
OpenMusic on Linux

Anders VINJAR∗

Composer
Norway

anders.vinjar@bek.no

Jean BRESSON
STMS lab

IRCAM-CNRS-UPMC
1, place Igor Stravinsky
75004 Paris, France

jean.bresson@ircam.fr

Abstract

We present a recent port of the OpenMusic
computer-aided composition environment to Linux.
The text gives a brief presentation of OpenMusic
and typical use-cases of the environment. We also
present a short history of its development, and men-
tion previous attempts at porting it to Linux. The
main technical challenges involved with developing
the current Linux port are discussed, as well as solu-
tions to these. We end the paper by outlining some
possible areas for future work.

Keywords

OpenMusic, Computer-Aided Composition (CAC),
Linux, Common Lisp, Visual Programming, JACK.

1 Introduction

OpenMusic (OM) is an environment for
computer-aided music composition designed
as a domain-specific visual programming lan-
guage.1 It allows composers to write and run
programs to transform or generate data, with
interactive access to the input or output musi-
cal structures.

Before 2013 OM was developed and distri-
buted on OS X and Windows platforms only,
despite various attempts at porting the envi-
ronment to Linux. In this paper we present a
new, fully functional port of OM to Linux.

In Section 2 we will introduce the OpenMusic
environment, first from a general point of view,
and then discuss some particular aspects such as
the user interface and the external dependencies
of the environment. We also give a quick his-
tory of the development of OM, and previous
attempts at porting the environment to Linux.

Section 3 describes our current implemen-
tation choices and the state of the Linux port.
We conclude with a number of perspectives and
areas for future work.

∗ This work is supported by BEK - Bergen Center for
Electronic Arts.

1http://repmus.ircam.fr/openmusic/

2 OpenMusic

2.1 A visual programming environment
for computer-aided composition

OM is a visual programming environment dedi-
cated to music processing and composition
[Assayag et al., 1999]. It implements the
main features of the Common Lisp language
(abstraction, higher-order functions, recursion,
iterations etc., see [Bresson et al., 2009]),2 as
well as object-oriented programming [Agon and
Assayag, 2003] and constraints programming
[Rueda et al., 1998].

OM is primarily an environment for work in
computer-aided composition (CAC). It is also
used for musicological tasks like analysis, mod-
eling or statistics, as well as pedagogical work in
composition studies or music theory [Bresson et
al., 2011]. The environment comes with a rich
set of tools and libraries aimed at composition,
analysis, DSP and other musical/extra-musical
domains.

The aim of a CAC application is to aid the
user in typical composition tasks like gene-
rating, representing and manipulating musical
material in adequate ways, handling musical
form as material develops towards a finished
piece of music. Contemporary composition is
a rather ill-defined activity,3 and a good CAC
tool is one with abilities to adapt well to human
artistic processes, whatever those may be.
Indeed, composers seldom follow strict plans for
too long. More common is perhaps making up
a class of material, generate versions on that,
develop this again further towards some more
complex structures, go back to change some-

2Functional programming and Lisp in particular has a
strong background and tradition in the computer music
history. It has proven to be relatively easy to learn,
understand and use by composers.

3“CAC is in effect making the computer carry
out thought processes previously carried out in human
brains” (Miller Puckette, preface to The OM Composer’s
Book vol. 1 [Puckette, 2006]).



thing in an earlier stage, to arrive at yet another
set of variants, and so on.

Interactive (visual) programming languages
are well suited environments for composers to
work efficiently and creatively with comput-
ers. The graphical environment in OM provides
an interactive patch-based, data-flow approach,
making it easy and intuitive to get going.
Figure 1 shows a basic patch window generat-
ing a series of chords.

Figure 1: Graphical programming with OM.

OMs dynamic environment supports the
kinds of interactive work-flows often preferred
by composers, by allowing the user to eva-
luate and store output at arbitrary stages in the
program-flow, and easy stash away variants for
any kind of musical material or data.

OM is also a full-blown environment for
Lisp-programming, with access to the expected
REPL4, special editors for Lisp code, cross-
referencing and look up in source-code, and
interactive help-system. These tools provide
an environment for composers and program-
mers to develop new ideas and specialized crea-
tive work-flows, using graphical programming,
textual programming, or any combination of
these. In OM there is no particular separation
between a function defined as an abstraction in
a patch box or one defined by evaluating Lisp
code: both are accessible as graphical objects in
the user-interface.

4REPL = Read-Eval-Print loop.

Reports of some composition tasks and ap-
proaches carried out with OpenMusic are avail-
able in [Agon et al., 2006 2008].

2.2 User Interface

As a visual programming environment, OM is
highly concerned with graphical user interfaces
(GUI). To a large extent, this aspect determines
the choices of platforms and frameworks that
may be used for development.

While programming in OM, the user inserts
and manipulates graphical objects in patch win-
dows, dragging connection-lines between inlets
and outlets of boxes, and thus establishing the
data-flow of a musical program. These graph-
ical objects may represent simple operators,
abstractions or sub-patches, or more complex
data like lists, arrays, break-point functions etc.

As part of the graphical programming
environment, OM provides advanced editors for
visualization and manipulation of data such
as musical scores, break-point functions, audio
waveforms and some other data types. Figure 2
shows the sound -editor, and Figure 3 shows
editors for various other kinds of musical data.

Figure 2: Editor for the OM sound object.

OM also has a programmable graphical time-
line editor termed the “Maquette”, where every-
thing else which lives in OM – functions,
musical data, connections – can be placed and
manipulated, either manually or as a result of
evaluating some code.

2.3 Development history – Previous
ports and platforms

OpenMusic is a descendant of the Patchwork
environment [Laurson and Duthen, 1989], one
of the pioneering visual programming systems
dedicated to computer-aided composition.

The first release (C. Agon and G. Assayag,
IRCAM) was built in 1998 on Mac OS using



Figure 3: OM environment: musical data and editors.

Digitools’ Macintosh Common Lisp (MCL).
The graphical programming system was de-
signed as a full meta-programming framework,
implementing functional programming concepts
and interactions, on a strong base of object-
oriented programming and CLOS (Common
Lisp Object System [Gabriel et al., 1991]).
OM also introduced a number of new concepts
concerning for instance handling and manipula-
tion of objects, or unified representation of time
structures.

In 2003, OM 4 was ported to OS X, and a
first Linux port [Sarria and Diago, 2003] was
carried out at IRCAM in the framework of the
AGNULA European project [Déchelle and Tis-
serand, 2003], using CMUCL5 and Gtk+6.

Released in 2005, OM 5 [Bresson et al., 2005]
was a multi-platform version of OM developed
on Mac (using MCL) and on Windows (using
Allegro CL7). The OM 5 sources were clearly
divided into a platform-independent kernel
built on top of an abstract graphical/system-
dependent API inspired by the MCL toolkit
(MCL and ACL versions of this API were then
implemented and loaded depending on the tar-
geted platform).

A second port of OM on Linux was initi-
ated in 2006 based on the OM 5 sources, using

5http://www.cons.org/cmucl/
6http://www.gtk.org/
7http://www.franz.com/products/allegrocl/

SBCL8 and a new implementation of the OM
API for Gtk+ and CLG9 (Common Lisp GTK
bindings). Unfortunately this project was never
carried to its end.

In 2006, Digitools announced discontinuation
of MCL development and support on Mac, due
to the switch to Intel processors. The Lisp-
Works environment was chosen as a replace-
ment, providing a reliable IDE with a common
cross-platform API (CAPI) compatible with the
main graphic toolkits for Mac, Windows and
Linux, as well as some other OS-es.

In 2008 OM 6 based on LispWorks was
released for OS X and Windows.

2.4 External dependencies

OM is dependent on audio I/O systems due
to its musical orientation. It is important for
composers to be able to load audio or MIDI
files, and convert/process the contained data
in the visual programming framework. Play-
back and rendering of generated musical mate-
rial (score/MIDI or audio) is an essential fea-
ture of the environment, and complex schedu-
ling issues can arise when dealing with multi-
ple simultaneous sources and audio/MIDI ma-
terial interactively. Still, OM is not by nature
a real-time environment and the audio perfor-
mance requirements remain relatively moderate

8http://www.sbcl.org/
9http://sourceforge.net/projects/clg/



as compared to real-time scheduling or audio
processing systems.

Low-level MIDI formatting and scheduling
was traditionally supported in OM by the
MidiShare10 system [Orlarey and Lequay, 1989].
The audio support, initially limited to a few
functions interfacing with the Apple QuickTime
library, was replaced in OM 5 by a more ad-
vanced and multi-platform audio support deve-
loped on top of the LibAudioStream11 library.

Besides MIDI for file I/O, support for ex-
porting other score-type data is provided ei-
ther by using built-in code or by using external
libraries. OM can export to some much used
file formats for sheet-music, like LilyPond12

and MusicXML13. OM also features support for
connections to technologies like SDIF [Schwartz
and Wright, 2000] (standard format for inter-
change of sound description data), OpenGL
(display of 3D objects in OM editors) and OSC
[Wright, 2005] for inter-application communi-
cation, although none of these are strictly re-
quired to get the visual programming environ-
ment running.

OM communicates with external libraries via
Common Lisp foreign function interfaces (FFI).
OM either uses the FFI provided by the Lisp im-
plementation, or the CFFI system [Bielman and
Oliveira, 2013], a common FFI wrapper compa-
tible with several Lisp implementations.

2.5 Distribution and licensing

While the first OM releases were distributed
commercially along with other IRCAM soft-
ware, since OM 6.4 (2011), the compiled OM
application has been available free of charge for
all platforms.

The source-code has always been freely avail-
able under the GNU Public License.

All source-code and external libraries
required for building OM are open-source.
However, to build and save the actual distri-
buted image a LispWorks Professional or
Enterprise license is necessary at this moment.

3 Towards OM on Linux

Several previous efforts to port OM to Linux
over the years suggest a real interest, and OMs
main technological dependency (a professional
ANSI Common Lisp implementation with inter-
faces to graphical toolkits, MIDI and audio

10http://midishare.sourceforge.net/
11http://libaudiostream.sourceforge.net/
12http://www.lilypond.org/
13http://www.musicxml.com/

libraries) has been available to Linux developers
for long. Hence, it is legitimate to ask why these
previous ports did not succeed too well?

First, the Musical Representations team
developing OM at IRCAM use Mac OSX as
main development platform. As a consequence,
porting OM to the attempted environments
(CMUCL or SBCL w. Gtk) means rewriting all
the graphical dependencies using foreign tool-
kits or alternative APIs.

Audio and MIDI support has also been
an issue in previous Linux ports. Although
MidiShare worked fine with earlier Linux-
versions,14 it is no longer maintained and kept
compatible with newer releases of the Linux
kernel. Moreover, OM MIDI dependencies were
since the early releases packed together and
integrated with the kernel code, making it diffi-
cult to replace.

As OM has evolved, work towards a more
modular structure has been an explicit aim, at
least since 2005 [Bresson et al., 2005]. Recent
developments have gradually made the code
more durable and resistant towards changes in
compiler-implementations. This tendency both
motivated and greatly helped the work with
the current port, making it possible to de-
velop alternative solutions for e.g. MIDI I/O,
separated from those for the kernel, graphics or
audio I/O.

3.1 OM6.8 on Linux: Current State

When starting this project, a separate Linux
development-branch of the source-tree for
OM 6.7 was set up, making it possible to get
up to speed on Linux without halting further
development on the main-branch. At a certain
stage the separate Linux-branch was re-
integrated with the main source-code. Further
development of the application, and delivery
of images, is now based on the same source-
tree for all three supported platforms – Linux,
OS X, Windows – with only a few specializa-
tions, mainly in the graphics-code, to account
for differences across platforms.

The present Linux development is based on
OM 6.8 and LispWorks 6.1. The choice of Lisp-
Works (a commercial Lisp compiler and IDE)
for porting OM to Linux is entirely pragmatic:
as mentioned, LispWorks provides a common
API across graphical toolkits (Gtk+, Motif,
Cocoa, Windows), and since this library is

14MidiShare was also used in e.g. Common Music
[Taube, 1991].



already used by the OM developers, only mode-
rate adaptions to the existing OM API are
required in order to get it working with Linux.

As suggested, this port of OM to Linux can
be seen as the most recent in a series of steps
towards making OM more modular. Solutions
which work across platforms are presumably
also less vulnerable to changes in compilers
or toolkits in use. While developing Linux-
compatible substitutes for previous code, gen-
eral and platform-independent solutions were
looked for. In particular, most external depen-
dencies have been made optional, so that OM
can run without some specific features, if depen-
dencies are not found, not loaded or not avail-
able for a specific environment or platform.

3.2 Audio and MIDI I/O: JACK

To substitute the low-level I/O systems for
MIDI and audio, some alternative approaches
were programmed and tested. The OM “player”
system was rewritten in OM 6.7 as a modular
API, making it easier to substitute or switch the
default playback-engines with alternative audio
or MIDI players.

MIDI messages and Standard MIDI Files can
now be parsed and formatted using the Com-
mon Lisp MIDI library15, and E. de Castro
Lopo’s libsndfile is used to access audio files
on disk. The default playback-engines used in
the Linux version of OM depend on libjack.
Scheduling and real-time I/O of audio and MIDI
between OM and hardware-ports (or between
OM and other applications) have been pro-
grammed as a CL-based JACK16 client.

Other test-case playback-engines were also
developed, for instance with SuperCollider
(Audio-MIDI I/O, scheduling) using OSC
communication, with a CL-based FluidSynth17

server (MIDI) controlled through Lisp-code,
and with external MPlayer-processes18 (audio)
controlled from a sub-shell. These clients work
fairly well, and could be used as examples for
users or developers wanting to plug in other
playback-engines or I/O systems. An alter-
native audio player has been developed for
instance using sox19 as part of the OM-Sox
library.20

15http://www.doc.gold.ac.uk/isms/lisp/midi/
16http://jackaudio.org/
17http://www.fluidsynth.org/
18http://www.mplayerhq.hu/
19Sound eXchange – sox.sourceforge.net/
20M. Schumacher, OM-Sox :

http://sourceforge.net/projects/omsox/

3.3 Libraries

OM comes with a number of specialized tools
and libraries aimed at composition, analysis,
DSP and other musical tasks. Some of these
are “official” libraries: either distributed and
maintained as part of the main OM package,
or used to integrate OM with external tools
such as Csound or some of the DSP engines
available from IRCAM (SuperVP, PM2, Spat,
Diphone, Chant).21 A rich set of 3rd-party
libraries, maintained by individual composers
or developers, are also available for download,22

together with simple how-tos for adding exter-
nal libraries (see Figure 4).

Figure 4: OM: Packages library.

Libraries are written as standard Lisp code,
so they generally work well with the Linux-port.
However, those depending on platform-specific
external tools (e.g. OM-Spat) are not very use-
ful at the moment.

3.4 Source code and packaging

The OM source code is distributed as part of the
application.23 The environment features run-
time introspection and provides an easily acces-
sible cross-reference for all OM-specific classes
and methods. Lisp code may be edited and eval-
uated interactively, or loaded from files, and
may be used to specialize or modify built-in
functionality.

To compile a fresh OM from sources, access
to LispWorks is necessary. For this reason OM
is always made available as a pre-built image,
one for each platform-type. At the time of this

21http://forumnet.ircam.fr/product/openmusic-
libraries/

22http://repmus.ircam.fr/openmusic/libraries
23http://repmus.ircam.fr/openmusic/sources



writing, the Linux version is developed and
maintained on a system running Fedora 19.
Currently, OM is available as a RPM-package
containing the image and all sources, which
will install the binary and all sources in the
usual places. Several users have adapted the
RPM-packages to dpkg-based systems, seem-
ingly without any serious issues, and also shared
how-tos and experiences on the OpenMusic
forums24.

Patches are usually distributed as Lisp files.
These can be dynamically loaded by the user or
be automatically sourced on application start
by placing the files in a predefined location.

4 Conclusions – Future works

The first beta-release of OM-Linux was made
available for download and presented at the
IRCAM Forum workshops in November 2013,
after having been tested and used by developers
and users for some time.25

The previous Linux ports missed their poten-
tial audience and lacked support and follow up
by the Linux developers and composer’s com-
munity, presumably due to a number of obsta-
cles and difficulties that we have tried to outline
in this paper. Our hope is that this project will
overcome most of these problems.

A working Linux-version of OM is useful for
end-users, and Linux-developers may well find
good ways to integrate OM with other applica-
tions through e.g. libraries, or to develop OM
further. The stabilization of the GUI API may
also help to lessen dependencies on LispWorks
in the future for all platforms, and make alter-
native open-source solutions possible. In this
effort, starting out from a functional version on
Linux may be valuable.

Since the current code uses one common
source-tree, the Linux-port is relatively robust
and sustainable across changes in compiler-
implementations or frameworks for graphics and
I/O. It also minimizes the work involved in
maintaining compatibility across platforms for
the same application.

The features introduced to make the sources
compile and run on Linux, as well as the new
developed support e.g. for audio and MIDI are
of a general kind, and potentially useful across
platforms. The CL-based MIDI-library, as well

24http://forumnet.ircam.fr/user-groups/
25A review of this Linux port has been posted

by D. Philips on LWN in November 2013, see
https://lwn.net/Articles/574593/.

as the JACK-client and callback setup for MIDI
and Audio, are now possible alternatives also for
OS X and Windows.

Further work will be done in the near future
to integrate other CL-based composition and
DSP-tools such as Common Music, or Common
Lisp Music (CLM26) [Schottstaedt, 1994], and
to extend the existing set of libraries connecting
OM with open-source software like e.g. Super-
Collider or LilyPond. While the JACK-client is
currently useful, real-time robustness can still
be improved, and other audio-libraries or back-
ends may also be supported in the future.

5 Acknowledgments

The authors would like to thank Trond Lossius
and BEK (Bergen Center for Electronic Arts)
for their support on this project. This work is
also partly developed in the framework of the
French ANR project with reference ANR-13-
JS02-0004-01.

References

C. Agon and G. Assayag. 2003. OM: A
Graphical Extension of CLOS using the
MOP. In Proc. of International Lisp Confer-
ence, New York, USA.

C. Agon, G. Assayag, and J. Bresson, edi-
tors. 2006–2008. The OM Composer’s Book
(2 volumes). Delatour/IRCAM.

G. Assayag, C. Rueda, M. Laurson, C. Agon,
and O. Delerue. 1999. Computer Assisted
Composition at IRCAM: From PatchWork to
OpenMusic. Computer Music Journal, 23(3).

J. Bielman and L. Oliveira. 2013. CFFI home
page. http://common-lisp.net/project/cffi/.

J. Bresson, C. Agon, and G. Assayag. 2005.
OpenMusic 5: A Cross-Platform Release of
the Computer-Assisted Composition Envi-
ronment. In Proc. 10th Brazilian Symposium
on Computer Music, Belo Horizonte, MG,
Brasil.

J. Bresson, C. Agon, and G. Assayag. 2009.
Visual Lisp/CLOS Programming in Open-
Music. Higher-Order and Symbolic Compu-
tation, 22(1).

J. Bresson, C. Agon, and G. Assayag. 2011.
OpenMusic – Visual Programming Environ-
ment for Music Composition, Analysis and
Research. In Proc. ACM MultiMedia, Scotts-
dale, AZ, USA.

26https://ccrma.stanford.edu/software/clm/



F. Déchelle and P. Tisserand. 2003. The AG-
NULA project. Free software developments at
IRCAM. In International Workshop on Free
Software and Research, Compiègne, France.

R. P. Gabriel, J. L. White, and D. G. Bobrow.
1991. CLOS: Integration Object-oriented and
Functional Programming. Communications
of the ACM, 34(9).

M. Laurson and J. Duthen. 1989. Patch-
work, a Graphic Language in PreForm. In
Proc. International Computer Music Confer-
ence, Ohio State University, USA.

Y. Orlarey and H. Lequay. 1989. MidiShare :
a Real Time multi-tasks software module for
Midi applications. In Proceedings of the Inter-
national Computer Music Conference, Ohio
State University, USA.

M. Puckette. 2006. Preface. In C. Agon,
G. Assayag, and J. Bresson, editors, The OM
Composer’s Book .1. Delatour/IRCAM.

C. Rueda, M. Laurson, G. Bloch, and G. As-
sayag. 1998. Integrating Constraint Program-

ming in Visual Musical Composition Lan-
guages. In Proc. European Conference on Ar-
tificial Intelligence, Brighton, UK.

G. Sarria and J. F. Diago. 2003. OpenMusic
for Linux and MacOS X. Technical report,
IRCAM.

Bill Schottstaedt. 1994. Machine Tongues
XVII: CLM: Music V meets Common Lisp.
Computer Music Journal, 18(2):30–37.

D. Schwartz and M. Wright. 2000. Exten-
sions and Applications of the SDIF Sound De-
scription Interchange Format. In Proc. Inter-
national Computer Music Conference, Berlin,
Germany.

H. Taube. 1991. Common Music: A Music
Composition Language in Common Lisp and
CLOS. Computer Music Journal, 15(2).

M. Wright. 2005. Open Sound Control: An
Enabling Technology for Musical Networking.
Organised Sound, 10(3).


