Radium: A Music Editor Inspired by the Music Tracker

Kjetil Matheussen
Norwegian Center for Technology in Music and the Arts. (NOTAM)
Sandakerveien 24D, Bygg F3
N-0473 Oslo
Norway
k.s.matheussen@notam02.no

Abstract

Radium is a new type of music editor inspired by
the music tracker. Radium’s interface differs from
the classical music tracker interface by using graphi-
cal elements instead of text and by allowing musical
events anywhere within a tracker line.

Chapter 1: The classical music tracker interface
and how Radium differs from it. Chapter 2: Ra-
dium Features: a) The Editor;) The Modular
Mixer; ¢) Instruments and Audio Effects; d) In-
strument Configuration; e¢) Common Music Nota-
tion. Chapter 3: Implementation details: a) Paint-
ing the Editor; b) Smooth Scrolling; ¢) Embed-
ding Pure Data; d) Collecting Memory Garbage in
C and C++. Chapter 4: Related software.

Keywords

Radium, Music Tracker, GUI, Pure Data, Graphics
Programming.

1 Introduction

The tracker interface appeared on the AmigaOS
platform in late 80s and early 90s with pro-
grams such as Soundtracker, NoiseTracker and
Protracker. The first tracker was called
“The Ultimate Soundtracker”,! and was re-
leased in 1987 by Karsten Obarski.?

In the classical tracker interface, time goes
downwards. Notes placed higher on the screen
are played before notes placed below.? Instead
of moving the cursor up or down, the whole ed-
itor scrolls up or down, and the cursor is just
locked in the middle of the screen.

The tracker editor shows a two-dimensional
table in which musical events can be stored. We
can think of it as a spreadsheet with tracks as
columns and lines as rows.

! According to Wikipedia: http://en.wikipedia.org/
wiki/Music_tracker

thtp://en.wikipedia.org/wiki/Ultimate_
Soundtracker

3When I started making radium, I also considered
letting time go in the horizontal direction. I don’t re-
member why I chose the vertical direction.

Musical events are defined with pure text.
The event C#3 5-32-000 plays the note C
sharp at octave 3 using instrument number 5 at
volume 32. The last three zeroes can be used
for various types of sound effects, or to set new
tempo.

The tables are called patterns, and a song
usually contains several patterns. To control
the order patterns are playbed back, we use a
playlist. For example, if we have three patterns,
a typical song could have a playlist like this:
1,2,1,2,3,1, 2.

1.1 How Radium Differs from the
Classical Tracker Interface

Radium?* differs from the music tracker inter-
face by using graphical elements instead of text
and by allowing any number of events to be
placed anywhere.? The latter means that a line
in Radium is essentially just a graphical hint. It
should be possible to compose millions of years
of music within just one tracker line.

These differences are so fundamental, that it’s
questionable whether Radium can be defined as
a tracker.

1.2 History of Radium

The first version of Radium was released in year
2000 under the GPL license, and it only sup-
ported MIDI. After the initial release, Radium
was developed actively for around a year, fol-
lowed by a period between 2001 and 2012 with
less development. Since 2012, Radium has been
actively developed again.

The features presented in this paper have
mostly been implemented in 2012 and 2013.
Audio support was introduced in November
2012.

4http://users.notam02.no/~kjetism/radium/

5This feature may not be useful, depending on how
you compose music. But at least when using splitted
lines, and for accurately importing midi files and other
music formats, it’s a necessary feature.

1.3 Portability

The first version of Radium was released
for the Amiga Operating System (AmigaOS),
version 3.0 or later. The code was written in
a portable style, where non-portable code was
clearly separated and easy to replace. An alpha
version for Linux was available already in 2001.

Radium is at the time of writing available for
Linux, Windows, and Mac OS X, where Linux
is the main development platform and the plat-
form with the most features. It should be
straight forward to port Radium to a platform
which has Jack, POSIX, and Qt.

1.4 Term

In the rest of this paper, the word “line” means
a tracker line, and not a vertical graphical line
(i.e. a row of pixels) or an automation line.
In cases where we refer to a graphical line,
the expression “graphical line” will be used in-
stead. In cases where we refer to an automation
line, the expression “automation line” or “break
point line” will be used.

2 Radium Features
2.1 The Editor

The image below shows a Block (the name of
patterns in Radium).® From left to right, we
see a vertical slider, line numbers (12-29), a
green and blue area indicating tempo, an LPB
track (Lines Per Beat), a BPM track (Beats
Per Minute), a RelTempo track (for doing time-
varying tempo changes), plus two sound tracks;
a drum loop track and a bass track:

~
N
-]

4 104 2.0000 e c— ——

i
I
I
T
I
1
T
1
i
=
=
i
5
B
i
=
3¢

We also see that text is used to denote pitch
(“D-47, “D#3”, and “C-3”), while graphical
break point lines are used to define tempo
changes and effect automation. Pitch can be

5The word “Block” comes from Octamed (http://en.
wikipedia.org/wiki/Octamed). I think Block is a better
name than Pattern, at least in Radium where events can
be placed freely and doesn’t have to follow a pattern.

denoted with graphics too, using vertical lines,
but text is clearer and more accurate.

2.1.1 Editor Elements
o Audio waveforms are shown in the tracks:

e Time-varying volume changes
(crescendo/diminuendo) are defined
using break point curves. The audio

waveforms are updated in realtime:

e Time-varying tempo changes (ac-
celerando/ritardando) are defined with
break point lines. The audio waveforms
are updated in real time:

o Effects, e.g. reverb or chorus, are also de-
fined with break point lines:

e ..And so are time-varying pitch changes
(glissando’s):

e Pitch can be defined with unlimited preci-
sion. The pitch below is placed 82 cents
above C sharp at octave 4:

|

e Lines can be split. Splitting is essentially
just a way to zoom in on one line so that
you have more space to edit, but it can also
be used to define measures. Furthermore,
splitted lines can themselves be splitted,
those lines again can also be splitted, and
so forth:

21
22 20

23

e Updating the graphics too often can be tir-
ing for the eyes. The SPS option (Scrolls
Per Second) sets a limitation on the num-
ber of updates per second. SPS is an ef-
fective way to make the viewing more plea-
surable when not using smooth scrolling.

e The velocity of new notes can be set using
a random walk algorithm (drunk velocity).
The algorithm tries to simulate how a mu-
sician varies volume while playing:

e All editing operations are undoable and re-
doable. The number of undoes is limited
by system memory.

2.2 The Modular Mixer

The modular mixer provides a graphical inter-
face to route note events and audio signals be-
tween sound objects.

The role of a sound object is to produce audio,
receive audio, produce note events, receive note
events, or any combination of those.

Inside each sound object in the Mixer GUI,
there is a volume slider, a mute button, a bypass
button, VU meters (one for each channel), and

a “diode” that lights up when receiving note
events:

g . |_
" Bass [
/'DQ'IIITrII'H“

n‘ﬁnm =_'

g S -
[0 SnareDist :: [SnareAmp :i

The green lines show connections for note
events, such as Note On, Note Off, Note vol-
ume changes, and Note pitch changes.

The other connections (those painted in a
color that resembles mortar’) show audio con-
nections.

2.2.1 Separate channel routing

In the Mixer GUI, an audio connection sends
all channels from one sound object to another.
In order to (for instance) send only left channel,
or only receive right channel, the audio connec-
tions must be routed through special channel
routing objects.

The idea is that it’s faster to use a little bit
more time to route channels separately when
necessary, than to always connect every channel
manually.

2.3 Instruments and Audio Effects

2.3.1 Sampler Instrument

This instrument can play: 1) Normal sound-
files,® 2) Fasttracker instruments,” or 3) Sound-
fonts [Rossum and Joint, 1995]:

"“Name that color”:
name-that-color/#594C5B

8All formats supported by libsndfile: http://www.
mega-nerd.com/libsndfile/

9Text files describing the Fasttracker
“XI” instrument format: 1) “XI format description” by
“KB / The Obsessed Maniacs / Reflex”, 2) “The XM
module format description for XM files version $0104”
by “Mr.H of Triton” in 1994.

http://chir.ag/projects/

2.3.2 VST Plugins and instruments

Native VST plugins and instruments are sup-
ported on Linux, OSX and Windows:

2.3.3 Pure Data (Pd)

Pd processes can be inserted anywhere in the
sound graph. The Pd GUI is opened by double
clicking the sound object. There is no limitation
on the number of simultaneous instances:

=- Put your audic effect here

Eile Edit Put Find Media Window Help

notein
< Put your note effect here

nnnnnnn = =
r radium_note pitch

[..

noteout

<- Put your pitch effect here
olytouchin

< Put you note velocity effect here

polytouchout

Custom Pd controllers make it possible to
control Pd from Radium, and to control Ra-
dium from Pd. The Pd controllers appear as

Radium effects, similarly to “Max for Live”:1°

2.3.4 STK Instruments

Radium includes 20 STK instruments doing
physical modeling [Cook and Scavone, 1999].
These are written by Romain Michon in the
Faust language [Michon and Smith, 2011].
Michon’s instruments have been slightly mod-
ified to be used as instruments in Radium.

10https://www.ableton.com/en/live/max—for—live/

2.3.5 Zita Reverb

Fons Adriaensen’s “Zita Revl” reverb (Zita Re-
verb),'t implemented by Julius O. Smith IIT in
Faust [Smith, 2012].!2 Zita Reverb is also
used as the default reverb when creating a new
song.'3

2.3.6 Multiband Compressor

A multiband compressor. The DSP is imple-
mented in Faust by using components written
by Julius O. Smith IIT [Smith, 2012].: Compres-
sor, lookahead limiter, bandsplit, and smooth-

ing.
2.3.7 Other Instruments and Audio
Effects

a) LADSPA plugins. Richard Furse’s Linux Au-
dio Developer’s Simple Plugin API. b) Maarten
de Boer’s multitap delay “Tapiir” [De Boer,
2001], implemented by Yann Orlarey in Faust.
¢) A Fluidsynth instrument, using libflu-
idsynth.!* d) Sound objects to send or receive
audio to and from jack clients. e) A pipe ob-
ject. f) Channel routing objects (section 2.2.1).
g) MIDI output.

2.4 Instrument and Plug-in
Configuration Widget

Sound goes through five parts in the instru-
ment and plugin-in configuration widget. From
left to right in the picture below, we see:
1) A Note Duplicator, 2) An automatically cre-
ated Plugin/Instrument GUI, 3) A Compressor,
4) An Equalizer, 5) Settings for dry/wet, pan-
ning, stereo width, reverb, chorus, and output
volume:

1) Instruments can play several note events
when a note is played, using the note du-
plicator. This is convenient to, for instance,
double the bass, or add a simple echo. Up
to six notes can be played for each incom-
ing note event, and for each of those six
notes, the user can specify values for transpo-
sition, volume change, delay, and duration. If

11http://kokkinizita.1inuxaudio.org/linuxaudio/
zita-revi-doc/quickguide.html

2https://ccrma.stanford.edu/~jos/Reverb/Zita_Revi_
Reverberator.html

13The “Calf Multichorus” LADSPA plugin (written by
Krzysztof Foltman) is used as the default Chorus effect.

14http://www.fluidsynth.org

you need more than six notes, you can connect
the sound object to yet another sound object to
duplicate the notes further:

2) Sliders and buttons are automatically created
for all instruments and plug-ins, based on the
controllers they provide:

3) The compressor has a novel interface which
tries to show more intuitively how the sound is
squashed together. The DSP code is written in
Faust by Julius O. Smith III [Smith, 2012].

2.5 Common Music Notation

Scores can be generated from Radium files
automatically with Bill Schottstaedt’s nota-
tion software Common Music Notation (CMN)
[Schottstaedt, 1997].1> The generated scores
can be further tweaked in CMN, either by edit-
ing the generated CMN code, or by writing code
that further modifies the CMN code. The latter

15https ://ccrma.stanford.edu/software/cmn/

technique is used to generate this score:

&At
9 O I & #F ﬂ" |
Piano :@é .14 L - | 1
I f
. 8-~ — = - - -
= g T
(f-‘.:s = _rriof
8 =] U 4
o
S mp —f

3 Implementation Details

Radium is mainly written in C and C++. Some
code is also written in Python, Faust [Orlarey
et al., 2009] and Scheme.'6

3.1 Painting the Editor

The visible part of the editor is painted line
by line to a backbuffer. When the editor is
scrolling, we just copy corresponding tracker
lines from the backbuffer into the screen. When
a tracker line is not visible anymore, it is marked
as free, and available for painting a new line.
This way, we don’t have to repaint everything
for every update or scroll the screen or the back-
buffer.

Unfortunately, this strategy causes the order
of the lines in the backbuffer not to be chrono-
logical (newer lines often appear below older
lines). Non-chronological order makes it im-
possible to paint graphical elements that span
several lines in one operation. This limita-
tion causes breakpoint boxes to be squashed
up against the ceiling and floor of a tracker
line,!” and automation lines to be slightly not
quite connected (or too much connected) be-
cause of anti-aliasing artifacts.'® Scrolling the
backbuffer'® would not solve the problem either
since graphical elements can start before the vis-
ible area, or end after the visible area. There-
fore, at least some graphical elements has to be
painted in several operations anyway.

An alternative solution that would solve the
graphical problems, is to make the backbuffer
big enough to contain the complete block. But
this solution could occupy too much memory.?"

16Using the Guile interpreter

This effect probably looks more like a feature,

Bwhile this effect probably looks more like a bug.

Yor modifying Qt so that the underlying coordinate
system would match the order of the lines in the back-
buffer

20There are of course other solutions as well that would
solve the graphical problems while still keeping the back-
buffer, but I think they would complicate the code too
much to be worth the effort.

However, since today’s desktop computers
(2014) seems fast enough to just repaint the
screen when necessary, the strategy of painting
tracker lines one by one in a backbuffer will, al-
beit so efficient that it made the program usable
on hardware from 1992,2! probably be removed
in the near future. The advantage of not us-
ing a custom backbuffer is simpler code and less
graphical artifacts, plus that it is simpler to add
new graphical features when graphical opera-
tions are not bounded to be performed within
tracker lines.

3.2 Smooth scrolling

Music trackers have traditionally updated the
screen only when the current tracker line
changes (i.e. scrolling line by line). By updat-
ing the screen at each vertical blank instead, we
get smooth scrolling.

Smooth scrolling looks amazing compared to
scrolling line by line, but perhaps more impor-
tantly is that smooth scrolling seems signifi-
cantly less tiring for the eyes.

3.2.1 Render using the CPU

The first attempt to achieve smooth scrolling
was to make Radium render the screen by
copying line by line from the backbuffer at
each vertical blank. To achieve sub-pixel accu-
racy, all painting operations on the backbuffer
were performed n times, painting to n different
back buffers, where each backbuffer was slightly
skewed to the next one, all within the span of
one pixel in the vertical direction. A good value
for n would be at least 4.

One problem with this attempt was that the
amount of time to render a frame varied a bit,
and it was easy to lose the vertical blank dead-
line and get a frame glitch. The usual vertical
blank period for an LCD screen is 16+% ms, so
we don’t have much time, and we can’t trust
the OS to wake us up soon enough if the cur-
rent process for some reason has yielded in the
middle of rendering.

A graphical glitch is very apparent when the
whole screen moves in one direction at a con-
stant speed, so to avoid frame glitches, Radium
rendered frames in a separate thread and put
them on a ringbuffer which the main thread
would read from.?? If a single frame took more
time to render than 16+% ms, we still avoided

21 Amiga 1200

22This strategy is similar to how we reliably get sound
in real time from a non-deterministic source, for instance
a hard drive.

a glitch if the average rendering time was less
than 16—|—% ms.

However, this strategy didn’t play very well
with the current painting system (i.e. the code
became very complicated), plus that it had a
quite high CPU usage (which also made it more
prone to frame glitches), so it was abandoned.

3.2.2 Render using the GPU

A more successful attempt at achieving smooth
scrolling has been to use OpenGL in 2D mode.
By letting the GPU repaint everything at each
vertical blank, we achieve both smooth scrolling
and a very low CPU usage. Another advantage
is significantly smaller and simpler code since
we don’t use the type of backbuffer described in
section 3.1 plus that scrolling is only a matter of
sending updated y coordinates to OpenGL for
the graphical objects.

This code is currently under development and
should replace the current system soon.

3.3 Embedding Pd

Radium uses Peter Brinkmann’s libpd?? as basis
to embed Pd.

Libpd is a thin layer of code that makes Pd
into a library [Brinkmann et al., 2011]. Libpd
doesn’t include the Pd GUI, and it has some
other limitations as well, so a “Radium fork”
of libpd has been made for including features
needed by Radium.?*

The first modification was to re-add the GUI
and create an API to control it. Several other
enhancements and required modifications fol-
lowed, such as loading and saving patches and
adding a void* argument to the midi functions.

3.3.1 Libpds (libpd with an extra ’s’)

However, the biggest challenge for using libpd is
that only one Pd instance can run in a process
simultaneously. With only one instance, you
can’t send sound from one patch to another in
the Radium mixer (at least not if there is a non-
pd sound object in the middle of those two). Or,
for that matter, you can’t make a LADSPA or
VST plugin out of a Pd patch.

To circumvent this limitation, an additional
library called libpds has been added to the Ra-
dium fork of libpd. Libpds makes it possible
to load several Pd instances and communicate
with them separately. Libpds has almost the
same API as libpd, except that most functions
take an additional “pd instance” parameter.

23http ://1libpd.cc
24http ://github.com/kmatheussen/libpd

Libpds works by dynamically loading a new
libpd library file for each new Pd instance.
To avoid symbol clash for the global variables
between the various Pd instances, dlopen is
called with the RTLD_LOCAL flag when open-
ing “libpd.so”. The RTLD_LOCAL flag pre-
vents symbols from being shared globally.

Unfortunately, this behavior causes problems
when loading Pd externals (i.e. plugins which
are loaded during runtime). Pd externals re-
quire access to functions and global variables
provided by Pd, but since Pd doesn’t share its
symbols globally, the externals fail to load.

The selected solution for the problem is to
statically link the most common Pd exter-
nals into libpd. 921 externals are currently
included, and among them are most of the
externals distributed with the Pd distribution
Pd-Extended.?> In order to compile that many
externals without manually writing a large
Makefile, a script recursively scans a list of di-
rectories and compiles all externals it can find.

A slightly simpler way to load externals would
be to link the Pd externals directly (i.e. instead
of recompiling), but using a “.so” file as a static
library does not work.

It is likely that there are better ways to sup-
port externals, such as implementing a new dy-
namic linking system, but the current solution
seems to work well for now

3.4 (Garbage collection

Radium has from the start used Hans Boehm’s
garbage collector for C and C+4++ as mem-
ory manager (BDW-GC) [Boehm and Weiser,
1988]. It is not necessary to free memory manu-
ally when using a garbage collector, so Radium
has fewer lines of code, and most likely fewer
bugs, because of this choice.

There has been no trouble with BDW-GC,
and Radium has not had memory leaks. It is
strange that BDW-GC is not used in most large
programs written for C or C++.

4 Related software and how their
features compare to Radium
4.1 Jeskola Buzz

Jeskola Buzz?0 appeared in 1997-1998.27
Jeskola Buzz was probably the first tracker
with a modular mixer. The modular mixer in
Radium is inspired by the one in Jeskola Buzz,

*Phttp://puredata.info/downloads/pd-extended
26http ://www.jeskola.net/buzz/
27http ://en.wikipedia.org/wiki/Jeskola_Buzz

but the modular mixer in Jeskola Buzz doesn’t
support sending note events or sound objects
with more than two channels.

4.2 Aodix

Aodiz®® was released before 2002, but I don’t
know when. Aodix may have been the first
tickless tracker, depending on how old Aodix
is. Tickless means that events are not bounded
by tracker lines, a feature which is shared with
Radium. Another feature shared with Radium
is that you can apparently zoom in and out of
the patterns.

4.3 Renoise

Renoise?® was released in 2002. Renoise is a

more traditional tracker than Jeskola Buzz and
Aodix, but has more features.

Renoise uses one instrument per track, which
is similar to Radium, but Renoise lets you orga-
nize tracks further by optionally grouping tracks
and instruments. For instance by grouping all
drum tracks or all vocal tracks. Grouping makes
patterns visually clearer and simpler to navi-
gate and it simplifies adding effects to a group
of instruments (since they are already grouped).
Grouping is a feature that is currently missing
in Radium.

Renoise also supports effect automation and
tempo automation, but unlike Radium, the
graphics is placed horizontally in a separate area
below the tracks, and not in the tracks them-
selves.

5 Conclusion

Radium presented a radical change to the clas-
sical tracker interface when it was released four-
teen years ago.

The following is a list of larger tracker fea-
tures that first appeared in Radium (at least
to my knowledge). An appending * means that
Radium is still the only tracker, or tracker-like,
program that provides this feature, at least to
my knowledge:

a) Smooth scrolling™; b) Limitation on the number of scrolls
per second*; c¢) Tickless timing (may have been introduced
in Aodix before Radium); d) Zoom in/out (may have been
introduced in Aodix before Radium); e) Waveform data
visible in tracks; f) The “Radium Compressor” compres-
sor interface*; g) Pitch values shown graphically; h) Tempo

automation*; 7) Effect automation*; j) Volume automation*;

28h1:1:p ://www.kvraudio.com/product/
aodix-by-arguru-software/details
29http ://www.renoise.com

k) Pitch automation®; [) Adjustable track widths*; m) Pd
or Max/MSP integration*; n) Track headers with volume
control and instrument name*; o) Automatic MIDI pre-
set change when playing note for instrument with different
preset®; p) Line splitting (including line split splitting, line
split split splitting, etc.)*; ¢) Unlimited number of simulta-
neously playing notes per track, and no limitation when they
are allowed to start and stop playing*;3° r) Unlimited num-
ber of blocks, tracks and lines; s) Generate scores with CMN*;
t) Unlimited undo/redo; w) Send pitch change events between

*.31

instruments*;®* v) Configurable menus*.

This list of (more or less useful) new features
shows that Radium has tried to be an innovator
for tracker software. Radium will try to be an
innovator in the future as well.

6 Acknowledgements

Radium is an open source program which in-
cludes code from several other programs and
uses several open source libraries. Today’s
Radium would not exists without the open
source community. Some of the people who have
written code that’s used in Radium are (apolo-
gies to those I've forgotten):

Fons Adriaensen: Zita REV1; Conrad Berhorster / Josh
Green |/ Peter Hanappe / David Henningsson / Pedro
Lépez-Cabanillas / Antoine Schmitt: Fluidsynth; Michele
Bosi: Visualisation Library; Hans Boehm / Ivan Maidanski:
BDW-GC; Peter Brinkmann: libpd; Rui Nuno Capela: code
from QTractor to auto-create Plugin GUI’s and show VST
GUI’s; Paul Davis / Stephane Letz: Jack; Ray Donnelly
/ Alexey Pavlov / Roumen Petrov: MinGW Python;
Dominique Fober / Albert Graf / Stephane Letz / Yann
Orlarey / Julius O. Smith III: Faust; Krzysztof Foltman:
The CALF multichorus LADSPA plugin; Grigor Iliev: The
Soundfont parser in libgig; Giles Hall: The python-midi li-
brary; Bob Ham: Code from Jack-Rack to organize LADSPA
plugins using liblrdf; Steve Harris: liblrdf; Erik de Castro
Lopo: libsamplerate and libsndfile; Romain Michon: The
Faust STK instruments; Paul Mineiro: Fast functions to
calculate exponential and logarithmic values; Javier Serrano
Polo: Vestige; Miller Puckette: Pd; Yann Orlarey: The
Tapiir effect implementation and smooth delay code; Bjorn
Roche: Memory barrier code; Gary P. Scavone: RtMidi;
Bill Schottstaedt: CMN; Julius O. Smith III: Compressors /
lookahead limiter / filters / equalizer; Hans-Christoph Steiner
et al.: Pd-Extended; www.magnetophon.nl: The included
Blowfish demo song; TumaGonx Zakkum: LADSPA plugins

for Windows.

I also want to especially thank Yann Orlarey
for creating the Faust programming language

311.e polyhponic aftertouch for pitch instead of volume

and Julius O. Smith IIT for all the DSP code
he has written for Faust. Their work has saved
me a lot of time and ensured professional sound
quality.

References

Hans-Juergen Boehm and Mark Weiser. 1988.
Garbage collection in an uncooperative envi-

ronment. Software: Practice and Ezxperience,
18(9):807-820.

Peter Brinkmann, Peter Kirn, Richard
Lawler, Chris McCormick, Martin Roth, and
Hans-Christoph Steiner. 2011. Embedding
Pure Data with libpd. In Proceedings of the
Pure Data Convention.

Perry R Cook and Gary Scavone. 1999. The
Synthesis Toolkit (STK). In Proceedings of
the International Computer Music Confer-
ence, pages 164-166.

Maarten De Boer. 2001. Tapiir, a Software
Multitap Delay. In Conference on Digital Au-
dio Effects, Limerick, Ireland.

Romain Michon and Julius O Smith. 2011.
Faust-STK: a Set of Linear and Nonlinear
Physical Models for the Faust Programming
Language. In Proceedings of the 11th Inter-
national Conference on Digital Audio Effects
(DAFz-11), page 199.

Yann Orlarey, Dominique Fober, and
Stephane Letz. 2009. FAUST: an efficient
functional approach to DSP programming.
New Computational Paradigms for Com-
puter Music, Editions Delatour France, pages
65-96.

Dave Rossum and E Joint. 1995. The

SoundFont®) 2.0 File Format.

Bill Schottstaedt. 1997. Beyond midi. chap-
ter Common Music Notation, pages 217-221.
MIT Press, Cambridge, MA, USA.

Julius O Smith. 2012. Signal Processing Li-
braries for Faust. In Proceedings of the Linux
Audio Conference 2012, pages 153-161.

