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Logical Evidence: Proofs

We want to agree on a convention to produce
and check evidence.

A logic is a language and a set of rules geared
towards the production of symbolic evidence.

Example Propositions
“Every even number is not prime.”
“Every complex polynomial has a root.”
“Every finite impulse filter is stable.”
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Checking Validity: Inference

To check when a proposition holds, we need
rules.

Example Rules
“If A and B hold, B holds.”

“If P holds for 0, and assuming P holds
for n we can prove that P holds for n+1,
then P holds for all n.”



The Theory of Forms

Truth
Truth lives in the idealistic, infinite universe.

Γ |ù ϕ if Γ is true, then ϕ is true

Proof
Reasoning lives in the concrete, syntactic
universe.

Γ $ ϕ ϕ can be proved from Γ

using a valid application of the rules.
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§ Consistency: & A^ A.

We are liberated from the complexity of the ideal,
infinite world, we can now use mechanical,

finitary rules to reason about it!
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Assume we want our computer to check our
deductions.

We could write a rule checker. But how do we
know the rule checker is correct?

A crucial, fundamental idea:

Programs are Proofs!
Types are Propositions!
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BHK-Interpretation

Computational interpretation of logic

Type Proof / Program
P ^Q Record with proofs for P and Q.
P Ñ Q Program that takes a proof of P,

then produces a proof of Q.
@px : Pq,Qpxq Program with input p a proof of

P, then produces a proof of Qppq
Dpx : Pq,Qpxq Pair pw ,W q of w a proof for P

and W a proof for Ppwq.
P _Q ????



Let’s Move Back to Audio

Use Coq to reason about audio programs, in
particular, we’ll use a toy version of Faust!

What’s the plan?

1. Define the syntax of Faust inside Coq.
2. Define a representation for (sampled) sound.
3. Link the two.
4. ?
5. Profit!

[Seriously, we’d love to hear about 4!]
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Back to the Filter

smoothn “ p1´ cqxn ` c ¨ smoothn´1

Using Faust:
smooth(c) = *(1-c) : + „ *(c)

[For c = 0.9]
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Semantics

We can “write” Faust programs inside Coq. Now
we want to run them.

Output of Smooth
T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68
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What is Sound? Choices. . .

We need to choose how to represent sound in
Coq? In the formal world, we pay for every detail.

§ Conceptual representations? (RÑ R).
§ Infinite representations? (NÑ R)
§ Finite representation? (seq R)

We’ll use the last one.



Let’s do it!
T: 1 2 3 4 5 6 7 8
I: 1.00 1.05 1.10 1.15 1.20 1.25 1.20 1.25
O: 0.10 0.19 0.28 0.37 0.45 0.53 0.61 0.68



When is Smooth Stable?

We are in good shape, now, when is smooth
stable?
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Smooth is stable when c P p0,1q. Formally:

@i P ra,bs, c P p0,1q Ñ smoothpcq i P ra,bs
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Proving Stability

We can do the proof directly in Coq, it is not
difficult but cumbersome in general.

But we can use better, higher-level reasoning
principles: Use program logics and target global
properties over all samples.
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A sample-level property ϕ holds for a signal s if it
holds for all samples. @n.ϕpsrnsq.
Boundedness is a sample-level property!

Definition
Assume a program f , then we write tϕu f tψu for
“for all inputs satisfying ϕ”, the output of f
satisfies ψ.
Stability for smooth is written:

tx P ra,bsu smooth tx P ra,bsu
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Sampled Logic

@i1, i2, pϕ1pi1q ^ ϕ1pi2qq ùñ ψpi1ptq ` i2ptqq
tϕ1, ϕ2u ` tψu

Prim

tϕu f tθu tθu g tψu
tϕu f : g tψu

Comp

|ù ψpx0q tθ, ϕu f tψu tψu g tθu
tϕu f „ g tψu

Feed



Stability Proof

l

tIabu ˚p1´ cq tIabcu

l

tIabc, Iabcu ` tIabu

l

tIabu ˚pcq tIabcu

tIabcu ` „ ˚pcq tIabu

ti P ra,bsu ˚p1´ cq : ` „ ˚pcq to P ra,bsu

with:

Iabpxq ” x P ra,bs
Iabcpxq ” x P ra ˚ c,b ˚ cs
Iabcpxq ” x P ra ˚ p1´ cq,b ˚ p1´ cqs



Stability Proof



Conclusions

§ Interesting exercise, we learned a lot!
§ The full language is basically done.
§ We need your help! Let us know what would

be interesting to check!
§ Most complaints about plugins cannot be

solved by verification.
§ We are investigating a slightly different

approach.
§ Working on linear systems theory, frequency

domain properties.



Thanks!



Nyquist Theorem

Provided fs is twice the highest frequency in V
then:

V ptq “
8

ÿ

n“´8

V rns ¨
sinrπ ¨ fs ¨ pt ´ n ¨ Tsqs

π ¨ fs ¨ pt ´ n ¨ Tsq

where

fs “ 1{Ts sampling frequency
V ptq value of signal at time t
V rts “ V pt ¨ Tsq value of signal at time t ¨ Ts


	Appendix

