WiLMA
a Wireless Large-scale Microphone Array

Christian SCHORKHUBER,
Markus ZAUNSCHIRM and
IOhannes m zmolnig
Institute of Electronic Music and Acoustics (IEM)
University of Music and Performing Arts, Graz, Austria
{schoerkhuber, zaunschirm, zmoelnig}@iem.at
http://wilma.iem.at

Abstract

Everyday situations are rich in numerous acoustic
events emerging from different origins. Such acoustic
scenes may comprise discussions of our fellow human
beings, chirping birds, cars, cyclists, and many more.
So far, no recording or scene analysis technique for
this rich and dynamically changing acoustic environ-
ment exists, though it would be needed in order to
document or actively shape an acoustic scene. We
know customised techniques for recording symphony
orchestras with a static cast, but none that auto-
matically readjusts to scenes with varying content.
Thus, a new recording technique that analyses the
signal content, the position and the activity of all
sources in a scene, is required. We present WiL MA,
a wireless large scale microphone array, a mobile in-
frastructure that allows for investigating into new
recording and analysis techniques.

Keywords

network audio, sensor network, microphone, dis-
tributed processing

1 Introduction

Traditionally, the sensor nodes of a wireless sen-
sor network (WSN) that captures sound events,
are populated with low quality microphones,
amplifiers and analogue to digital converters
(ADCs) in order to decrease sensor node size,
power consumption and cost.

The Wireless large-scale microphone array
(WIiLMA) introduces high quality audio pro-
cessing in wireless sensor networks. Each of the
sixteen sensor modules (SM) allows for captur-
ing of up to four high-end microphone signals
which in turn enables the use of a 4-channel
microphone array (e.g. first order tetrahedral
ambisonics microphone) per SM. Thus, the sys-
tem operates as a large scale microphone array,
with a total of 64 audio channels. A single SM
and the used microphone array are depicted in
fig.1.

The acquired data from all SMs is transmit-
ted (either wireless or wired) to a central unit

et

e
° _Vﬂk%"‘

Figure 1: Sensor module and microphone array
(Oktava 4D-ambient)

(CU) running the host application shown in fig.6
and fig.7. This host application visualises input
levels, synchronisation and battery status. Fur-
ther, it allows the user to individually configure
each SM for a specific task.

Each SM is equipped with a local processing
unit in order to perform computations on the
acquired data. Instead of sending the raw data
to the the central unit responsible for the fusion,
sensor modules can use their processing abilities
to locally carry out simple computations and
transmit only the required and partially pro-
cessed data. This intelligent sensor network ap-
proach results in decreased network traffic and
higher flexibility of the system.

&

Figure 2: Acoustic scene analysis

An example application using the WiLMA
hardware is to separate sources of an acous-
tic scene and track their movement. Thus,
it should be possible to analyse the separated
source signals and to assign a specific event to

a specific source. Fig.2 conceptually depicts the
process of a spatial transcription. Areas that
could benefit from that application include as-
sisted living scenarios, acoustical planning, the
surveillance of urban areas, multichannel source
separation, event detection, source tracking and
so on. Another application is the high audio
quality multichannel recording of an acoustic
scene with the added benefit of flexible micro-
phone positioning due to wireless operation of
the system.

2 Design

The basic design of the sensor network contains
a Central Unit and a variable number of Sensor
Modules.

CLK
TN
;’/ \."'
. bl\.\. SN“]1 f,'lo
Central Unit ——
S) - /// " -.\\\
% S - .,[\ SM,
o o~ Bl
.8' | i
g8 | [
- o,
=
(=]

Clock (Radio, wired)
Contral (Ethernet)
wmenfpp- - Stream (Ethernet)

Figure 3: Network diagram of multiple synced
Sensor Modules and a Central Unit

The Central Unit controls and monitors the
individual modules, The Sensor Modules cap-
ture audio autonomously and send their data
to the Central Unit, where it can be collected
for further processing.

To allow for sample synchronous audio cap-

turing, all SMs are connected to a central mas-
ter clock.

2.1 Modes of Operation

We can distinguish between three different
modes of operation for each sensor unit:

2.1.1

The simplest operational mode is to record
the microphone signals locally on the SM.
The recording should be time-stamped, so the
recording of multiple SMs can be time-aligned
later in an offline process.

Recording

2.1.2 Streaming

For recording and monitoring purposes, it might
often be desirable to not collect the audio data
decentralised on the SMs and collect them later,
but rather have all audio channels available im-
mediately at the Central Unit, by means of real-
time streaming. This allows the sensor network
to be used as a de-centralised capture-only mul-
tichannel sound card.

2.1.3 Processing

Each SM is also equipped with a local process-
ing unit that can be used to do (simple) analysis
of the local signals, parallelising the computa-
tional load.

The actual processing algorithm might
change depending on the application. It is
therefore required to be able to implement algo-
rithms in a reasonable environment and deploy
these programs easily on all (or selected) SMs.

The result could be either an enhanced sig-
nal, meta-data about the signal or a mixture of
both (e.g. using signal identification on the 4
channel recording, it is possible to only stream
a mono-version of the signal together with po-
sitional meta data).

2.1.4 Mixed

Multiple connected SMs need not operate in the
same mode. For instance, some SMs could be
streaming audio, whereas other SMs would only
do processing and send meta-data to the Cen-
tral Unit (as depicted in Fig.3).

2.2 Communication

All control communication between the CU and
the SMs is based on a bi-directional OSC-
connection. Typical OSC-applications use UDP
as transport protocol, which behaves badly in
congested networks. In order to work around
reliability issues, the transport layer can be
configured to either use UDP or TCP/IP with

Sensor Module

Central Unit

Figure 4: Communication between central unit
and sensor modules

SLIP-based packetizing as suggested by the
OSC-1.1 specifications [1].

Besides configuring and activating the var-
ious modes of operation, the “control chan-
nel” includes basic infrastructure (like sending
and receiving heartbeats in order to determine
whether the connection is still established (in
the case of UDP) and the SM is still respon-
sive) and health information (e.g. CPU load,
memory and disk usage, battery status, sync
status, microphone levels). It also allows to
configure the SM (e.g. setting the gain of the
microphone preamplifier) and transports the en-
tire meta-information extracted by any optional
processing on the SM.

Audio streaming from the SM towards the
CU is not done via OSC (as suggested e.g.
by [2]), but instead uses the more widespread
RTP protocol [3] on top of UDP. The RTP-
timestamps are synchronised, in order to be able
to re-align the audio signals of multiple SMs.

3 Sensor Module

The Sensor Module (see Fig.1) consists of a cus-
tom hardware design running Linux.

3.1 Audio

The 4 channel analogue front end is equipped
with THAT1570 low noise, differential micro-
phone preamplifiers which are digitally con-
trolled via SPI using THAT5173 controller 1Cs.
Analogue to digital conversion is performed by
an AD1974, a 4 channel, 24 bit ADC with inte-
grated phase-locked loop (PLL).

3.2 Synchronisation

The internal sampling clock of the AD1974 is
derived from the word clock provided by the

microphones 1-4

1 pulse-per-second
(< 1GHz)
t Y o X X X
(timestamps)
word clock
l—— sync m.odule T it analog
(receiver) frontend
I DM
[ADC control, Mepoel, WLAN-n
g preamp control) +imestamps) (2.4/5 GHz)
o
s}
system-on-
YLkl WLAN module
chip
battery power
management module
M I LT
$38: 3
battery L5 g™ 8
T 3@
S o

Figure 5: Block diagram of the sensor module

synchronisation module. Wireless synchronisa-
tion within the WiLMA system is established
via a 1 pulse-per-second timestamp signal that
is broadcasted by the master module on a sub-
GHz ISM band. The synchronisation module
is populated with a voltage controlled oscilla-
tor (VCXO) that is disciplined by a frequency
locked loop (FLL) and a subsequent frequency
divider to obtain the 48 kHz word clock for the
ADC. The sample accurate timestamps gener-
ated by the synchronisation module is multi-
plexed with the output data of the ADC into
a 8-channel/32 bit time-division multiplexing
(TDM) stream.

3.3 System On Chip

The heart of each sensor module is a Beagle-
bone A6 equipped with an ARM Cortex A8
based processor running Linux. The TDM au-
dio stream is read by an ALSA driver that sets
up the ADC, controls the microphone preampli-
fiers and accesses the Multichannel Audio Serial
Port (McASP) via the DaVinci ASoC driver.

3.4 Power Supply

The power module generates supply voltages for
the different modules from the wall plug sup-
ply or the battery, respectively. It also gen-
erates an optional 48V supply voltage for mi-
crophones requiring phantom power. The LiPo
battery pack is connected to a battery manage-
ment system which is responsible for controlling
charge voltage and charge current, switching be-
tween power sources and providing information
about the battery status via I12C bus. In case of
battery undervoltage the battery management
system autonomously disconnects the load from

the battery to keep the battery in a safe state.

3.5 Software

Each SM is running on Ubuntu-11.10 (Oneiric
Ocelot), using the standard armel architecture
packages, with the notable exception of the ker-
nel, which is a customised build of linuz-3.2.30
due to the required ALSA drivers of the custom
sound card.

When the system starts up, a control program
—the WILMAsm daemon — is started. This dae-
mon monitors the various health states of the
system and runs an OSC-server for communi-
cation with the CU. The service is announced
via ZeroConf/Avahi [4], using the type specifier
_wilma-sm. udp (resp. _wilma-sm._tcp).

Since the daemon is implemented in Python,
a more appropriate sub-system for running the
audio-related tasks is needed. This subsystem
has been implemented using Pure Data, as it
is a well known environment and allows to de-
ploy algorithm implementations in a text-based
form (thus reducing the need to cross-compile
binaries for the target ARM platform).

In order to integrate nicely with the frame-
work, any processing unit needs to adhere a sim-
ple standard, which defines inlets/outlets of the
Pd-patch and the filesystem layout.

The used implementation of Pd is a slightly
modified version of Pd-0.44-2. The main mod-
ification has been a customisation towards the
special audio layout of the SM, which provides
an eight channel audio interface, where only the
first four channels contain actual audio data
(as sampled from the microphones), and the
remaining four channels contain a 32bit times-
tamp synchronised on all SMs.!

Pd is running as a sub-process of the control-
daemon, which monitors the audio process and
restarts it in the unlikely event of a crash. The
control daemon and the audio process communi-
cate via a bi-directional OSC connection on top
of UDP. (No TCP/IP option is given here, as
the connection is only running on localhost).

4 Central Unit

The Central Unit is an off-the-shelf Linux sys-
tem eventually equipped with a MADI audio

1Obviously this makes the timestamp encoded in a
highly redundant way. The main reason for this redun-
dancy is that the AD1974 allows to easily copy a sin-
gle 32bit auxiliary digital data word into four channels
at once. Since the channels 5 to 8 are unused anyhow,
no immediate drawback arises from this redundant data
handling.

interface (in order to play back the independent
audio streams from 16 SMs), and is running the
audio stream aggregator and control application
WILMiz.

OO WILMix

Filesync

_PUSH || PuLL |
setup

_ Config | [scan

STREAM STREAM STREAM STREAM STREAM STREAM

Config Config Config Config Config Config L Qum |

Figure 6: WILMiz overview over available SMs

The control application provides a user-
interface for controlling and monitoring the var-
ious aspects of the SMs, like starting audio
streaming, distributing process-patches or col-
lecting recordings.

= Pull data from SMi

Cunﬁguratlon of 'SMi9' + 0 X
Audio Debug Mode
LogLevel WARNING| +
System Health Stream Settings
P Protocol RTP -
Sync(Ext) ¥ Sync(int) Channel 4
TimeStamp 11427358 |yetwork
FileSync Interface net:02 |~

WILMA

&> Push data to SMi version0.1~git-3-g1lc543a

STREAM Copy to selected SMi's Reset | Apply

Figure 7: WILMix controlling a specific SM

The application uses ZeroConf to detect all
available SMs in the local network, and con-
structs a mixer application for the given number
of channels.

The audio stream aggregator receives the
RTP-streams from the various SMs, and re-
aligns them in time, so that they can be played
back sample synchronously.

As is with the SMs, the control part of the
application is implemented in Python, whereas
the audio processing part is written in Pd, both
communicating via OSC over UDP.

5 Discussion

While the current software implementation
works as a proof of concept, there are certainly
things to improve.

For one thing, the use of Pure Data on an
ARM Cortex A8 is suboptimal, as the processor

lacks an FPU, whereas Pd does all processing on
floating point samples.

Implementations using alternative frame-
works that would allow for fix-point arithmetic
(such as GStreamer[5]) were initially planned
but were soon discarded in order to avoid
cross-compilation environments altogether. (A
major issue when the potential algorithm im-
plementers are matlab-spoilt, C-agnostic stu-
dents).

Even with Pd as the audio engine, it might be
advisable to use it’s library incarnation libpd|[6]
rather than a full-fledged Pd, as it would greatly
simply the communication between the control
application and the audio engine. Using libpd,
it should even be possible to get rid of the mod-
ifications currently needed to obtain the 32bit
timestamps from the audio channels?.

6 Availability

The source code for the WiLMA-Application
(running on both the SMs and the CU) has been
released under the GNU GPL, and is available
for download from github®.

The hardware has beed designed in-house at
the Institute of Electronic Music and Acoustics.
However, the schematics have not yet been pub-
lished under an open license.

7 Conclusions

The WIiLMA hardware introduces high quality
audio processing in wireless sensor networks.
The overall system comprises 16 sensor mod-
ules that allow for recording up to 64 audio
channels. Audio signals in the frequency range
between 20Hz and 20kHz are converted with a
high quality ADC (24bit). The information of
each sensing module is collected by a central
unit, that combines the individual data to a fi-
nal outcome. Data transmission between the
SMs and a central unit can either be wireless
(WLAN) or wired (Ethernet). The capsules of
the used microphone arrays (Oktava 4D) obey
a linear frequency response (no sound coloura-
tion) and a minimal gain mismatch between
capsules. Furthermore, the system offers a run-
time of up to 8 hours in battery-powered mode.
Thus, its mobile and flexible use is ensured.

In order to allow for the application of algo-
rithms of the acoustic field theory, the audio

2The timestamps cannot be read directly in patch-
space, as Pd does not provide a 32bit integer type —
all numbers are equal. ..and they are (single precision!)
floats.

Shttps://github.com/iem-projects/WILMAmix/

streams of different SMs are synchronised with
an accuracy of one sample (= 20us).

8 Acknowledgements

This project was partly funded by the
MINT/Masse program of the Austrian Federal
Ministry of Science and Research.

References

[1] A. Freed and A. Schmeder, “Features and
future of open sound control version 1.1 for
nime,” in NIMFE’09: Proceedings of the 9th
Conference on New Interfaces for Musical
Ezpression, 2009.

[2] W. Jéger, “Audio over internet using OSC,”
Institute of Electronic Music and Acoustics,
Tech. Rep., 2010.

[3] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson, “RTP: A transport protocol
for real-time applications,” IETF RFC3550,
2003.

[4] S. Cheshire, “Zero configuration networking
(Zeroconf),” in http: //www.zeroconf.org/,
accessed 2014-02-02.

[5] GStreamer Team, “GStreamer: open
source multimedia framework,” in http://
gstreamer.freedesktop.org/, accessed 2014-
02-02.

[6] P. Brinkmann, P. Kirn, R. Lawler, C. Mc-
Cormick, M. Roth, and H.-C. Steiner, “Em-
bedding pure data with libpd,” in Proceed-
ings of the Pure Data Convention, 2011.

