
Csound on the Web

Victor LAZZARINI and Edward COSTELLO and Steven YI and John FITCH
Department of Music

National University of Ireland
Maynooth,

Ireland,
{victor.lazzarini@nuim.ie, edwardcostello@gmail.com, stevenyi@gmail.com, jpff@codemist.co.uk }

Abstract

This paper reports on two approaches to provide a
general-purpose audio programming support for web
applications based on Csound. It reviews the cur-
rent state of web audio development, and discusses
some previous attempts at this. We then introduce
a Javascript version of Csound that has been crea-
ted using the Emscripten compiler, and discuss its
features and limitations. In complement to this, we
look at a Native Client implementation of Csound,
which is a fully-functional version of Csound running
in Chrome and Chromium browsers.

Keywords

Music Programming Languages; Web Applications;

1 Introduction

The web browser has become an increasingly
viable platform for the creation and distributi-
on of various types of media computing appli-
cations[Wyse and Subramanian, 2013]. It is no
surprise that audio is an important part of these
developments. For a good while now we have be-
en interested in the possibilities of deployment
of client-side Csound-based applications, in ad-
dition to the already existing server-side capa-
bilities of the system. Such scenarios would be
ideal for various uses of Csound. For instance,
in Education, we could see the easy deployment
of Computer Music training software for all le-
vels, from secondary schools to third-level in-
stitutions. For the researcher, web applications
can provide an easy means of creating proto-
types and demonstrations. Composers and me-
dia artists can also benefit from the wide reach
of the internet to create portable works of art.
In summary, given the right conditions, Csound
can provide a solid and robust general-purpose
audio development environment for a variety of
uses. In this paper, we report on the progress
towards supporting these conditions.

2 Audio Technologies for the Web

The current state of audio systems for world-
wide web applications is primarily based upon
three technologies: Java1, Adobe Flash2, and
HTML5 Web Audio3. Of the three, Java is the
oldest. Applications using Java are deployed via
the web either as Applets4 or via Java Web
Start5. Java as a platform for web applications
has lost popularity since its introduction, pri-
marily due to historically sluggish start-up ti-
mes as well as concerns over security breaches.
Also of concern is that major browser vendors
have either completely disabled Applet loading
or disabled them by default, and that NPAPI
plugin support, with which the Java plugin for
browsers is implemented, is planned to be drop-
ped in future browser versions6. While Java sees
strong support on the server-side and desktop,
its future as a web-deployed application is te-
nuous at best and difficult to recommend for
future audio system development.

Adobe Flash as a platform has seen large-
scale support across platforms and across brow-
sers. Numerous large-scale applications have be-
en developed such as AudioTool7, Patchwork8,
and Noteflight9. Flash developers can choose to
deploy to the web using the Flash plugin, as
well as use Adobe Air10 to deploy to desktop
and mobile devices. While these applications de-
monstrate what can be developed for the web

1http://java.oracle.com
2http://www.adobe.com/products/flashruntimes.

html
3http://www.w3.org/TR/webaudio/
4http://docs.oracle.com/javase/tutorial/

deployment/applet/index.html
5http://docs.oracle.com/javase/tutorial/

deployment/webstart/index.html
6http://blog.chromium.org/2013/09/

saying-goodbye-to-our-old-friend-npapi.html
7http://www.audiotool.com/
8http://www.patchwork-synth.com
9http://www.noteflight.com

10http://www.adobe.com/products/air.html

http://java.oracle.com
http://www.adobe.com/products/flashruntimes.html
http://www.adobe.com/products/flashruntimes.html
http://www.w3.org/TR/webaudio/
http://docs.oracle.com/javase/tutorial/deployment/applet/index.html
http://docs.oracle.com/javase/tutorial/deployment/applet/index.html
http://docs.oracle.com/javase/tutorial/deployment/webstart/index.html
http://docs.oracle.com/javase/tutorial/deployment/webstart/index.html
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://www.audiotool.com/
http://www.patchwork-synth.com
http://www.noteflight.com
http://www.adobe.com/products/air.html


using Flash, the Flash platform itself has a
number of drawbacks. The primary tools for
Flash development are closed-source, commer-
cial applications that are unavailable on Linux,
though open source Flash compilers and IDEs
do exist11. There has been a backlash against
Flash in browsers, most famously by Steve Jobs
and Apple12, and the technology stack as a who-
le has seen limited development with the gro-
wing popularity of HTML5. At this time, Flash
may be a viable platform for building audio ap-
plications, but the uncertain future makes it dif-
ficult to recommend.

Finally, HTML5 Web Audio is the most re-
cent of technologies for web audio applications.
Examples include the “Recreating the sounds of
the BBC Radiophonic Workshop using the Web
Audio API” site13, Gibberish14, and WebPd15.
Unlike Java or Flash, which are implemented
as browser plug-ins, the Web Audio API is a
W3C proposed standard that is implemented by
the browser itself.16 Having built-in support for
Audio removes the security issues and concerns
over the future of plug-ins that affect Java and
Flash. However, the Web Audio API has limita-
tions that will be explored further below in the
section on Emscripten.

3 Csound-based Web Application
Design

Csound is a music synthesis system that has
roots in the very earliest history of computer
music. Csound use in Desktop and Mobile app-
lications has been discussed previously in [Laz-
zarini et al., 2012b], [Yi and Lazzarini, 2012],
and [Lazzarini et al., 2012a].

Prior to the technologies presented this pa-
per, Csound-based web applications have em-
ployed Csound mostly on the server-side. For
example, NetCsound 17 allows sending a CSD
file to the server, where it would render the
project to disk and email the user a link to
the rendered file when complete. Another use of

11http://www.flashdevelop.org/
12http://www.apple.com/hotnews/

thoughts-on-flash/
13http://webaudio.prototyping.bbc.co.uk/
14Available at https://github.com/

charlieroberts/Gibberish, discussed in [Roberts
et al., 2013]

15https://github.com/sebpiq/WebPd
16http://caniuse.com/audio-api lists current brow-

sers that support the Web Audio API
17Available at http://dream.cs.bath.ac.uk/

netcsound/, discussed in [ffitch et al., 2007]

Csound on the server is Oeyvind Brandtsegg’s
VLBI Music 18, where Csound is running on the
server and publishes its audio output to an au-
dio stream that end users can listen to. A simi-
lar architecture is found in [Johannes and To-
shihiro, 2013]. Since version 6.02, Csound also
includes a built-in server, that can be activa-
ted through an option on start up. The server
is able to receive code directly through UDP
connections and compile them on the fly.

Using Csound server-side has both positives
and negatives that should be evaluated for a
project’s requirements. It can be appropriate to
use if the project’s design calls for a single audio
stream/Csound instance that is shared by all
listeners. In this case, users might interact with
the audio system over the web, at the expen-
se of network latency. Using multiple realtime
Csound instances, as would be the case if there
was one per user, would certainly be taxing for
a single server and would require careful resour-
ce limiting. For multiple non-realtime Csound
instances, as in the case of NetCsound, multi-
ple jobs may be scheduled and batch processed
with less problems than with realtime systems,
though resource management is still a concern.

An early project to employ client-side audio
computation by Csound was described in [Casey
and Smaragdis, 1996], where a sound and music
description system was proposed for the rende-
ring of network-supplied data streams. A possi-
bly more flexible way to use Csound in client-
side applications, however, is to use the web
browser as a platform. Two attempts at this ha-
ve been made in the past. The first was the now-
defunct ActiveX Csound (also known as AXC-
sound)19, which allowed embedding Csound into
a webpage as an ActiveX Object. This technolo-
gy is no longer maintained and was only availa-
ble for use on Windows with Internet Explo-
rer. A second attempt was made in the Mobile
Csound Project[Lazzarini et al., 2012b], where a
proof-of-concept Csound-based application was
developed with Java and deployed using Java
Web Start, achieving client-side Csound use via
the browser. However, the technology required
special permissions to run on the client side and
required Java to be installed. Due to those issu-
es and the unsure future of Java over the web,

18http://www.researchcatalogue.net/view/55360/
55361

19We were unable to find a copy of this online, but one
is available from the CD-ROM included with [Boulanger,
2000]

http://www.flashdevelop.org/
http://www.apple.com/hotnews/thoughts-on-flash/
http://www.apple.com/hotnews/thoughts-on-flash/
http://webaudio.prototyping.bbc.co.uk/
https://github.com/charlieroberts/Gibberish
https://github.com/charlieroberts/Gibberish
https://github.com/sebpiq/WebPd
http://caniuse.com/audio-api
http://dream.cs.bath.ac.uk/netcsound/
http://dream.cs.bath.ac.uk/netcsound/
http://www.researchcatalogue.net/view/55360/55361 
http://www.researchcatalogue.net/view/55360/55361 


the solution was not further explored.
The two systems described in this paper are

browser-based solutions that run on the client-
side. The both share the following benefits:

• Csound has a large array of signal proces-
sing opcodes made immediately available
to web-based projects.

• They are compiled using the same source
code as is used for the desktop and mo-
bile version of Csound. They only require
recompiling to keep them in sync with the
latest Csound features and bug fixes.

• Csound code that can be run with the-
se browser solutions can be used on other
platforms. Audio systems developed using
Csound code is then cross-platform across
the web, desktop, mobile, and embed-
ded systems (i.e. Raspberry Pi, Beaglebo-
ne; discussed in [Batchelor and Wignall,
2013]). Developers can reuse their audio co-
de from their web-based projects elsewhere,
and vice versa.

4 Emscripten

Emscripten is a a project created by Alon Za-
kai at the Mozilla Foundation that compiles the
assembly language used by the LLVM compi-
ler into Javascript [Zakai, 2011]. When used in
combination with LLVM’s Clang frontend, Em-
scripten allows applications written in C/C++
or languages that use C/C++ runtimes to be
run directly in web browsers. This eliminates
the need for browser plugins and takes full ad-
vantage of web standards that are already in
common use.

In order to generate Javascript from C/C++
sourcecode the codebase is first compiled into
LLVM assembly language using LLVM’s Clang
frontend. Emscripten translates the resulting
LLVM assembly language into Javascript, speci-
fically an optimised subset of Javascript entitled
asm.js. The asm.js subset of Javascript is inten-
ded as a low-level target language for compilers
and allows a number of optimisations which are
not possible with standard Javascript20. Code
semantics which differ between Javascript and
LLVM assembly can be emulated when accu-
rate code is required. Emscripten has built-in
methods to check for arithmetic overflow, si-
gning issues and rounding errors. If emulation
is not required, code can be translated without

20http://asmjs.org/spec/latest/

semantic emulation in order to achieve the best
execution performance [Zakai, 2011].

Implementations of the C and C++ runti-
me libraries have been created for applicati-
ons compiled with Emscripten. These allow pro-
grams written in C/C++ to transparently per-
form common tasks such as using the file sys-
tem, allocating memory and printing to the con-
sole. Emscripten allows a virtual filesystem to
be created using its FS library, which is used
by Emscripten’s libc and libcxx for file I/O21.
Files can be added or removed from the virtual
filesystem using Javascript helper functions. It
is also possible to directly call C functions from
Javascript using Emscripten22. These functions
must first be named at compile time so they
are not optimised out of the resulting compi-
led Javascript code. The required functions are
then wrapped using Emscripten’s cwrap functi-
on, and assigned to a Javascript function name.
The cwrap function allows many Javascript va-
riables to be used transparently as arguments to
C functions, such as passing Javascript strings
to functions which require the C languages const
char array type.

Although Emscripten can successfully compi-
le a large section of C/C++ code there are still
a number of limitations to this approach due to
limitations within the Javascript language and
runtime. As Javascript doesn’t support threa-
ding, Emscripten is unable to compile codeba-
ses that make use of threads. Some concurrency
is possible using web workers, but they do not
share state. It is also not possible to directly im-
plement 64-bit integers in Javascript as all num-
bers are represented using 64-bit doubles. This
results in a risk of rounding errors being intro-
duced to the compiled Javascript when perfor-
ming arithmetic operations with 64-bit integers
[Zakai, 2011].

4.1 CsoundEmscripten

CsoundEmscripten is an implementation of the
Csound language in Javascript using the Ems-
cripten compiler. A working example of Csoun-
dEmscripten can be found at http://eddyc.
github.io/CsoundEmscripten/. The compiled
Csound library and CsoundObj Javascript class
can be found at https://github.com/eddyc/
CsoundEmscripten/. CsoundEmscripten con-

21https://github.com/kripken/emscripten/wiki/
Filesystem-API

22https://github.com/kripken/emscripten/wiki/
Interacting-with-code

http://asmjs.org/spec/latest/
http://eddyc.github.io/CsoundEmscripten/
http://eddyc.github.io/CsoundEmscripten/
https://github.com/eddyc/CsoundEmscripten/
https://github.com/eddyc/CsoundEmscripten/
https://github.com/kripken/emscripten/wiki/Filesystem-API
https://github.com/kripken/emscripten/wiki/Filesystem-API
https://github.com/kripken/emscripten/wiki/Interacting-with-code
https://github.com/kripken/emscripten/wiki/Interacting-with-code


sists of three main modules:

• The Csound library compiled to Javascript
using Emscripten.

• A structure and associated functions writ-
ten in C named CsoundObj implemented
on top of the Csound library that is com-
piled to Javascript using Emscripten.

• A handwritten Javascript class also named
CsoundObj that contains the public in-
terface to CsoundEmscripten. The Javas-
cript class both wraps the compiled Cso-
undObj structure and associated functions,
and connects the Csound library to the
Web Audio API.

4.1.1 Wrapping the Csound C API for
use with Javascript

In order to simplify the interface between the
Csound C API and the Javascript class contai-
ning the CsoundEmscripten public interface, a
structure named CsoundObj and a number of
functions which use this structure were created.
The structure contains a reference to the cur-
rent instance of Csound, a reference to Csound’s
input and output buffer, and Csound’s 0dBFS
value. Some of the functions that use this struc-
ture are:

• CsoundObj_new() - This function alloca-
tes and returns an instance of the Csound-
Obj structure. It also initialises an instan-
ce of Csound and disables Csound’s default
handling of sound I/O, allowing Csound’s
input and output buffers to be used direct-
ly.

• CsoundObj_compileCSD(self,
filePath, samplerate, controlrate,
buffersize) - This function is used
to compile CSD files, it takes as its
arguments: a pointer to the CsoundObj
structure self, the address of a CSD file
given by filePath, a specified sample rate
given by samplerate, a specified control
rate given by controlrate and a buffer
size given by buffersize. The CSD file at
the given address is compiled using these
arguments.

• CsoundObj_process(self,
inNumberFrames, inputBuffer,
outputBuffer) - This function copies
audio samples to Csound’s input buffer
and copies samples from Csound’s output

buffer. It takes as its arguments: a pointer
to the CsoundObj structure self, an integer
inNumberFrames specifying the number
of samples to be copied, a pointer to a
buffer containing the input samples named
inputBuffer and a pointer to a destination
buffer to copy the output samples named
outputBuffer.

Each of the other functions that use the Cso-
undObj structure simply wrap existing functi-
ons present in the Csound C API. The relevant
functions are:

• csoundGetKsmps(csound) - This function
takes as its argument a pointer to an in-
stance of Csound and returns the number
of specified audio frames per control sam-
ple.

• csoundGetNchnls(csound) - This functi-
on takes as its argument a pointer to an
instance of Csound and returns the num-
ber of specified audio output channels.

• csoundGetNchnlsInput(csound) - This
function takes as its argument a pointer
to an instance of Csound and returns the
number of specified audio input channels.

• csoundStop(csound) - This function takes
as its argument a pointer to an instance
of Csound stops the current performance
pass.

• csoundReset(csound) - This function ta-
kes as its argument a pointer to an instance
of Csound and resets its internal memory
and state in preparation for a new perfor-
mance.

• csoundSetControlChannel(csound,
name, val) - This function takes as its
arguments: a pointer to an instance of
Csound, a string given by name, and
number given by val, it sets the numerical
value of a Csound control channel specified
by the string name.

The CsoundObj structure and associated
functions are compiled to Javascript using Em-
scripten and added to the compiled Csound Ja-
vascript library. Although this is not necessary,
keeping the compiled CsoundObj structure and
functions in the same file as the Csound library
makes it more convenient when including Cso-
undEmscripten within web pages.



4.1.2 The CsoundEmscripten
Javascript interface

The last component of CsoundEmscripten is the
CsoundObj Javascript class. This class provi-
des the public interface for interacting with the
compiled Csound library. As well as allocating
an instance of Csound this class provides me-
thods for controlling performance and setting
the values of Csound’s control channels. Addi-
tionally, this class interfaces with the Web Au-
dio API, providing Csound with samples from
the audio input bus and copying samples from
Csound to the audio output bus. Audio I/O
and the Csound process are performed in Javas-
cript using the Web Audio API’s ScriptProces-
sorNode. This node allows direct access to input
and output samples in Javascript allowing au-
dio processing and synthesis using the Csound
library.

Csound can be used in any webpage by crea-
ting an instance of CsoundObj and calling the
available public methods in Javascript. The me-
thods available in the CsoundObj class are:

• compileCSD(fileName) This method ta-
kes as its argument the address of a CSD
file fileName and compiles it for perfor-
mance. The CSD file must be present in
Emscripten’s virtual filesystem. This me-
thod calls the compiled C function Csoun-
dObj compileCSD. It also creates a Script-
ProcessorNode instance for Audio I/O.

• enableAudioInput() This method enables
audio input to the web browser. When cal-
led, it triggers a permissions dialogue in the
host web browser requesting permission to
allow audio input. If permission is gran-
ted, audio input is available for the running
Csound instance.

• startAudioCallback() This method
connects the ScriptProcessorNode to the
audio output and, if required, the audio
input. The ScriptProcessorNodes audio
processing callback is also started. During
each callback, if required, audio samples
from the ScriptProcessorNodes input are
copied into Csound’s input buffer and any
new values for Csound’s software channels
are set. Csound’s csoundPerformKsmps()
function is called and any output samples
are copied into the ScriptProcessorNodes
output buffer.

• stopAudioCallback() This method dis-
connects the current running ScriptPro-

cessorNode and stops the audio process
callback. If required this method also dis-
connects any audio inputs.

• addControlChannel(name,
initialValue) This method adds an
object to a Javascript array that is used
to update Csound’s named channel values.
Each object contains a string value given
by name, a float value given by initialValue
and additionally a boolean value indicating
whether the float value has been updated.

• setControlChannelValue(name, value)
This method sets a named control channel
given by the string name to the specified
number given by the value argument.

• getControlChannelValue(name) This
method returns the current value of a
named control channel given by the string
name.

4.1.3 Limitations

Using CsoundEmscripten, it is possible to add
Csound’s audio processing and synthesis capa-
bilities to any web browser that supports the
Web Audio API. Unfortunately this approach
of bringing Csound to the web comes with a
number of drawbacks.

Although Javascript engines are constant-
ly improving in speed and efficiency, running
Csound entirely in Javascript is a processor in-
tensive task on modern systems. This is especi-
ally troublesome when trying to run even mode-
rately complex CSD files on mobile computing
devices.

Another limitation is due to the design of
the ScriptProcessorNode part of the Web Au-
dio API. Unfortunately, the ScriptProcessorNo-
de runs on the main thread. This can result
in audio glitching when another process on the
main thread—such as the UI—causes a delay in
audio processing. As part of the W3Cs Web Au-
dio Spec review it has been suggested that the
ScriptProcessorNode be moved off of the main
thread23. There has also been a resolution by
the Web Audio API developers that they will
make it possible to use the ScriptProcessorNo-
de with web workers24. Hopefully in a future
version of the Web Audio API the ScriptPro-
cessorNode will be more capable of running the

23https://github.com/w3ctag/
spec-reviews/blob/master/2013/07/WebAudio.
md#issue-scriptprocessornode-is-unfit-for-purpose-section-15

24https://www.w3.org/Bugs/Public/show_bug.cgi?
id=17415#c94

https://github.com/w3ctag/spec-reviews/blob/master/2013/07/WebAudio.md#issue-scriptprocessornode-is-unfit-for-purpose-section-15
https://github.com/w3ctag/spec-reviews/blob/master/2013/07/WebAudio.md#issue-scriptprocessornode-is-unfit-for-purpose-section-15
https://github.com/w3ctag/spec-reviews/blob/master/2013/07/WebAudio.md#issue-scriptprocessornode-is-unfit-for-purpose-section-15
https://www.w3.org/Bugs/Public/show_bug.cgi?id=17415#c94
https://www.w3.org/Bugs/Public/show_bug.cgi?id=17415#c94


kind complex audio processing and synthesis ca-
pabilities allowed by the Csound library.

This version of Csound also does not support
plugins, making some opcodes unavailable. Ad-
ditionally, MIDI I/O is not currently supported.
This is not due to the technical limitations of
Emscripten, rather it was not implemented due
to the current lack of support for the WebMIDI
standard in Mozilla Firefox25 and in the Webkit
library26.

5 Beyond Web Audio: Creating
Audio Applications with PNaCl

As an alternative to the development of audio
applications for web deployment in pure Javas-
cript, it is possible to take advantage of the Na-
tive Clients (NaCl) platform27. This allows the
use of C and C++ code to create components
that are accessible to client-side Javascript, and
run natively inside the browser. NaCl is descri-
bed as a sandboxing technology, as it provides a
safe environment for code to be executed, in an
OS-independent manner [Yee et al., 2009] [Sehr
et al., 2010]. This is not completely unlike the
use of Java with the Java Webstart Technology
(JAWS), which has been discussed elsewhere in
relation to Csound [Lazzarini et al., 2012b].

There are two basic toolchains in NaCl: nati-
ve/gcc and PNaCl [Donovan et al., 2010]. Whi-
le the former produces architecture-dependent
code (arm, x86, etc.), the latter is completely
independent of any existing architecture. NaCl
is currently only supported by the Chrome and
Chromium browsers. Since version 31, Chrome
enables PNaCl by default, allowing applications
created with that technology to work complete-
ly out-of-the-box. While PNaCl modules can be
served from anywhere in the open web, native-
toolchain NaCl applications and extensions can
only be installed from Google’s Chrome Web
Store.

5.1 The Pepper Plugin API

An integral part of NaCl is the Pepper Plu-
gin API (PPAPI, or just Pepper). It offers va-
rious services, of which interfacing with Javas-
cript and accessing the audio device is particu-
larly relevant to our ends. All of the toolchains
also include support for parts of the standard
C library (eg. stdio), and very importantly for

25https://bugzilla.mozilla.org/show_bug.cgi?
id=836897

26https://bugs.webkit.org/show_bug.cgi?id=
107250

27https://developers.google.com/native-client

Csound, the pthread library. However, absent
from the PNaCl toolchain are dlopen() and fri-
ends, which means no dynamic loading is availa-
ble there.

Javascript client-side code is responsible for
requesting the loading of a NaCl module. On-
ce the module is loaded, execution is controlled
through Javascript event listeners and messa-
ge passing. A postMessage() method is used by
Pepper to allow communication from Javascript
to PNaCl module, triggering a message handler
in the C/C++ side. In the opposite direction, a
message event is issued when C/C++ code calls
the equivalent PostMessage() function.

Audio output is well supported in Pepper
with a mid-latency callback mechanism (ca. 10-
11ms, 512 frames at 44.1 or 48 KHz sampling
rate). Its performance appears to be very uni-
form across the various platforms. The Audio
API design is very straightforward, although the
library is a little rigid in terms of parameters. It
supports only stereo at one of the two sampling
rates mentioned above). Audio input is not yet
available in the production release, but support
can already be seen in the development reposi-
tory.

The most complex part of NaCl is access to
the local files. In short, there is no open access
to the client disk, only to sandboxed filesys-
tems. It is possible to mount a server filesystem
(through httpfs), a memory filesystem (memfs),
as well as local temporary or permanent file-
systems (html5fs). For those to be useful, they
can only be mounted and accessed through the
NaCl module, which means that any copying
of data from the user disk into these partitions
has to be mediated by code written in the NaCl
module. For instance, it is possible to take ad-
vantage of the file HTML5 tag and to get data
from NaCl into a Javascript blob so that it can
be saved into the user’s disk. It is also possible
to copy a file from disk into the sandbox using
the URLReader service supplied by Pepper.

5.2 PNaCl

The PNaCl toolchain compiles code down to
a portable bitcode executable (called a pexe).
When this is delivered to the browser, an ahead-
of-time compiler is used to translate the code in-
to native form. A web application using PNaCl
will contain three basic components: the pexe
binary, a manifest file describing it, and a client-
side script in JS, which loads and allows interac-
tion with the module via the Pepper messaging

https://bugzilla.mozilla.org/show_bug.cgi?id=836897
https://bugzilla.mozilla.org/show_bug.cgi?id=836897
https://bugs.webkit.org/show_bug.cgi?id=107250
https://bugs.webkit.org/show_bug.cgi?id=107250
https://developers.google.com/native-client


system.

5.3 Csound for PNaCl

A fully functional implementation of Csound for
Portable Native Clients is available from http:
//vlazzarini.github.io. The package is com-
posed of three elements: the Javascript modu-
le (csound.js), the manifest file (csound.nmf),
and the pexe binary (csound.pexe). The sour-
ce for the PNaCl component is also available
from that site (csound.cpp). It depends on the
Csound and Libsndfile libraries compiled for
PNaCl and the NaCL sdk. A Makefile for PNaCl
exists in the Csound 6 sources.

5.3.1 The Javascript interface

Users of Csound for PNaCl will only inter-
act with the services offered by the Javascript
module. Typically an application written in
HTML5 will require the following elements to
use it:

• the csound.js script

• a reference to the module using a div tag
with id=“engine”

• a script containing the code to control
Csound.

The script will contain calls to methods in
csound.js, such as:

• csound.Play() - starts performance

• csound.PlayCsd(s) - starts performance
from a CSD file s, which can be in ./http/
(ORIGIN server) or ./local/ (local sand-
box).

• csound.RenderCsd(s) - renders a CSD file
s, which can be in ./http/ (ORIGIN server)
or ./local/ (local sandbox), with no RT au-
dio output. The “finished render” message
is issued on completion.

• csound.Pause() - pauses performance

• csound.CompileOrc(s) - compiles the
Csound code in the string s

• csound.ReadScore(s) - reads the score in
the string s (with preprocessing support)

• csound.Event(s) - sends in the line events
contained in the string s (no preprocessing)

• csound.SetChannel(name, value) -
sends the control channel name the value
value, both arguments being strings.

As it starts, the PNaCl module will call a
moduleDidLoad() function, if it exists. This can
be defined in the application script. Also the fol-
lowing callbacks are also definable:

• function handleMessage(message): cal-
led when there are messages from Csound
(pnacl module). The string message.data
contains the message.

• function attachListeners(): this is cal-
led when listeners for different events are
to be attached.

In addition to Csound-specific controls, the
module also includes a number of filesystem fa-
cilities, to allow the manipulation of resources
in the server and in the sandbox:

• csound.CopyToLocal(src, dest) - copies
the file src in the ORIGIN directory to the
local file dest, which can be accessed at ./lo-
cal/dest. The “Complete” message is issued
on completion.

• csound.CopyUrlToLocal(url,dest) - co-
pies the url url to the local file dest, which
can be accessed at ./local/dest. Current-
ly only ORIGIN and CORS urls are allo-
wed remotely, but local files can also be
passed if encoded as urls with the web-
kitURL.createObjectURL() javascript me-
thod. The “Complete” message is issued on
completion.

• csound.RequestFileFromLocal(src) -
requests the data from the local file src.
The “Complete” message is issued on
completion.

• csound.GetFileData() - returns the most
recently requested file data as an ArrayOb-
ject.

A series of examples demonstrating this API
is provided in github. In particular, an introduc-
tory example is found on http://vlazzarini.
github.io/minimal.html.

5.3.2 Limitations

The following limitations apply to the current
release of Csound for PNaCl:

• no realtime audio input (not supported yet
in Pepper/NaCl)

• no MIDI in the NaCl module. However, it
might be possible to implement MIDI in

http://vlazzarini.github.io
http://vlazzarini.github.io
http://vlazzarini.github.io/minimal.html
http://vlazzarini.github.io/minimal.html


JavaScript (through WebMIDI), and using
the csound.js functions, send control da-
ta to Csound, and respond to the various
channel messages.

• no plugins, as pNaCl does not support
dlopen() and friends. This means some
Csound opcodes are not available as they
reside in plugin libraries. It might be possi-
ble to add some of these opcodes statically
to the Csound pNaCl library in the future.

6 Conclusions

In this paper we reviewed the current state of
support for the development of web-based au-
dio and music applications. As part of this, we
explored two approaches in deploying Csound
as an engine for general-purpose media softwa-
re. The first consisted of a Javascript version
created with the help of the Emscripten com-
piler, and the second a native C/C++ port for
the Native Client platform, using the Portable
Native Client toolchain. The first has the advan-
tage of enjoying widespread support by a varie-
ty of browsers, but is not yet fully deployable.
On the other hand, the second approach, whi-
le at the moment only running on Chrome and
Chromium browsers, is a robust and ready-for-
production version of Csound.

7 Acknowledgements

This research was partly funded by the Program
of Research in Third Level Institutions (PRTLI
5) of the Higher Education Authority (HEA) of
Ireland, through the Digital Arts and Humani-
ties programme.

References

Paul Batchelor and Trev Wignall. 2013. Be-
aglePi: An Introductory Guide to Csound on
the BeagleBone and the Raspberry Pi, as well
other Linux-powered tinyware. Csound Jour-
nal, (18).

Richard J. Boulanger, editor. 2000. The
Csound Book: Tutorials in Software Synthesis
and Sound Design. MIT Press, February.

Michael Casey and Paris Smaragdis. 1996.
Netsound. In On the Edge. ICMA and
HKUST, August.

Alan Donovan, Robert Muth, Brad Chen, and
David Sehr. 2010. PNaCl: Portable Native
Client Executables. Google White Paper.

John ffitch, James Mitchell, and Julian Pad-
get. 2007. Composition with sound web ser-
vices and workflows. In Suvisoft Oy Ltd,
editor, Proceedings of the 2007 International
Computer Music Conference, volume I, pages
419–422. ICMA and Re:New, August. ISBN
0-9713192-5-1.

Tarmo Johannes and Kita Toshihiro. 2013.

”
Và, pensiero!“ - Fly, thought! Experi-

ment for interactive internet based piece
using Csound6 . http://tarmo.uuu.
ee/varia/failid/cs/pensiero-files/
pensiero-presentation.pdf. Accessed:
February 2nd, 2014.

Victor Lazzarini, Steven Yi, and Joseph Ti-
money. 2012a. Digital audio effects on mobile
platforms. In Proceedings of DAFx 2012.

Victor Lazzarini, Steven Yi, Joseph Timoney,
Damian Keller, and Marco Pimenta. 2012b.
The Mobile Csound Platform. In Proceedings
of ICMC 2012.

Charles Roberts, Graham Wakefield, and
Matthew Wright. 2013. The Web Browser As
Synthesizer And Interface. Proceedings of the
International Conference on New Interfaces
for Musical Expression.

David Sehr, Robert Muth, Cliff Bife, Victor
Khimenko, Egor Pasko, Karl Schimpf, Bennet
Yee, and Brad Chen. 2010. Adapting Softwa-
re Fault Isolation to Contemporary CPU Ar-
chitectures. In 19th USENIX Security Sym-
posium.

Lonce Wyse and Srikumar Subramanian.
2013. The Viability of the Web Browser as
a Computer Music Platform. Computer Mu-
sic Journal, 37(4):10–23.

Bennet Yee, David Sehr, Gregory Dardyk,
J. Bradley Chen, Robert Muth, Tavis Orman-
dy, Shiki Okasaka, Neha Narula, and Nicho-
las Fullagar. 2009. Native Client: A Sandbox
for Portable, Untrusted x86 Native Code. In
2009 IEEE Symposium on Security and Pri-
vacy.

Steven Yi and Victor Lazzarini. 2012. Csound
for Android. In Linux Audio Conference, vo-
lume 6.

Alon Zakai. 2011. Emscripten: an llvm-to-
javascript compiler. In Proceedings of the
ACM international conference companion on
Object oriented programming systems langua-
ges and applications, pages 301–312. ACM.

http://tarmo.uuu.ee/varia/failid/cs/pensiero-files/pensiero-presentation.pdf
http://tarmo.uuu.ee/varia/failid/cs/pensiero-files/pensiero-presentation.pdf
http://tarmo.uuu.ee/varia/failid/cs/pensiero-files/pensiero-presentation.pdf

	Introduction
	Audio Technologies for the Web
	Csound-based Web Application Design
	Emscripten
	CsoundEmscripten
	Wrapping the Csound C API for use with Javascript
	The CsoundEmscripten Javascript interface
	Limitations


	Beyond Web Audio: Creating Audio Applications with PNaCl
	The Pepper Plugin API
	PNaCl
	Csound for PNaCl
	The Javascript interface
	Limitations


	Conclusions
	Acknowledgements

