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Abstract
We present extensions to the Ambisonic Decoder
Toolbox to efficiently design periphonic decoders for
non-uniform speaker arrays such as hemispherical
domes and multilevel rings. These techniques include
modified inversion, AllRAD, and spherical Slepian
function-based decoders. We also describe a new
backend for the toolbox that writes out full-featured
decoders in the Faust DSP specification language,
which can then be compiled into a variety of plug-
in formats. Informal listening tests and performance
measurements indicate that these decoders work well
for speaker arrays that are difficult to handle with
conventional design techniques. The computation is
relatively quick and more reliable compared to non-
linear optimization techniques used previously.

Keywords
Ambisonic decoder, HOA, hemisphere, Faust

1 Introduction
This is a paper about extensions to the Ambi-
sonic Decoder Toolbox to efficiently design deco-
ders for loudspeaker arrays with partial coverage
of the sphere, such as domes and multilevel rings.
The criteria for Ambisonic reproduction are:

• Constant amplitude and energy gain for all
source directions

• At low frequencies, reproduced wavefront
direction and velocity are correct

• At high frequencies, maximum concentra-
tion of energy in the source direction

• Matching high- and low-frequency perceived
directions

In the case of decoders for partial-coverage
arrays, we relax these to apply only to source
directions that are within the covered part of the
sphere, but still require that the decoder be “well
behaved” for sources from other directions.
Conventional techniques for periphonic deco-

der design work well when the speakers are dis-
tributed uniformly around the listening position.

First-order Ambisonics can be accommodated in
many listening rooms; however, when moving
to higher-order reproduction the need arises to
place more loudspeakers below the listener. This
requires placing the listening position high in
the room or on an acoustically transparent floor
with a space below to install speakers. Neither
of these are practical for most installations, so
hemispherical dome configurations are a popular
alternative. In addition, it may be impractical
to install speakers directly overhead, resulting
in a configuration of horizontal rings of speakers
at multiple heights. These configurations leave
gaps in coverage below, and possibly above, the
listening position.
In a previous paper, we describe a Mat-

lab/GNU Octave1 toolbox for generating Ambi-
sonic decoders that uses inversion or projection
to generate an initial estimate and then non-
linear optimization to simultaneously maximize
rE and minimize directional and loudness errors
[2012]. While this works well for small arrays, we
found that increasing the Ambisonic order and
number of loudspeakers causes the optimizer to
converge slowly and get stuck in local minima
unless the starting solution is close to optimal.2
In the case of hemispherical domes and mul-

tilevel rings, neither inversion or projection pro-
vide a close starting point. Once the speaker
array deviates from uniform geometry, an in-
version decoder will trade uniform loudness for
directional accuracy by putting more energy in
directions where gaps between the loudspeakers
are larger. A projection decoder does just the
opposite, putting equal energy into all the speak-

1In this paper, we use “Matlab” to refer to both
Matlab and GNU Octave. Care has been taken to
make sure the code runs in both; however, not all of the
graphics work well in Octave. Matlab is a registered
trademark of The MathWorks, Inc.

2A recent paper by Arteaga [2013] takes advantage
of symmetries in the loudspeaker array and a reformula-
tion of the objective function to improve the convergence
behavior of the optimization process.



ers regardless of spacing, hence they are louder
in directions where there are more speakers. In
practice, neither provides an adequate starting
point for the optimization process.
The general problem is that it is difficult to

pull the sound image beyond the space where
there is dense coverage. For the case of hemi-
spheres this not only means that performance
will suffer below the horizon, but that it will be
poor at the horizon. Because horizontal perfor-
mance is uniquely important, it is necessary to
make the decoder perform well there, despite the
difficulties.
New design techniques have been proposed

over the last few years to handle these sorts of ar-
rays. We have implemented these in the toolbox
to make them available to a wider user group.
The toolbox has been extended beyond third-
order decoding, and to support component order
and normalization conventions other than Furse-
Malham. We also wanted to support a variety of
plug-in architectures. A new decoder engine was
written in the Faust (Functional Audio Stream)
DSP Specification language [Orlarey, Fober, and
Létz 2009; Smith 2013a], which includes facilities
for dual-band decoding, and near-field, distance,
and loudness compensation.

1.1 Auditory Localization
In this paper we utilize Gerzon’s two main local-
ization models to predict decoder performance:
the velocity localization vector, rV, and the en-
ergy localization vector, rE. These are defined
and discussed in our previous paper on the tool-
box [Heller, Benjamin, and Lee 2012] (and many
other places). Briefly, these models encapsulate
the primary interaural time difference (ITD) and
interaural level difference (ILD) theories of audi-
tory localization. The direction of each indicates
the direction of the localization perception, and
the magnitude indicates the quality of the local-
ization. In natural hearing from a single source,
the magnitude of each is exactly 1 and the direc-
tion is the direction to the source.

1.2 Math Notation
We use lowercase bold roman type to denote vec-
tors (v), uppercase bold roman type to denote
matrices (M), italic type to denote scalars (s),
and sans serif type to denote signals (W). A
scalar with the same name as a vector denotes
the magnitude of the vector. A vector with a
circumflex (“hat”) is a unit vector, so, for exam-
ple, r̂E = rE/rE . “A†” is the Moore-Penrose
pseudoinverse of A (pinv(A) in Matlab) and

“A>” is the transpose of A (A.’ in Matlab).

2 Decoder Design Techniques for
Domes and Multilevel Rings

In Ambisonics, the standard technique for deri-
ving the basic decoder matrix, M, is to invert
the matrix, K, whose columns are composed of
the spherical harmonics sampled at the speaker
positions, such that M K = I, where I is the
identity matrix [Gerzon 1980; Heller, Lee, and
Benjamin 2008].3

Because K is “encoding” the speaker positions,
some authors call it the reencoding matrix and
refer to the inversion as mode matching. In the
general case, K is rank deficient, so the inver-
sion must be done by least-squares or by us-
ing singular-value decomposition (SVD) and the
Moore-Penrose pseudoinverse.

Problems arise when a given loudspeaker array
does a poor job of sampling some of the spheri-
cal harmonics, such as sampling at or near zero
crossings or having more than one zero crossing
between samples. In these cases, K will be ill-
conditioned (difficult to invert without loss of
precision) and the resulting decoder will have
greater energy gain in certain directions, result-
ing in reduced rE and greater loudness in those
directions.

In the following subsections, we discuss three
strategies implemented in the toolbox:

• Use an inversion technique suited to ill-
conditioned problems

• Invert a well-behaved full-sphere coverage
array, map to the real array

• Derive a new set of basis functions for which
the inversion is well behaved

2.1 Modified Inversion
One proposed solution is to set all of the singular
values to 1 when computing the pseudoinverse
[Pomberger and Zotter 2012]. This has the ef-
fect of diminishing the use of the poorly sam-
pled spherical harmonics. The resulting decoder
has constant energy (hence, loudness) in all di-
rections, at the expense of increased directional
errors.
Another solution is to use a truncated SVD

when computing the pseudoinverse. This simply
discards the poorly sampled spherical harmon-
ics. In the conventional pseudoinverse (e.g., as

3The term sampling is used here to mean evaluating
the given spherical harmonic function at a particular
azimuth and elevation.



implemented in Matlab), normalized singular
values4 less than 10−15 are not inverted. In a
truncated SVD, a much larger threshold is used.
For example, setting the threshold to 1

2 puts an
upper limit of 3 dB on the loudness variations,
again, at the expense of increased directional
errors.
The toolbox also can produce decoders that

are a linear combinations of conventional pseu-
doinverse and these alternatives, providing a sin-
gle parameter to tradeoff uniform loudness and
directional accuracy. Other approaches to in-
verting ill-conditioned matrices have been ap-
plied to this problem, such as Tikhonov regu-
larization [Poletti 2005] and LASSO (least ab-
solute shrinkage and selection operator) [Chen
and Huang 2013]. Currently, we have not imple-
mented these, although the linear combination
approach described above provides a result sim-
ilar to Tikhonov regularization.

2.2 Hybrid Ambisonic-VBAP Decoding
The hybrid Ambisonic-VBAP approach is called
“All Round Ambisonic Decoding” (AllRAD) by
Zotter and Frank [2012]. Briefly, one computes
a decoder for a uniform array of virtual speakers
and then maps the signals for the virtual array
to the real loudspeaker array using Vector Base
Amplitude Panning (VBAP) [Pulkki 1997].

VBAP always produces the smallest possible
angular spread of energy for a given panning di-
rection and speaker array, hence the perceived
size of a virtual source changes depending on di-
rection. This is directly at odds with the Ambi-
sonic approach, which tries to keep the perceived
size of a virtual source constant regardless of
source direction. AllRAD uses two strategies to
mitigate this:

1. The number of virtual speakers is made
much larger than the number of real speak-
ers.

2. Imaginary speakers are inserted to fill in
large gaps in the real loudspeaker array in
order to keep the triangular faces of the tes-
sellation as regular as possible.

AllRAD places the virtual speakers according
to a spherical t-design [Hardin and Sloane 2002].
A spherical t-design of degree t is a finite set of
points on a sphere, such that the integral of any
polynomial of degree t or less over the sphere
is equal to the average value of the polynomial

4the set of singular values divided by the largest one

Figure 1: Plot of real speaker locations for the up-
per hemisphere in CCRMA’s Listening Room (black
hexagrams), unit sphere tessellation, and intersection
points of 240 virtual speaker directions (green plus
sign). The speaker at the bottom is an imaginary
speaker added to keep the facets of the tessellation as
regular as possible. The location of the intersection
points are used to calculate the VBAP gains to the
real speakers.

sampled at the points in the set. The present
implementation uses the 240-point spherical t-
design for the virtual array, which is the largest
currently-known t-design.
There are three steps to the design of an All-

RAD decoder:

1. Select a spherical t-design for the array of
virtual speakers and compute a decoder for
it. Because the virtual speakers are dis-
tributed uniformly on the sphere the inver-
sion is well behaved.

(a) Compose the matrix KV whose
columns are the spherical harmonics
sampled at the directions of the virtual
speakers.

(b) Compute the decoder matrix for the
virtual array, MV = KV

†.

2. Compute the matrix of VBAP gains for each
virtual speaker.

(a) Project the positions of the real speak-
ers onto the unit sphere.

(b) Add imaginary speakers to the array to
fill in any gaps larger than 90◦. For a
dome this will be one at the bottom.
For a multilevel ring, one at the top
and one at the bottom. The distance
from the center determines how quickly
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HaL rE vs. Test Direction HbL rE Direction Error HdegreesL HcL Energy Gain HdBL

Figure 2: The AllRAD decoder’s performance for the upper hemisphere of CCRMA’s Listening Room.
These show the (a) energy concentration, (b) directional accuracy, and (c) loudness of sources from various
directions. Directional errors are clipped at 10◦ so that smaller errors can be seen. The plots have been
quantized to make the structure clearer. Note that the Mercator projection used overemphasizes the poles.

sources fade as they move outside the
region of the sphere covered by the real
speaker array.

(c) Compute the triangular tessellation of
the convex hull of the projected speaker
positions.

(d) Determine the intersection point of the
vector to each virtual speaker with the
faces of the convex hull.

(e) Calculate the barycentric coordinates
of each intersection point. These are
the VBAP gains from that virtual
speaker to the three real speakers at
the vertices of the face.

(f) Assemble the matrix of the VBAP
gains, GV→R. This matrix has one col-
umn for each virtual speaker and one
row for each real speaker. Each col-
umn will have up to three gains for that
virtual speaker from the previous step.
Gains to imaginary speakers are omit-
ted.

3. The basic decoder matrix is

M = GV→R MV.

Figure 1 shows the real and imaginary speaker
positions, the tessellation of the speaker direc-
tions, and the intersection points of the vectors
to each virtual speaker with the faces of the tes-
sellation. The example shown is for the upper
hemisphere of loudspeakers in CCRMA’s Listen-
ing Room. Figure 2 shows the performance of
the AllRAD decoder used in the listening tests.

2.3 Spherical Slepian Function
Decoding

Spherical Slepian functions (SSF) are linear com-
binations of spherical harmonics that produce
new basis functions that are approximately zero
outside the chosen region of the sphere, but
also remain orthogonal within the region of in-
terest. This makes them suitable for decom-
posing spherical-harmonic models into portions
that have significant energy only in selected ar-
eas [Beggan et al. 2013; Simons, Dahlen, and
Wieczorek 2006]. They have been used in satel-
lite geodesy to model the magnetic and gravi-
tational fields of the earth from satellite data
that does not cover the whole earth. In design-
ing Ambisonic decoders, they allow us to specify
a region of interest on the sphere and derive a
new set of basis functions that is well conditioned
within that region. Zotter et al. call this “Energy-
Preserving Ambisonic Decoding” (EPAD) [2012].
The procedure implemented in the toolbox is
described here.

1. Define the subset of the surface of the sphere
for the decoder, R ⊂ S2, where S2 denotes
the surface of the unit sphere in R3. To
assure good performance at the boundary,
select it to be a bit larger than the area
covered by the loudspeakers; for the decoder
tested, we used −30◦ to 90◦ elevation.

2. Compose the Gramian matrix, G, of the in-
ner products of the real spherical harmonics,
Ylm(θ̂), over the region R. Each element,
glm,l′m′ , of G is given by

glm,l′m′ = 〈Ylm, Yl′m′〉R

=

∫
R
Ylm(θ̂) Yl′m′(θ̂) dθ



where lm is a single-index designator for the
real spherical harmonic of degree l and order
m, θ̂ =

[
cos θ cosφ sin θ cosφ sinφ

]>,
and θ and φ are azimuth and elevation.

3. Compute the eigen decomposition of G→
U Λ U−1. U is a unitary matrix whose
columns are the eigenvectors of G. The di-
agonal elements of Λ are the corresponding
eigenvalues.

4. Compose a new matrix, USSF, by selecting
the columns of U with eigenvalues above
some threshold, α. α should be approxi-
mately the fraction of the sphere covered by
the region of interest. For a hemispherical
dome, we use α = 1

2 . This matrix trans-
forms points in the spherical harmonic basis
to points in the new SSF basis.

5. Compose the speaker reencoding matrix, K,
where the columns are the spherical harmon-
ics sampled at each speaker direction. Trans-
form it to the new basis, KSSF = USSF

>K

6. Compute the basic decoder matrix, M =
KSSF

†USSF
>.

Figure 3 shows balloon plots of the all 16 spher-
ical Slepian basis functions for the region−30◦ to
90◦ elevation on the sphere. Note that the first
eight are concentrated in the upper hemisphere,
the next two in the middle, and the last six in
the lower hemisphere. The first 13 (those with
λ > 1

2) were used for the third-order decoder
we tested. One observation is that this method
creates basis functions that have a clearer re-
lationship with source directions, which is not
possible for the spherical harmonics above first
order. Figure 4 shows the performance of the
SSF decoder used in the listening tests.

2.4 Max-rE Decoders
The basic decoder matricies, M, calculated in
the preceding sections, are transformed into
max-rE decoders by multiplying by a matrix, Γ,
whose diagonal entries are the per-order gains
that maximize rE over the sphere. Mmax-rE =
M Γ. The calculation of these gains is discussed
in the appendix of [Heller, Benjamin, and Lee
2012].

3 In-situ Performance
Measurements

The Ambisonic decoder design philosophies dis-
cussed above are generally intended to optimize
the psychoacoustically based parameters of the

Gerzon Energy Vector theory. It is expected that
those parameters generally predict the subjec-
tive performance of the system but, they are not
the same as the parameters that directly predict
what is heard by the listeners. We use measure-
ments of the ITD and ILD to gauge the localiza-
tion performance in actual systems. ITDs are
known to predict localization of low-frequency
sounds and ILDs are known to predict the local-
ization of high-frequency sounds.
A group of measurements were performed in

CCRMA’s Listening Room at Stanford Univer-
sity.5 That room is equipped with 22 loudspeak-
ers arranged as a horizontal ring of eight loud-
speakers, rings of six loudspeakers at +40◦ and
−50◦ elevation, and one loudspeaker each at the
zenith and nadir. This allowed the option of ei-
ther using the full spherical array or decoders
designed specifically to drive the upper 15 loud-
speakers as a hemisphere. One decoder was de-
rived by using the AllRAD method and the other
by using a SSF basis set.
The ITDs and ILDs created by real systems

were measured by using a dummy head to record
test signals reproduced from a variety of di-
rections. The test signals are ambisonically
panned exponential sine sweeps from which the
impulse response is computed from each direc-
tion. Those impulse responses are binaural im-
pulse responses, from which the ITDs and ILDs
can be derived.
The ITDs were calculated by band-pass fil-

tering the impulse responses to the bandwidth
of interest and comparing the time of arrival at
the two ears of the dummy head. Performing
the calculation at 192 kHz sample rate gives a
time resolution of 5 µs. The measurement was
repeated in each of the 37 directions at 10◦ inter-
vals around the horizon, and for each of the three
decoders being evaluated. The result is shown in
Figure 5a. All three decoders provide a plausible
ITD result. The significant differences occur at
the sides.
ILDs are considerably more complex than

ITDs, with the major differences between the
two ears occurring at frequencies above 1 kHz.
As a simplification to make comparison easier,
the ILD was calculated as an average level be-
tween 1 to 4 kHz. As for the ITDs, ILD was
calculated at 10◦ intervals around the horizon.
The results are shown in Figure 5b.

The three decoders produce substantially dif-
5https://ccrma.stanford.edu/room-guides/

listening-room

https://ccrma.stanford.edu/room-guides/listening-room
https://ccrma.stanford.edu/room-guides/listening-room


Figure 3: Balloon plots of all 16 spherical Slepian basis functions for the region −30◦ to 90◦ elevation on
the sphere. Lobes with reversed polarity are shown in blue. Note that the first eight are concentrated in the
upper hemisphere, the next two in the middle, and the last six in the lower hemisphere. The first 13 (λ > 1

2 )
were used for the third-order decoder we tested.
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Figure 4: The Spherical Slepian function decoder’s performance. These show the (a) energy concentration,
(b) directional accuracy, and (c) loudness of sources from various directions. Directional errors are clipped at
10◦.

ferent values of ILD for sounds coming from the
sides. It should be noted that the high values of
ILD come from cancellation of signals on the op-
posite side of the head from the sound source by
diffraction of sound traveling around the head.
Because the results of the ITD, and partic-

ularly the ILD measurements, are so complex
the analysis of their effect is quite difficult and
beyond the scope of the present paper. That
analysis will be published in a subsequent pa-
per.

4 Listening tests

We conducted informal (non-blind) listening
tests of third-order, single-band max-rE AllRAD
and SSF-based decoders using the 15 loudspeak-
ers comprising the upper hemispherical dome in
the Listening Room at Stanford’s CCRMA. The
decoders computed by the toolbox were saved
as AmbDec configuration files and loaded into
multiple instances of AmbDec so that rapid com-

parisons could be made.
As a reference, we also listened to full-

sphere playback of the test material over all
22 loudspeakers in the Listening Room using
the third-order, two-band, decoder described in
the previous paper [Heller, Benjamin, and Lee
2012]. Playback levels of all three decoders were
matched by ear.
The test material comprised two third-order

recordings, a full-sphere mix by Jay Kadis,
CCRMA’s audio engineer, of “Babel” by Allette
Brooks6 and Jörn Nettingmeier’s recording of
Chroma XII by Rebecca Sanders [Nettingsmeier
2012]. Playback was directly from the Ardour
sessions for each piece, which gave us the capa-
bility to move individual elements of the mix spa-
tially to test performance from a wider variety
of directions, as well as solo individual tracks.

In general, both decoders sounded quite good,
providing compact and directionally accurate

6http://www.cdbaby.com/cd/allette4

http://www.cdbaby.com/cd/allette4


!
(a) 250 Hz ITD ! (b) 1 to 4 kHz ILD

Figure 5: Interaural time difference (ITD) and interaural level difference (ILD) as a function of azimuth for
full-sphere, AllRAD, and SSF-based decoders. Source elevation is 0◦.

imaging down to the horizontal limit of the play-
back array. Sources below the horizon were re-
produced at the horizon, fading out as they were
panned towards the nadir. The SSF-based deco-
der sounded brighter and more detailed than the
AllRAD decoder, despite the fact that neither
decoder used frequency-dependent decoding. It
was also noted that with the AllRAD decoder as
the listener leaned to the left and right, central
sources moved in the opposite direction, whereas
with the SSF-based decoder central sources re-
mained in place.

Neither of the test decoders sounded as good
as the reference dual-band, full-sphere decoder,
especially in the reproduction of lower frequency
percussion, which lost some of its impact. This
may be attributable to the use of correct low-
frequency velocity decoding (rV = 1) in the ref-
erence decoder vs. wideband max-rE decoding
in the test decoders.

At the end of the listening session, we used a
first-order SSF-based decoder to briefly audition
a first-order Soundfield microphone recording of
an orchestra made by one of the authors.7 In this
case, the instrumental balance of the orchestra
was incorrect; notably, the woodwinds were al-
most inaudible. After the listening session, we re-
called that in this recording, the microphone was
hung vertically, approximately 3 meters behind
and 1.5 meters above the conductor’s head, plac-
ing the entire orchestra in the lower hemisphere

7Beethoven: Sym. No. 4 in B-flat Major, Op. 60, 4th
Mvt. Available at http://www.ambisonia.com/Members/
ajh/ambisonicfile.2008-10-30.6980317146

of the recording. The first-order SSF-based deco-
der starts fading sources at approximately 20◦

above the horizon, which caused the instruments
at the front of the orchestra to be attenuated
significantly. At this point, we cannot recom-
mend this configuration for first-order program
material with significant sources in the lower-
hemisphere. Possible workarounds we intend to
try include inverting the vertical signal, Z, to
mirror the soundfield across the Z = 0 plane or
rotating the soundfield about the Y -axis (“tilt”)
in order to move important sources to the upper
hemisphere.
AllRAD decoders generated by toolbox have

been used for performances at Stanford’s Bing
Concert Hall and Studio employing CCRMA’s
24-speaker, hemispherical dome, loudspeaker ar-
ray. At the dress rehearsal for a performance in
the Concert Hall, we were able to compare the
new AllRAD decoder to the projection decoder
that had been used for previous concerts. The
improvement was clearly audible to all present,
with increased clarity and directional focus, espe-
cially for sources behind and above the audience.
Good results have also been reported using

modified inversion for a second-order decoder for
a 12-speaker trirectangle array that is limited by
the ceiling height of the room, leaving a large
gap in coverage at the top and bottom of the
array.

5 Decoding Engine
To support operation beyond third-order, a vari-
ety of plug-in architectures, and use with third-
party SDKs, a new Ambisonic decoder engine

http://www.ambisonia.com/Members/ajh/ambisonicfile.2008-10-30.6980317146
http://www.ambisonia.com/Members/ajh/ambisonicfile.2008-10-30.6980317146


was implemented in Faust. Faust is a DSP
specification language, which can target a vari-
ety of plug-in formats and operating systems.

The new implementation comprises about 250
lines of Faust. It has no inherent limits on
the Ambisonic order at which it operates and
supports three modes of decoding: one decod-
ing matrix with per-order gains (Γ), one decod-
ing matrix with phase-matched shelf filters, and
dual-band, with phased-matched bandsplitting
filters and two decoding matrices. The outputs
can be delay and level compensated for speak-
ers at different distances from the center of the
array.

Nearfield compensation is supplied by digital
state-variable realizations of Bessel filters [Smith
2013b] and can be applied at the input or output
of the decoder, or turned off completely. The
current implementation provides filters for op-
eration up to fifth-order, although the toolbox
includes facilities for automatically generating
filters up to approximately 25th order.8

User adjustments are supplied for overall gain
and muting, as well as crossover frequency and
relative levels of high and low frequencies. All
realtime controls are “dezippered” and can be
accessed directly through GUI elements or via
Open Sound Control.
In practice, the toolbox writes out the con-

figuration section of the decoder and appends
the implementation section, producing a sin-
gle Faust “dsp” file, containing the full deco-
der. The Faust compiler (either online or lo-
cal) is used to produce a highly optimized C++
class that implements the decoder, which is then
wrapped in a plug-in-specific architecture file
that provides the interface to the various SDKs.
This is compiled to produce the plug-in file. At
the time of this writing VST, AU, MaxMSP, Pd,
LADSPA, LV2, Supercollider, and many others
are supported on Windows, MacOSX, and Linux.
In addition, an online compiler is available.
The decoder engine implementation can be

used apart from the toolbox by editing the config-
uration options and inserting the per-order gains
and matrix coefficients manually. Facilities are
provided to generate configuration sections di-
rectly from existing AmbDec configuration files.

6 Channel-Order, Normalization,
and Mixed-Order Conventions

At present, there are a number of channel-order
and normalization conventions in use by the

8The limit is imposed by Matlab’s roots() function.

Ambisonics community. The toolbox imple-
ments all conventions known to the authors, in-
cluding variants that adjust the gain of the om-
nidirectiontal component (W) to be compatible
with B format. Internally, each channel is anno-
tated with its degree, order, gain relative to full
orthonormalization (N3D), and Condon-Shortly
phase, so additional conventions can be added
easily, if needed.

Two mixed-order conventions are supported by
the toolbox: the scheme used in the AMB Ambi-
sonic File Format (#H#P) [Dobson 2012] and one
proposed by Travis [2009], which gives resolution-
versus-elevation curves that are flatter in and
near the horizontal plane (#H#V).

7 Conclusions and Future Work

We have reported on extensions to the Ambisonic
Decoder Toolbox to handle popular loudspeaker
configurations that do not cover the full sphere,
such as hemispherical domes and multilevel rings.
It also has been extended to operate at higher
Ambisonic orders and with alternate channel or-
der and normalization conventions. To support
that, and multiple plug-in architectures, we have
written a new, full-featured decoder in Faust.

In general, the ability to generate decoders
quickly has proven valuable in performance set-
tings where one has to set up quickly and the
speakers are not necessarily installed in the
planned locations. The other effect is that it
places less emphasis on performance prediction
in that a number of decoders can be generated
with different methods and parameter settings,
and then auditioned to determine the best one
for a particular set of playback conditions.

Generating dual-band decoders from these al-
ternate methods is an obvious extension for the
toolbox, as is using the decoders as initial esti-
mates for the optimizer. Users have requested
adding bass management to the decoder imple-
mentation. We have also investigated hosting
the toolbox on a server and linking directly to
the online Faust compiler, so that a user does
not need to install any software to use it.

As highlighted at the end of our listening ses-
sion, a significant open question with partial-
coverage decoders is what should happen if a
source moves into a “poor” area, for example,
the zenith or nadir directions. The effect of a
Spitfire flying low overhead is probably not com-
promised if it appears too loud or doesn’t have
exact localization. Conversely, a source moving



underground may be allowed to fade.9
The current implementations simply discard

these sources, fading out as they are panned be-
yond the coverage region. In the case of the
AllRAD decoders, they can be brought out for
further processing by simply making the imag-
inary speakers into real speakers in the config-
uration file; however, these signals cannot be
simply mixed into existing speaker feeds as the
coherent combination of the signals will distort
the directional fidelity of the decoder, especially
for sources near the horizon. One proposal is to
decorrelate them using a broadband 90◦ phase
shift and sum into the speaker feeds. Other sug-
gestions are welcome.

The toolbox is open source and available under
the GNU Affero General Public License, version
3. The Faust code generated by the toolbox
is covered by the BSD 3-Clause License, so that
it may be combined with other code without re-
striction. Contact the authors to obtain a copy
of the toolbox.
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