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Abstract

A previously implemented realtime algorithmic com-
position system with live coding interface had
rhythm functions which produced stylistically lim-
ited output and lacked flexibility. Through a cleaner
separation between the generation of base rhythmic
figures and the generation of variations at various
rhythmic densities, flexibility was gained. These
functions were generalized to make a greater variety
of output possible. As examples, L-systems were im-
plemented, as well as the use of ratios for generating
variations at different rhythmic densities. This in-
creased flexibility should enable the use of various
standard algorithimic composition techniques and
the development of new ones.
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1 Introduction

A system for realtime algorithmic composition
was first presented in (Bell, 2011) and then
improvements were described in (Bell, 2013).
The intention of that system was to be able
to do realtime algorithmic composition, primar-
ily through a live coding interface. It was con-
cluded that while the interonset interval (I0I)
function and density function provided in the
Conductive library could yield somewhat useful
results, improvements could be made.

This paper describes attempted improve-
ments in this area. First this paper briefly re-
views how those functions were implemented
previously and describes their output. It then
explains the problems with that implementation
and output. The paper then proceeds to de-
scribe the newly implemented version and its
advantages, namely the use of a higher-order
function to gain a more modular system. Two
example inputs to this higher-order function
were implemented and are described. Finally,
conclusions are made and directions for future
research are proposed.

2 Summary of Previous Rhythm
Generation Technique

2.1 A Brief Review of Conductive

Conductive is a library for the Haskell program-
ming language used for managing concurrent
processes for realtime music. In addition to pro-
viding functions for managing those concurrent
processes, it has some features for representing
musical time and for algorithmic composition.
Concurrent musical processes are represented
by a data structure called a Player. The Player
refers to two functions: an action, which can
be any IO function, which it runs repeatedly;
and an IOl function, which determines the wait
times, called interonset intervals (IOIs), that are
interleaved between calls to the action function.
More information on Conductive and perform-
ing with it can be found in (Bell, 2011) and
(Bell, 2013). See Figure 1 for a graphical repre-
sentation, originally included in (Bell, 2011).
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Figure 1: the Play loop, with Player, action
function, and IOI function

2.2 Rhythm in Conductive

As described in (Bell, 2013), this author had
been experimenting with reading IOI values
from something called a density map. This
concept involved two parts: the generation of
rhythmic figures and the generation of an or-
dered stack of variations at lesser and greater
rhythmic density. Both of these parts used



stochastic methods and were joined finally in
a single function.

A higher-level abstraction was developed to
generate a list and a set of rhythmically similar
lists of greater and lesser density and store them
in a table indexed by level of density. Doing so
increased the likelihood that two lists would be
perceived as having a rhythmic relationship and
decreased the chance that an audience would
perceive a kind of discontinuous state change
when switching from one to another.

The base rhythmic figure was an ordered list
of TIOI values expressed in terms of beats, whole
or fractional. To generate it, a performer se-
lected a core unit which was used to generate
potential IOI values. Selection of the core unit,
in conjunction with the length of the pattern,
largely determined the metrical feel of the pat-
tern. A list of scalars was determined by the
performer, from which the function randomly
selected a user-specified quantity to multiply
with the core unit. The user specified a num-
ber of subphrases to generate and the length of
those phrases in terms of number of scalars to
use. The subphrases were then generated by se-
lecting the scalars and multiplying them by the
base unit. Finally, a user-specified number of
subphrases were chosen at random by the func-
tion. The user determined the length of the
final phrase in terms of beats. If the length of
the concatenated subphrases did not equal the
specified length, the final IOI value was padded.
If the length exceeded the specified length, the
final IOI value was truncated. The repetition
of values and subphrases within the final figure
tended to give it a musical quality lacking in a
list of purely random numbers. For a complete
example, see (Bell, 2013).

Given a particular figure, a series of related
patterns was generated in which the rhythmic
density was increased or decreased. A large
number of such patterns was generated in or-
der so that a stack of patterns from very low
rhythmic density to very high rhythmic density
resulted, with the original figure somewhere in
the middle. Those variations were generated in
one of two ways, depending on whether they
were to have greater or lesser density. When
reducing density, one value from the figure was
chosen at random and combined with a neigh-
boring value. That new value was inserted into
the figure in the place of those two selected val-
ues. The less dense variation was then subjected
to the same process recursively until the figure

contained only a single item, with the figure at
each step added to a list. For increasing density,
a value was chosen at random and replaced with
two items: an item of lesser value from a list of
potential IOI values and the difference between
the original IOI value and the lesser value. The
resulting figure was subjected to the same pro-
cess, again recursively and retaining each ver-
sion, until the figure consisted of a list of the
smallest of the potential I0Is. By concatenat-
ing the original figure with the lists of greater
and lesser density, a table was generated. For a
complete example of this, see (Bell, 2013).

An integer value representing the density
ranking, with 0 being the least dense pattern,
was assigned to each figure in the table. That
table, along with the list of potential IOIs and
the total length of the figure, was stored in a
data structure called an IOIMap.

The function call to execute this process looks
like this, containing Ints, Doubles, and lists of
each as arguments. The function returned an
IOIMap containing the density map based on
the generated rhythmic figure:

mO00 <- i0IandRTfromPhrase 0.25 2
24 [2] 2 [2] 4.03

Based on a user-specified density value, a par-
ticular IOI pattern is chosen from the table.
The user queries the table with a value between
0 and 1, and a linear conversion to a list index
is done. The value returned is the IOI pattern
at that index. Based on the current beat, an
IOI value is returned from that pattern.

Density values can vary with time. One
method for doing so is employing a Timespan-
Map. A commonly observed pattern was set-
ting the timing of particular values. It is often
desired that values change over time but at dif-
ferent rates. TimespanMaps are structures for
handling such cases. Rather than specify the
exact timing of a value, it specifies the range
of time in which that value can occur. They
are maps or dictionaries with intervals as keys
to any kind of value. Another parameter of the
structure is a specified length at which it loops.
When a time is passed to the dictionary, the
interval that time falls in is determined to be
the key to use, and the corresponding value for
that interval is returned. When the time value
passed to the TimespanMap exceeds those for
which it is defined, it loops to return an appro-
priate value. For a graphical explanation, see
Figure 2 in (Bell, 2013).
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Figure 2: a comparison of the previous method and the new method

2.3 Problems Identified in the Previous
Paper

The style of patterns produced was limited,
both in the generation of rhythmic figures and
their variations at various rhythmic densities.
More inconvenient was the fact that other meth-
ods could not be tested without rewriting the
core functions. A more modular solution was
sought.

3 New Method: a Generalized
Function for Patterns and
Variations

To solve the problem described above, it was
determined to rewrite the function that han-
dled density and base patterns, generalizing it
to take functions and make the density func-
tion a higher-order function. A higher order
function is “a function that takes a function as
an argument or returns a function as a result
is called higher-order.” (Hutton, 2010) In this
case it takes two functions as parameters: one
for the generation of the base pattern and a sec-
ond for determining how the density of an in-
put should be increased. The function is passed
those two functions and a parameter determin-
ing how long the rhythmic figures should be.
It uses the pattern function to produce a base
pattern. It then processes the base pattern with
the density function to create the rhythmic vari-
ations. It returns an IOIMap, which includes a
set of TimespanMaps mapping time intervals to
values of next beats ordered according to their
density value.The new function has been given
the temporary name of newlOIMap2, to be used
until a better method of naming it is deter-
mined.

The benefit of doing so is that the basic struc-
ture is already available before a performance
and does not need to be coded at that time or
recoded when the current method for generat-
ing patterns is longer useful. That means that

generating patterns and then making a table of
values which can be read from according to a
density value can be accomplished more easily
and in a greater variety of ways. John Hughes
writes in his essay “Why Functional Program-
ming Matters” that higher-order functions are
one of two important kinds of “glue” that in-
crease modularity, “the key to successful pro-
gramming”. (Hughes, 1989) The use of higher-
order functions in programming for aesthetic
output has been described in (McDermott et
al., 2010).

As an example of an alternate method for in-
creasing density, a function for increasing den-
sity by ratio has been implemented. As an ex-
ample of a function for generating base rhythms,
two types of L-systems were implemented.

3.1 Density by Ratio

This method applies when generating variations
of increased rhythmic density.

The user specifies a list of ratios, a lowest
target value, and a limit to how small the 101
values in the rhythmic figure can be. A value
is selected at random from the rhythmic figure.
A ratio is chosen at random from the list of
ratios provided by the user. The ratio is ap-
plied to the value, which is subtracted from the
original value. These two new values are then
shuffled and inserted into the rhythmic figure
in place of the original value. The new rhyth-
mic figure is stored in a list, and the process
is repeated on this figure. This process is car-
ried out recursively until all of the IOI values
in the rhythmic figure are equal to or less than
the user-specified lowest target value, producing
a stack of increasingly dense rhythmic figures.
The code for this procedure can be seen in the
functions “densifier” and “densifier2”.

Consider an example in which a list, [1,1,1,1]
is progressively densified according to a ratio of
0.5, with 0.25 being the lowest possible value.



let addL unit phraseLength ratios name = do

ioimap <- newIOIMap2 0 phraseLength (generateDensities2 unit ratios) $ lsysTest4

rs +@ (name,ioimap)

Figure 3: an example of using the new higher order function, newlOIMap2

In this example, “it” is the ghci reference to the
output of the previous command.

*> densifier 0.25 [0.5] [1,1,1,1]
[1.0,1.0,1.0,0.5,0.5]

*> densifier 0.25 [0.5] it
[0.5,0.5,1.0,1.0,0.5,0.5]

*> densifier 0.25 [0.5] it
[0.5,0.5,1.0,0.5,0.5,0.5,0.5]

*> densifier 0.25 [0.5] it
[0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]

*> densifier 0.25 [0.5] it
[0.25,0.25,0.5,0.5,0.5,0.5,0.5,0.5,0.5]

This process would continue until all of the
values in the list are equal to 0.25.

3.2 Explanation of L-systems

Lindemayer systems, abbreviated to L-systems,
were developed by Aristid Lindenmayer in 1968
as “a theory of growth models for filamentous
organisms” (Lindenmayer, 1968). They have
since been used by many for the simulation of
plant growth, for visual art, and to a lesser ex-
tent, music.

They are string-rewriting systems in which an
input string, called an axiom, is transformed ac-
cording to a set of rules in which each item in the
string (a predecessor symbol) is rewritten as a
successor string. By inputting this output back
through the rule-set, successive generations can
be obtained (DuBois, 2003).

Here is a small example of a rule set, input,
and seven generations (Supper, 2001):

rules: a > b
b -> ab
input: a
output: b
ab
bab
abbab
bababbab
abbabbababbab

bababbababbabbababbab

L-systems which do not have one-to-one
string replacement rules grow in length rapidly

as seen above and require users to employ tech-
niques to deal with that size (DuBois, 2003).

3.3 History of L-systems in
Algorithmic Composition

L-systems have been used in a variety of ways
for algorithmic composition. Some examples
from the literature are listed below.

L-systems are frequently used for pitch con-
tent. Supper describes the use of L-systems
and cellular automata for algorithmic composi-
tion (Supper, 2001). Langston used L-systems
to choose from previously composed musical
phrases (Langston, 1989). Morgan uses a sys-
tem somewhat similar to Langston in which pre-
viously generated pattern fragments are chosen
from and assembled according to an L-system-
generated template (Morgan, 2007). One of
the most complete and useful discussions of us-
ing L-systems for music is the dissertation by
R. Luke Dubois, which describes various meth-
ods for generating patterns of pitches in mono-
phonic melody lines and chords.

Worth and Stepney describe a set of L-
system-selected rules by which note duration is
progressively transformed (Worth and Stepney,
2005). Use of L-systems for duration or rhythm
are described by Kaliakatos-Papakostas, Floros,
et. al., including the use of what they call
FL-systems, in which L-system output is con-
strained in length (Kaliakatsos-Papakostas et
al., 2012). Kitani and Koike have also described
a method of generating rhythms from L-systems
in combination with a learning algorithm (Ki-
tani and Koike, 2010). Liou, Wu, and Lee use L-
systems to compute the complexity of rhythms
(Liou et al., 2010).

For more about L-systems, readers are re-
ferred to the dissertations of Dubois (DuBois,
2003) and Manousakis (Manousakis, 2006) first
and then the other items listed above.

3.4 The L-system Function
Implemented for this System

The initial intention for using L-systems with
the higher-order function described above is to
generate the base rhythms from which the den-
sity table described above can be generated.
The module itself contains functions for gen-
erating a string output from an axiom, a rule



set, and the generation number. Using the map
function, a set of several generations can be ob-
tained.

The rule set is notated with a colon rather
than the traditional arrow for speed of entry.
The predecessor symbol and successor string
are written without spaces and separated by a
colon. Each production rule must be separated
by a space. The previous example can be run
in ghci as follows:

*LSystem> let rules = "a:b b:ab"
*LSystem> getGeneration2 1 rules "a"
llall

*LSystem> getGeneration2 2 rules "a"
ll'bll

*LSystem> getGeneration2 3 rules "a"
llab n

*LSystem> getGeneration2 4 rules "a"
llbabll

*LSystem> getGeneration2 5 rules "a"
"abbab"

A more complicated example follows:

rules: "a:ab b:acd d:gx e:abc f:ga g:d"
axiom: "abcdefg"

A symbol which has no rule is kept as-is. In
is the same as if the rule were to repeat the
symbol, such as “c -> ¢”.

In this case, the output in the interpreter of
the first three generations of this L-system are:

*LSystem> getGeneration2 1 "a:ab b:acd
d:gx e:abc f:ga g:d" "abcdefg"
"abcdefg"

*LSystem> getGeneration2 2 "a:ab b:acd
d:gx e:abc f:ga g:d" "abcdefg"
"abacdcgxabcgad"

*LSystem> getGeneration2 3 "a:ab b:acd
d:gx e:abc f:ga g:d" "abcdefg"
"abacdabcgxcdxabacdcdabgx"

Two methods have been tested:

e direct output of IOI values
e lists of value-transforming functions ap-
plied in sequence to a base value

The direct output of IOI values means that
given an axiom, a rule set, the generation num-
ber, and a list of potential IOI values, the func-
tion will return a list of IOI values. How those
IOI values are assigned to the symbols is a

matter for which a large variety of options ex-
ist. Ome simple choice is to randomly assign a
value to each unique symbol. The string is then
rewritten as that list of numeric values. This
example illustrates such a method. The list of
values ranges from 0.25 to 1.25, containing ev-
ery step of 0.25.

*LSystem> getGeneration2 5 rules "a"
"abbab"

*L3ystem> let a = it
*LSystem> randomFinalizer2
[0.25,0.5..1.25] a
[1.25,0.25,0.25,1.25,0.25]
*LSystem> randomFinalizer2
[0.25,0.5..1.25] a
[1.25,1.0,1.0,1.25,1.0]
*LSystem> randomFinalizer2
[0.25,0.5..1.25] a
[0.5,0.75,0.75,0.5,0.75]

In the case of using transform, the rules of the
L-system are mathematical functions that mod-
ify a numerical value. First the output of the
L-system is similarly rewritten with one math-
ematical function randomly chosen for each
unique symbol in the string. Given a starting
value and that list of mathematical functions,
the number is passed through the list so that
the output of one function becomes the input
of the next. The changes are accumulated so
that each step in the transformation of the ini-
tial number is kept. That series of numbers is
then processed as deltas on which the density
function will generate variations. Here is a very
simple example of a list of functions processing
a value:

*> transform 2 [(2 + ),((-1) +),(3 *x)]
[2,4,3,9]

Here is an application of using the transform
function on the output of an L-system.

*LSystem> getGeneration2 5 "a:b b:ab"
||a||

"abbab"

*LSystem> let a = it

*LSystem> let b = nub a

*LSystem> b

Ilabll

*LSystem> let c
b) [(1+),(0.5%)]
*L3ystem> let d = flatFinalizer c a
*LSystem> :t d

zip (map (\x -> [x])



d :: [Double -> Double]
*LSystem> transform 2 d
[2.0,3.0,1.5,0.75,1.75,0.875]

In this example, the variable “d” is the out-
put of the function flatFinalizer, which converts
the symbols in a string to their equivalents in
a dictionary. In this case, the dictionary is “c”,
which maps the output of the L-system, “b”,
to the list of operations above. The ghci com-
mand “:t” shows the type of something, and in
this case is used to show that d is a list of func-
tions which take a Double and return a Double.
The nub function returns a list in which all du-
plicate items have been removed. In this case,
“d” would expand to:

xLSystem> transform 2 [(1+),(0.5%),
(0.5%),(1+),(0.5%)]
[2.0,3.0,1.5,0.75,1.75,0.875]

The final output in both of these examples,
i.e. the list of Doubles, is used as a list of 101
values. Those values are then processed into a
density map as described in sections 2 and 3.1.

4 Conclusion

An example of the function call now used to
generate the I0IMap is shown below, includ-
ing the partially applied function generateDen-
sities2 and the function lsysTest/ can be found
in Figure 3.

A Dbrief example of using the L-system-
based method described above can be heard at
this URL: http://renickbell.net/sound/renick-
bell-fractal-beats-test-140209-b.mp3

In this example, a collection of 100 density
maps was created from a single L-System —
“a:ab b:c c:abc d:ded e:aabb f:ga g:d” “abcdefg”
— using the direct random selection of IOI values
described above. Through the performance, 17
of those are auditioned using a variety of audio
sample sets as well as live modification of the
envelopes which control the density level.

Another brief example can be found at:
http://renickbell.net /sound /renick-bell-fractal-
beats-140125.mp3

In the near future, this code should be
cleaned and added to one of the Con-
ductive packages at Hackage, the Haskell
package repository. A rough version of the
code can be found in the meantime at this
URL: http://renickbell.net/code/generalized-
density.zip

With the modifications described above, the
system certainly gained an additional degree of
freedom. The system should now serve better as
a platform for testing various algorithmic com-
position techniques. That could include more
complex L-systems, stochastic systems, and so
on.

Using ratios for increasing density works
fairly well as long as the ratios are very sim-
ple, like 0.5. Other ratios generate patterns
that are likely less familiar to listeners, and thus
might not be appropriate if the composer has
the intention of producing music that neatly fits
within most existing genres. However, this was
just an example, and more sophisticated meth-
ods can now be more easily tested.

The use of L-systems is also interesting, but
it will take additional practice to become ac-
quainted with L-systems and how, in the middle
of a performance, to write rules and axioms for
interesting output. As with the density func-
tion above, these L-system functions are also
simple examples that can be refined or replaced
for future work. They simply demonstrate that
generalization was possible.
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