALSA plugin, even though native PulseAudio API
does support rewinds.

But maybe it is possible to detect rewinds even
without the corresponding callbacks?

For ioplug-based plugins, it may be possible to fig-
ure out from within the .transfer callback if there
was any rewind operation between the previous call
and the current call, by looking at the application
pointer in the snd pcm ioplug structure. This may
be sufficient to implement rewinds in the pulse plu-
gin, but, as this approach does not allow to figure
out the real amount of rewindable samples, it is a
bad idea.

Extplug-based plugins don’t have any access to
their own application pointer, because it is hidden
behind a private snd pcm extplug priv structure.
So they just don’t have any chance to handle rewinds
properly.

To solve the problem mentioned above, it would
be necessary to add new callbacks. But this would
cause the second issue, which is much worse. Imag-
ine that someone has to implement these callbacks.
Many ioplug/extplug-based plugins wrap external li-
braries. In order to implement rewinds, a plugin
would have to tell the library to restore its old state.
Mission impossible: these third-party libraries (as
well as LADSPA API), in the vast majority of cases,
don’t have API functions that save and restore the
state. I.e. this is the same problem as above, but
one layer deeper and thus beyond our control. Be-
sides, there is physically no way to e.g. undo send-
ing of Bluetooth packets. As a result, rewinds just
cannot be implemented correctly in the majority
of ioplug/extplug-based plugins, and it was, as it
seems, a mistake to offer them.

An interesting exception to the above non-
rewindability rule is the jack plugin, especially since
JACK itself is non-rewindable. The trick is that
the plugin creates a real-time thread, and the JACK
callback is invoked in the context of this thread, ex-
changing the samples with the JACK server. This
looks very much like a real sound card, which pe-
riodically reads samples from the memory buffer.
The .rewindable callback still yields a question-
able result, though, by not taking into account the
hardware pointer position uncertainty, which is one
JACK period in this case.

It may be theoretically possible to extend
this “low-latency worker thread” idea to other
ioplug/extplug/ladspa plugin types – i.e. to cre-
ate a thread just for the purpose of calling the
.transfer callback instead of calling it when the
client writes data. A natural period for calling this
callback would be one slave period, but then the



resulting minimum latency would be three slave pe-
riods (if the slave allows using two periods), which
is one period more than without this thread.

The current understanding is that, instead of
adding an extra level of buffering in ALSA for plu-
gin rewindability, it may be a better idea to teach
PulseAudio to identify non-rewindable ALSA de-
vices as such, and deal with them as appropriate.
Indeed, this low-latency worker thread creates fre-
quent wakeups and thus nullifies the primary moti-
vation behind timer-based scheduling anyway.

5.6 Rate plugin

The rate plugin converts the sample rate of the au-
dio data. The process is based on the idea to find
a digital representation of the same analog signal
that is represented by the sequence of input sam-
ples. Due to Shannon’s sampling theorem, a perfect
resampler should reject frequencies higher than half
of the lower sample rate, and pass all lower frequen-
cies through. Therefore, its time response can be de-
scribed by the appropriately scaled sinc function [6].
The sinc function, however, has infinite support and
thus has to be windowed or approximated by some
other function with a finite support in order to be-
come useful. Such approximations introduce distor-
tions in the resampled sound: components with fre-
quencies below the ideal cut-off frequency get atten-
uated, and also “aliased” content (with frequencies
not present in the input signal) appears in the out-
put. There are several libraries that implement au-
dio resampling, using different approximations, and
thus having different quality and speed.

It follows from the description above that each
output sample is influenced by several input sam-
ples, and that each input sample affects several out-
put samples. So the process of sample rate conver-
sion is stateful.

The rate plugin delegates the process of sam-
ple rate conversion to a pluggable external con-
verter. Alsa-lib itself contains a very simple (and
low-quality) converter based on linear interpolation.
Alsa-plugins contain converters based on the Speex
resampler, the ffmpeg resampler, and libsamplerate.

This architecture suffers from the same limitations
as discussed above for extplug. Namely:

• there are no rewind-related callbacks in the
snd pcm rate ops structure;

• none of the underlying libraries supports
rewinds explicitly, or allows to save and restore
(or otherwise alter) its state programmatically.

Therefore, in the current architecture, the rate
plugin cannot be rewindable. And indeed, it isn’t
rewindable, as of alsa-lib 1.0.28.

The same objections apply to resamplers used by
PulseAudio, and there is already a bug11 reported

11https://bugs.freedesktop.org/show_bug.cgi?id=
50113

by a user who noticed imperfect stitching of resam-
pled audio before and after the volume change of an
unrelated stream.

This situation is far from ideal, especially since
sample rate conversion is a very common part of the
audio processing pipeline. An important difference
here from the ioplug/extplug/ladspa case is that
there is, in fact, no task to wrap arbitrary third-
party libraries, especially since none of the existing
resampler libraries are actually suitable. The pro-
cess of sample rate conversion is well-defined math-
ematically, the set of input samples affecting a given
output sample is known, so it is possible to write
a rewindable windowed-sinc resampler implementa-
tion from scratch. But nobody did it so far.

5.7 PulseAudio virtual sinks

Some PulseAudio virtual sinks (e.g.,
module-ladspa-sink and module-echo-cancel)
perform non-trivial audio processing and keep state.
PulseAudio sink API includes the rewind operation,
and plugins generally supply it. However, the imple-
mentation either only moves pointers, or resets the
filter completely (because the backend library is not
rewindable), which is wrong. To fix this, one needs
to remove the “reset the filter” recommendation in
the module-virtual-sink template module, and
explain how to express the fact that the virtual sink
is not rewindable.

To be fair, the recently-submitted LFE filter
patchset by David Henningsson12 takes rewinds into
account.

5.8 Dealing with non-rewindable devices

PulseAudio currently contains some logic13 that dis-
ables timer-based scheduling and rewinds on ioplug
plugins such as a52. However, the code does
not match the (extplug-based) dca plugin as non-
rewindable, and needs to be updated.

Initially, the idea was to fix the
snd pcm rewindable() ALSA API function so
that it always returns 0 for non-rewindable plugins
(which is a good idea anyway) and use it. However,
there are two reasons why this solution cannot
work.

First, snd pcm rewindable() works only when
the buffer size is already set. As already explained,
rewinds are needed only in order to compensate the
unacceptably-high latency implied by a large buffer.
If rewinds are impossible, the buffer must be small.
So, in order to see whether we need a small buffer,
we would need to set the buffer size already.

Second, without sending a test sound, it does
not actually help to distinguish a rewindable device
from a non-rewindable one. Indeed, a rewindable-
in-principle device with an empty buffer (and the

12http://lists.freedesktop.org/archives/
pulseaudio-discuss/2015-January/023042.html

13http://cgit.freedesktop.org/
pulseaudio/pulseaudio/commit/?id=
cb55b00ccd25d965b1222e74375aee05427a449b

https://bugs.freedesktop.org/show_bug.cgi?id=50113
https://bugs.freedesktop.org/show_bug.cgi?id=50113
http://lists.freedesktop.org/archives/pulseaudio-discuss/2015-January/023042.html
http://lists.freedesktop.org/archives/pulseaudio-discuss/2015-January/023042.html
http://cgit.freedesktop.org/pulseaudio/pulseaudio/commit/?id=cb55b00ccd25d965b1222e74375aee05427a449b
http://cgit.freedesktop.org/pulseaudio/pulseaudio/commit/?id=cb55b00ccd25d965b1222e74375aee05427a449b
http://cgit.freedesktop.org/pulseaudio/pulseaudio/commit/?id=cb55b00ccd25d965b1222e74375aee05427a449b


buffer is initially empty) cannot be rewound.
Thus, a new API is needed in order to test

whether an ALSA PCM is rewindable at all.
Such API (snd pcm hw params can rewind()) has
been added in April 2008, but removed14 10 days
later, because it was thought (wrongly) that the
snd pcm rewindable() API function is more useful.

6 Client-side timing

Some legacy applications (e.g. many ALSA-based
media players) rely on the audio subsystem as
a source of timing. In particular, they expect
the wakeups to come in a regular fashion, in
strict accordance to the period size. To sat-
isfy such legacy clients, PulseAudio has a special
PA STREAM EARLY REQUESTS flag that can be spec-
ified when creating a stream. Without this flag, re-
quests will be made as late as possible. The pulse
ALSA plugin always sets this flag.

On a system where timer-based scheduling works,
and the CPU scheduler behaves reasonably, this flag
usually works as expected. Indeed, due to the abil-
ity to program the timer for an arbitrary interval,
PulseAudio can emulate any period size to the client.

Problems begin15 when PulseAudio decides not
to use timer-based scheduling (e.g., due to a batch
card). In this case, PulseAudio uses the period size
that is supported by the sound card and is close to
the one specified in the daemon.conf file. Now sup-
pose that the stream is moved to a different sound
card that does not support this period size. As
PulseAudio only wakes up and requests data from
the client only on interrupts from the sound card,
it no longer can wake up the client precisely when
needed. In theory, clients are notified when buffer
metrics change, and can adapt, but, in practice,
no client handles this seriously. Worse, wrapper li-
braries such as alsa-lib and SDL cannot handle this
easily, as they don’t have the notion of dynamic
changes of buffer metrics in their client API.

A separate question is what to do with clients like
Wine or QEMU that (for various legitimate reasons)
request very low latencies that are impossible to sat-
isfy with the default buffer and period sizes. To add
insult to the injury, the pulse ALSA plugin accepts
almost any period size and, due to lazy creation of
the PulseAudio stream, has no way to tell the client
that the requested buffer and period sizes were ac-
tually not used.

The arguments listed above highlight the fact that
PulseAudio, in non-tsched mode, does not perform
adequate isolation of clients from the actual sound
hardware, in terms of the supported and advertised
period sizes. The bug can be fixed by asking sound
data from a client using a separate timer, not based
on soundcard interrupts, and possibly lying to the

14http://git.alsa-project.org/?p=alsa-lib.git;a=
commitdiff;h=c88672d86fe713e8f049df895fc3b64c472fbf5d

15https://bugs.freedesktop.org/show_bug.cgi?id=
66962, wrongly closed as fixed at the time of this writing

client about the total latency where regularity of re-
quests matters more than exact latency estimation.

7 Conclusion
Timer-based scheduling does solve the real problem
that it is intended to solve: it achieves dynamic la-
tency, which should be good for power saving. If
no resampling or other stateful audio processing is
used, it “just works” on simple devices that DMA
one sample at a time and report their DMA position
precisely. On devices with more complex buffering
models, it runs into corner cases described in this
paper. But none of the listed problems look un-
solvable – after all, there is always a possibility to
fall back to the traditional period-based playback
model. And there is indeed development work on-
going to provide more detailed timing information,
to implement rewinds correctly in new PulseAudio
effects, and to make other improvements – which is
a good thing.

8 Acknowledgements
The author would like to thank Lennart Poettering
for writing PulseAudio, and the current developers
for continuing with the project.

References
[1] ALSA project – the C library ref-

erence. PCM (digital audio) plugins.
http://www.alsa-project.org/alsa-doc/
alsa-lib/pcm_plugins.html.

[2] Lennart Poettering. 2008. What’s cook-
ing in PulseAudio’s glitch-free branch.
http://0pointer.de/blog/projects/
pulse-glitch-free.html.

[3] www.freedesktop.org. PulseAudio.
http://www.freedesktop.org/wiki/
Software/PulseAudio/.

[4] www.chromium.org. CRAS: Chromium OS
Audio Server.
http://www.chromium.org/
chromium-os/chromiumos-design-docs/
cras-chromeos-audio-server.

[5] Fons Adriaensen. 2005. Using a DLL to filter
time.
http://kokkinizita.linuxaudio.org/
papers/usingdll.pdf.

[6] Julius O. Smith, 2015. Digital Audio Resampling
Home Page, “Theory of Operation” section.
http://www-ccrma.stanford.edu/~jos/
resample/Theory_Operation.html.

http://git.alsa-project.org/?p=alsa-lib.git;a=commitdiff;h=c88672d86fe713e8f049df895fc3b64c472fbf5d
http://git.alsa-project.org/?p=alsa-lib.git;a=commitdiff;h=c88672d86fe713e8f049df895fc3b64c472fbf5d
https://bugs.freedesktop.org/show_bug.cgi?id=66962
https://bugs.freedesktop.org/show_bug.cgi?id=66962
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm_plugins.html
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm_plugins.html
http://0pointer.de/blog/projects/pulse-glitch-free.html
http://0pointer.de/blog/projects/pulse-glitch-free.html
http://www.freedesktop.org/wiki/Software/PulseAudio/
http://www.freedesktop.org/wiki/Software/PulseAudio/
http://www.chromium.org/chromium-os/chromiumos-design-docs/cras-chromeos-audio-server
http://www.chromium.org/chromium-os/chromiumos-design-docs/cras-chromeos-audio-server
http://www.chromium.org/chromium-os/chromiumos-design-docs/cras-chromeos-audio-server
http://kokkinizita.linuxaudio.org/papers/usingdll.pdf
http://kokkinizita.linuxaudio.org/papers/usingdll.pdf
http://www-ccrma.stanford.edu/~jos/resample/Theory_Operation.html
http://www-ccrma.stanford.edu/~jos/resample/Theory_Operation.html

	Introduction
	Timer-based scheduling
	Buffer and timing constraints
	Wakeup timings
	Rewinds
	Rewind-related APIs
	Testing rewinds
	Causes of incomplete rewindability in hardware
	Rewindability of self-contained ALSA plugins
	External plugins
	Rate plugin
	PulseAudio virtual sinks
	Dealing with non-rewindable devices

	Client-side timing
	Conclusion
	Acknowledgements

