
A Taste of (formal) Sound
Reasoning

A Tutorial

Emilio J. Gallego Arias, Pierre Jouvelot,
Olivier Hermant

MINES ParisTech, PSL Research University, France

Linux Audio Conf 2015

e+lac@x80.org @ejgallego

https://github.com/ejgallego/mini-faust-coq



Let’s start with a simple IIR filter:

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

What can we know about it?



Let’s start with a simple IIR filter:

smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

What can we know about it?



smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

Natural questions are:
§ Frequency response.
§ Stability.
§ Linearity/Time Invariance.

Answers given by standard DSP theory.

What about the implementation of the filter?

We dive into the realm of PL theory!

Paradigm shift!



smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

Natural questions are:
§ Frequency response.
§ Stability.
§ Linearity/Time Invariance.

Answers given by standard DSP theory.

What about the implementation of the filter?

We dive into the realm of PL theory!

Paradigm shift!



smoothn “ p1´ cq ¨ xn ` c ¨ smoothn´1

Natural questions are:
§ Frequency response.
§ Stability.
§ Linearity/Time Invariance.

Answers given by standard DSP theory.

What about the implementation of the filter?

We dive into the realm of PL theory!

Paradigm shift!



Certainty

“Absolute” confidence on something we believe.
How do we know something is “absolutely” true?



Certainty

“Absolute” confidence on something we believe.

How do we know something is “absolutely” true?



Certainty

“Absolute” confidence on something we believe.
How do we know something is “absolutely” true?



Many possible answers

In the Programming Languages field, we want
computers to check knowledge for us!



Many possible answers
In the Programming Languages field, we want

computers to check knowledge for us!



How does it work?

Welcome to Evidence!

We will build a particular kind of evidence for a
property of our filter, then use the computer to
validate it.



How does it work?

Welcome to Evidence!

We will build a particular kind of evidence for a
property of our filter, then use the computer to
validate it.



Types of Evidence
Bob Hi Alice, my dog is feeling weird!

Alice I don’t believe you!



Types of Evidence
Bob Hi Alice, my dog is feeling weird!

Alice I don’t believe you!



Logical Evidence: Proofs

We want to agree on a convention to produce
and check evidence.

A logic is a language and a set of rules geared
towards the production of symbolic evidence.

Example Propositions
“Every even number is not prime.”
“Every complex polynomial has a root.”
“Every finite impulse filter is stable.”



Logical Evidence: Proofs

We want to agree on a convention to produce
and check evidence.

A logic is a language and a set of rules geared
towards the production of symbolic evidence.

Example Propositions
“Every even number is not prime.”
“Every complex polynomial has a root.”
“Every finite impulse filter is stable.”



Checking Validity: Inference

To check when a proposition holds, we need
rules.

Example Rules
“If A and B hold, B holds.”

“If P holds for 0, and assuming P holds
for n we can prove that P holds for n+1,
then P holds for all n.”



The Theory of Forms

Truth
Truth lives in the idealistic, infinite universe.

Γ |ù ϕ if Γ is true, then ϕ is true

Proof
Reasoning lives in the concrete, syntactic
universe.

Γ $ ϕ ϕ can be proved from Γ

using a valid application of the rules.



Linking the Worlds
Γ |ù ϕ if Γ is true, then ϕ is true
Γ $ ϕ ϕ can be proved from Γ

Main Properties
§ Soundness: Γ $ ϕ implies Γ |ù ϕ.

§ Completeness: Γ |ù ϕ implies Γ $ ϕ.
§ Consistency: & A^ A.

We are liberated from the complexity of the ideal,
infinite world, we can now use mechanical,

finitary rules to reason about it!



Linking the Worlds
Γ |ù ϕ if Γ is true, then ϕ is true
Γ $ ϕ ϕ can be proved from Γ

Main Properties
§ Soundness: Γ $ ϕ implies Γ |ù ϕ.
§ Completeness: Γ |ù ϕ implies Γ $ ϕ.

§ Consistency: & A^ A.

We are liberated from the complexity of the ideal,
infinite world, we can now use mechanical,

finitary rules to reason about it!



Linking the Worlds
Γ |ù ϕ if Γ is true, then ϕ is true
Γ $ ϕ ϕ can be proved from Γ

Main Properties
§ Soundness: Γ $ ϕ implies Γ |ù ϕ.
§ Completeness: Γ |ù ϕ implies Γ $ ϕ.
§ Consistency: & A^ A.

We are liberated from the complexity of the ideal,
infinite world, we can now use mechanical,

finitary rules to reason about it!



Linking the Worlds
Γ |ù ϕ if Γ is true, then ϕ is true
Γ $ ϕ ϕ can be proved from Γ

Main Properties
§ Soundness: Γ $ ϕ implies Γ |ù ϕ.
§ Completeness: Γ |ù ϕ implies Γ $ ϕ.
§ Consistency: & A^ A.

We are liberated from the complexity of the ideal,
infinite world, we can now use mechanical,

finitary rules to reason about it!



Computational Evidence

Assume we want our computer to check our
deductions.

We could write a rule checker. But how do we
know the rule checker is correct?

A crucial, fundamental idea:

Programs are Proofs!
Types are Propositions!



Computational Evidence

Assume we want our computer to check our
deductions.

We could write a rule checker. But how do we
know the rule checker is correct?

A crucial, fundamental idea:

Programs are Proofs!
Types are Propositions!



Computational Evidence

Assume we want our computer to check our
deductions.

We could write a rule checker. But how do we
know the rule checker is correct?

A crucial, fundamental idea:

Programs are Proofs!
Types are Propositions!



Computational Evidence

Welcome to Coq!
aptitude install coq

In Coq, proofs are precisely the well-typed
functional programs. Type-checking validates our
logical deductions!



Computational Evidence

Welcome to Coq!
aptitude install coq

In Coq, proofs are precisely the well-typed
functional programs. Type-checking validates our
logical deductions!



BHK-Interpretation

Computational interpretation of logic

Type Proof / Program
P ^Q Record with proofs for P and Q.
P Ñ Q Program that takes a proof of P,

then produces a proof of Q.
@px : Pq,Qpxq Program with input p a proof of

P, then produces a proof of Qppq
Dpx : Pq,Qpxq Pair pw ,W q of w a proof for P

and W a proof for Ppwq.
P _Q ????



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.

2. Define a representation for (sampled) sound.
3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.

3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.

4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.
4. ?

5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]



Back to the Filter

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Using Faust:
smooth(c) = *(1-c) : + „ *(c)

[For c = 0.9]



Let’s do it!

smooth(c) = *(1-c) : + „ *(c)



Semantics

We can “write” Faust programs inside Coq. Now
we want to run them.

Output of Smooth
T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68



Semantics

We can “write” Faust programs inside Coq. Now
we want to run them.

Output of Smooth
T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68



What is Sound? Choices. . .

We need to choose how to represent sound in
Coq? In the formal world, we pay for every detail.

§ Conceptual representations? (RÑ R).
§ Infinite representations? (NÑ R)
§ Finite representation? (seq R)

We’ll use the last one.



Let’s do it!
T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68



When is Smooth Stable?

We are in good shape, now, when is smooth
stable?

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Smooth is stable when c P p0,1q. Formally:

@i P ra,bs, c P p0,1q Ñ smoothpcq i P ra,bs



When is Smooth Stable?

We are in good shape, now, when is smooth
stable?

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Smooth is stable when c P p0,1q. Formally:

@i P ra,bs, c P p0,1q Ñ smoothpcq i P ra,bs



Proving Stability

We can do the proof directly in Coq, it is not
difficult but cumbersome in general.

But we can use better, higher-level reasoning
principles: Use program logics and target global
properties over all samples.



Proving Stability

We can do the proof directly in Coq, it is not
difficult but cumbersome in general.

But we can use better, higher-level reasoning
principles: Use program logics and target global
properties over all samples.



Sampled Logic

Definition
A sample-level property ϕ holds for a signal s if it
holds for all samples. @n.ϕpsrnsq.
Boundedness is a sample-level property!

Definition
Assume a program f , then we write tϕu f tψu for
“for all inputs satisfying ϕ”, the output of f
satisfies ψ.
Stability for smooth is written:

tx P ra,bsu smooth tx P ra,bsu



Sampled Logic

Definition
A sample-level property ϕ holds for a signal s if it
holds for all samples. @n.ϕpsrnsq.
Boundedness is a sample-level property!

Definition
Assume a program f , then we write tϕu f tψu for
“for all inputs satisfying ϕ”, the output of f
satisfies ψ.
Stability for smooth is written:

tx P ra,bsu smooth tx P ra,bsu



Sampled Logic

@i1, i2, pϕ1pi1q ^ ϕ1pi2qq ùñ ψpi1ptq ` i2ptqq
tϕ1, ϕ2u ` tψu

Prim

tϕu f tθu tθu g tψu
tϕu f : g tψu

Comp

|ù ψpx0q tθ, ϕu f tψu tψu g tθu
tϕu f „ g tψu

Feed



Stability Proof

l

tIabu ˚p1´ cq tIabcu

l

tIabc, Iabcu ` tIabu

l

tIabu ˚pcq tIabcu

tIabcu ` „ ˚pcq tIabu

ti P ra,bsu ˚p1´ cq : ` „ ˚pcq to P ra,bsu

with:

Iabpxq ” x P ra,bs
Iabcpxq ” x P ra ˚ c,b ˚ cs
Iabcpxq ” x P ra ˚ p1´ cq,b ˚ p1´ cqs



Stability Proof



Conclusions

§ Interesting exercise, we learned a lot!
§ The full language is basically done.
§ We need your help! Let us know what would

be interesting to check!
§ Most complaints about plugins cannot be

solved by verification.
§ We are investigating a slightly different

approach.
§ Working on linear systems theory, frequency

domain properties.



Thanks!



Nyquist Theorem

Provided fs is twice the highest frequency in V
then:

V ptq “
8

ÿ

n“´8

V rns ¨
sinrπ ¨ fs ¨ pt ´ n ¨ Tsqs

π ¨ fs ¨ pt ´ n ¨ Tsq

where

fs “ 1{Ts sampling frequency
V ptq value of signal at time t
V rts “ V pt ¨ Tsq value of signal at time t ¨ Ts


	Appendix

