
Case Study:
Building an Out Of The Box Raspberry Pi Modular Synthesizer

Jürgen Reuter

Karlsruhe,
Germany,

reuter j@web.de

Abstract

The idea is simple and obvious: Take some Rasp-
berry Pi computing units, each as a reusable syn-
thesizer module. Connect them via a network. Con-
nect a notebook or PC to control and monitor them.
Start playing on your virtual analog modular syn-
thesizer. However, is existing Linux audio software
sufficiently mature to implement this vision out of
the box? We investigate how far we get in building
such a synthesizer, what existing software to choose
with focus on networking, analyse what limits we
hit and what features still need to be implemented
to make our vision become reality.

Keywords

Raspberry Pi, Virtual Anolog Modular Synthesizer,
Distributed Networked Audio

1 The Vision

The popular Raspberry Pi (or, shortly,
RPi)[Raspberry Pi Foundation, 2014b] is a
small, cheap, yet powerful, computing unit with
many I/O jacks with Linux/ARMv6 available
as operating system (OS). It is predestinated
for building networks of collaborative modules,
with each RPi taking over the role of a synthe-
sizer module with dedicated function as e.g. os-
cillator, filter or modulator. Using the RPi’s
General Purpose I/O (GPIO) pins or SPI in-
terface, only minimal circuitry is required to
equip the RPi with knobs (e.g. potentiometers
or rotary encoders) or sliders, preferably on a
separate, tiny board, also called a shield. This
way, you get a distributed user interface, with
knobs and sliders located directly on the mod-
ule that it controls. Modules can be added to
or removed from the network in a hot-plugging
manner. If, for a different setup, you need, say,
more oscillators and less modulators, you may
change the role of a module simply by changing
the software that it runs.

Compared with a virtual analog modular syn-
thesizer running on a notebook or PC, the ap-

VCAVCO

Network

Synth Modules

Control Host

Configuration)

(Synth GUI &

Headless

Figure 1: The Vision

proach of a network of RPis reveals several ad-
vantages:

• Dedicated System. The RPis are solely
used for synthesis. The OS, residing on
an SD card, can be tailored to this pur-
pose. Many services are irrelevant for head-
less mode or use in a synthesizer and thus
need not be installed, thus saving space
and CPU time. The Linux audio RPi
page[Linuxaudio.org, 2014] lists many tips
for tuning overall latency. Once running,
infrequent software updates should suffice,
such that the chance to break the installed
software e.g. with incompatible libraries
can be reduced.

• Distributed computing. While the
performance of the notebook or PC can
easily become a bottleneck, in the dis-
tributed network audio computing perfor-
mance scales with the number of modules.

• Distributed interface. With a single
mouse and keyboard, you can control only
a single input (such as a slider or knob)
at one time. Optionally, the RPis can be

equipped with their own sliders and knobs,
enabling to control them in parallel. Also,
you may place the modules on, say, a large
table, while on the virtual desktop of your
notebook or PC, you are limited to size of
your screen display.

• Authenticity. In a live performance, it
is more comprehensible for the audience to
see a musician put hands on physically exis-
tent modules and hear the resulting change
of sound, rather than watching a PC user
clicking and typing on his computer.

Still, a notebook or PC maybe useful as host
for controlling network connections between the
modules.

2 The Hardware

Our vision just integrates existing software and
hardware, one may think. In fact, we have to
carefully choose software that smoothely inte-
grates with our RPis. We look at the RPi’s
hardware to better understand software require-
ments.

2.1 Audio Connections

For building an audio network, we have to de-
cide what interconnects to use for audio trans-
mission. Essential criteria are:

• Duplex operation. Synthesizer modules
typically have both, input and output. We
do not want to add hardware to gain full
duplex operation.

• Bandwidth. Bandwidth must be suffi-
ciently high for carrying multiple channels.

• Audio and control data. For low band-
width data such as envelopes or frequency
control, low bandwidth connections (e.g.
MIDI) should be supported to save overall
bandwidth.

• Hardware protocol support. To save
computing resources, low-level issues (e.g.
parity check bits or serializing / deserializ-
ing) should be implemented in hardware.

The RPi’s hardware connectors capable of
transmitting audio include the analog 3.5” au-
dio output jack, USB, HDMI, GPIO / I2S, and
Ethernet (Fig. 2).

10 / 100

Mbps

Ethernet

2x

3.5mm RCA

GPIO / I2S

USB 2.0

Audio Video

HDMI

Figure 2: RPi Connectors Relevant for Audio

2.1.1 Analog 3.5” Audio Output Jack

Users report glitches, crackles and pops when
using the 3.5” jack, at least in the early days of
the RPi. It appearently supports only 11 bits of
resolution [Linuxaudio.org, 2014]. Most impor-
tant, the RPi has no analog audio input. Analog
audio can not feed back into the RPi without ad-
ditional hardware; hence we do not persue this
jack.

2.1.2 USB

Linux supports audio over USB. The RPi model
B’s built-in USB 2.0 connectors only support
connecting a USB device, but not another USB
host[Raspberry Pi Foundation, 2012d]. Similar
to the analog audio jack, symmetrical host-to-
host transmission is impossible for RPi model B.
In theory, RPi model A’s single USB port can
make the RPi act as device, via a host-to-host
USB cable, but there does not seem anyone on
the Web having confirmed that the USB drivers
support this mode.

2.1.3 Audio via HDMI

While audio can be transmitted via HDMI, the
RPi’s built-in hardware does not support HDMI
input; hence we do not persue this option.

2.1.4 GPIO pins

The RPi’s GPIO pins are ideal for low-level in-
put and output of binary data. For streaming
audio data over GPIO, we would have to im-
plement a full protocol stack in software, thus
consuming much computing resources and lim-
iting bandwidth. Specific GPIO pins implement
I2S with hardware support[Raspberry Pi Foun-
dation, 2012c]. While this interface may provide
sufficient performance (users report varying
experiences on this issue[stackexchange.com,
2013]), we would need special hardware (e.g. an
I2S router). Some users claim that the kernel
needs to be patched with an I2S kernel module
to achieve high performance for audio data over
I2S[GmbH, 2013]. At least, special I2S audio

drivers would have to be implemented to make
audio applications aware of I2S.

2.1.5 TCP/IP or UDP over Ethernet

The RPi’s Ethernet plug can be used for trans-
mitting audio data. Neither TCP/IP nor
UDP have been designed for realtime applica-
tions, but existing software for audio and video
streaming over the internet shows that, with
some effort, streaming is feasible as long as net-
work bandwith is sufficiently high. We persue
the approach of streaming audio over ethernet.

3 The Software

Preferring Ethernet for audio transmission, we
next look into the software to choose and how to
set it up. We prefer an out of the box solution
of open source software.

3.1 Choosing Proper Audio Streaming
Software

On Linux, there are competiting sound servers
for streaming audio data over a network. In our
short survey the following criteria are essential:

• Availability. The software must be avail-
able for ARMv6. Software, that is not open
source or not under active development, is
typically not available for this architecture.

• Latency. In modular synthesis audio and
control data typically follow a path run-
ning through many modules. Therefore,
the sound server should care for low la-
tency.

• Headless use. The RPis will be typi-
cally controlled remotely and therefore run
headlessly, that is without a display con-
nected to them. No graphical environment
such as X11 or a window manager should
be required to run.

Audio streaming software like the Enlightened
Sound Daemon (ESD) or Phonon are bound
to a window manager. Therefore, ESD and
Phonon are no valid candidates for our purpose.
sndio is an audio server for OpenBSD, however,
we are looking into a solution for Linux/ARM.
The aRts sound server is out of development
since 2006 and therefore not a viable choice. A
quick internet search yields the following candi-
dates:

• Network Audio System (NAS)

• PulseAudio

• JACK with netJACK

3.1.1 Network Audio System (NAS)

The Network Audio System
(NAS)[radscan.com, 1996 2013] does not
(yet) list any ARM architecture as supported
platform. The man page of NAS states that
the server automatically converts all data to
the designed format or rate, that is, resampling
may slow down overall performance.

3.1.2 PulseAudio

PulseAudio supports streaming over net-
works[freedesktop.org, 2013; archlinux.org,
2012 2014]. However, latency seems to be
a major problem; only recently, major im-
provements have been announced[Lindner,
2013]. Also, PulseAudio resamples all data
into some internal format and again resamples
it for delivery. The RPi’s limited computing
performance should be saved for the actual
audio processing of the synthesizer module’s
function.

3.1.3 JACK with netJACK

In contrast to PulseAudio and NAS[jack de-
vel@jackaudio.org, 2012], JACK[jackaudio.org,
2006 2014] synchronizes all clients to one sound
sink. JACK has been designed from the begin-
ning with low latency in mind. Over the last
few months, some remaining bugs that specif-
ically appeared on the RPi/ARMv6 platform,
have been fixed. We decide to pursue JACK,
using (jackdmp) version 1.9.9. On our control
host notebook, there was a pre-installed JACK
(jackdmp) version 1.9.8 that we continue using.
Any newer version should also work.

3.1.4 netJACK1 vs. netJACK2 vs.
JackTrip

netJACK1 is available for both JACK1 and JACK2.
In JACK1, netJACK1 is loaded with the command
jackd -R -d net, while netJACK2 is not avail-
able. In JACK2, netJACK1 is loaded with jackd
-R -d netone, while netJACK2 is loaded with
jackd -R -d net.

The graphical application qjackctl can
be used to load and configure netJACK1 or
netJACK2 as backend. However, as of qjackctl
version 0.3.9 bundled with current NOOBS, sev-
eral bugs render qjackctl effectively useless
when used with the netJACK2 backend on the
RPi. Particularly, it uses netJACK1 options such
as -o4 instead of -P 4 for setting up 4 output
channels, and exhibited problems to detect an
already running JACK instance. We prefer to use
the RPis in headless mode anyway, i.e. without

using qjackctl. Running qjackctl on the con-
trol host seems to be fine for our purposes.

The documentation of JackTrip[Caceres and
Chafe, 2010] explains how to setup a single
JackTrip server with a single JackTrip client.
The JackTrip server is a stand-alone applica-
tion that, when started, appears as regular JACK
client. When trying to start another JackTrip
server instance, it complains that the associ-
ated UDP socket is already in use. The sin-
gle JackTrip server instance spawns only a sin-
gle readable client in qjackctl. The JackTrip
documentation does not show any appearent
way to connect multiple JackTrip clients. The
latest ChangeLog entry of JackTrip dates from
November 2010. As we need to connect multiple
clients, we do not further persue JackTrip.

3.2 Putting it All Together

Next, we give a step by step instructions for
installing and configuring all software for an
RPi based modular synthesizer with JACK and
netJACK.

3.2.1 Setting up NOOBS on the RPi

By now, there is no distribution tailored for au-
dio applications on the RPi. Instead, we use the
New Out Of Box Software (NOOBS) version 1.3.2
(Debian 3.10.24+ #614 PREEMPT armv6l ker-
nel) based on the Wheezy Raspian distribu-
tion. We follow the instructions on the down-
load webpage[Raspberry Pi Foundation, 2014a]
and on the screen display, that we needed to at-
tach to the RPi solely for the first installation,
as well as a keyboard. Once one system is run-
ning, no more display or keyboard is needed.
The SD card’s contents can be copied to create
another OS instance for another RPi.

When asked by NOOBS to select a distribution,
we choose Raspian (i.e. Debian wheezy). With
16GB class 4 SD card and 10 MBit/s internet
connection, the following installation roughly
takes 45 minutes, including several automatic
reboots. Finally, the raspberry configuration
tool raspi-config is executed. The preset de-
faults should be fine.
JACK including netJACK should be al-

ready installed. For developing and com-
piling JACK clients, you need to install C
header files for JACK with the command sudo
apt-get install libjack-jackd2-dev, that
installs the packages libdbus-1-dev and
libjack-jackd2-dev. If there is no DHCP
server on your network, do not forget to stat-
ically assign a unique IP address to each RPi

and to set up a proper route to your network.
Now we have basic NOOBS installed on the RPi.

Name for login on the RPi is pi, password is
raspberry.

3.2.2 Setting Up JACK on the RPi

To automatically start a JACK slave instance on
each RPi upon boot, put the following line into
the /etc/rc.local script:
sudo -u pi /usr/bin/jackd -R -d net -n
module-name >/dev/null 2>&1 &

The instance will then appear to the mas-
ter JACK instance on the control host as a re-
mote slave instance called module-name. Alter-
natively, JACK can be started implicitly by the
client application. Say, you have a low-pass fil-
ter implementation that connects to JACK with

jack_options_t options = JackNullOption;
client = jack_client_open (client_name,

options, &status, server_name);

and your .jackdrc configuration file in your
home directory containing the following line:

/usr/bin/jackd -R -d net -n low-pass \
-C 3 -P 4

Then starting your client application will also
start JACK. That is, in your /etc/rc.local
script, you can also directly launch your client
application.

3.2.3 Setting Up JACK on the Control
Host

On our notebook we use JACK 1.9.8. The JACK
master instance is started with the command
jackd -R -d alsa or with whatever backend
else you prefer over ALSA. After that, we
load netJACK with the command jack load
netmanager, such that all JACK slaves on the
RPis may connect to the JACK master.

Note that the JACK master on the control host
must be started first. After that, boot the RPis.
If JACK is automatically started on the RPi,
then it will become visible to the control host.
Use qjackctl on the control host to connect all
RPis’ inputs and outputs. Start playing your
distributed RPi based modular synthesizer.

3.3 Synthesizer Software

Throughout this work, the author used very
simple self-written JACK clients based on the
simple client.c example of the JACK distri-
bution. In our out of the box spirit, we want
to apply those existing LV2 plugins[LV2, 2014]

for actual synthesis that do not require a GUI.
Therefore we need a simple JACK client serving
as host for LV2 plugins that examines a given
LV2 plugin’s I/O lines and exports them as JACK
channels. The author does not know of an exist-
ing software doing this job, but the effort should
not be too large. This work still has to be done.

4 Advanced Module Identity and
Identification

For simplicity and ease of use, each RPi should
represent exactly one synthesizer module. Then
each RPi has a dedicated, clearly distinct func-
tion, helping to keep clear oversight over the
whole system. This approach looks like waste of
computing resources, if, for example, one RPi is
dedicated as an oscillator. However, even tasks
looking as simple as an oscillator may evolve
into high complexity when adding sophisticated
input controls, for example for morphing be-
tween sounds. We identify three options of iden-
tification: remote setup, SD card based identity,
shield based identity.

4.1 Remote Setup

The software on the RPi’s SD card contains all
software for all supported module types, e.g.
oscillator, low-pass filter or reverb effect. The
function of a specific RPi is determined by re-
motely configuring it on the control host.

4.2 SD Card Based Identity

As the RPi uses its SD card as resident mem-
ory with complete OS and application software
on it, the RPi gets a complete new identity by
simply replacing the SD card. That is, we may
create an oscillator SD card, a low-pass filter
SD card, a reverb effect SD card, etc. The RPi
represents a particular type of synthesizer mod-
ule just by inserting the appropriate SD card.
The RPi announces itself e.g. as oscillator or
low-pass filter or reverb effect. The control host
will collect all announcements and present all
available modules to the user for wiring.

4.3 Shield Based Identity

For most modules, it is useful to provide hard-
ware knobs or sliders directly attached to the
modules, using a shield mounted directly on the
RPi. While this approach requires (little) extra
hardware and thus is not a pure out of the box
solution, it has substantial advantages:

• Visual module identification. The ex-
tra hardware gives the RPi a visual iden-
tity and emphasizes that RPi’s dedicated

function. Each shield can be individually
labelled (e.g. “master reverb effect”) and
typically has a set of knobs or sliders that
also may help identify its function.

• Parallel control of hardware knobs
and sliders. When controlling a virtual
knob or slider on a screen, you need to
place the mouse pointer on it. That is,
only one input control can be used at a
time. Switching between knobs or sliders
takes time for relocating the mouse pointer.
Hardware knobs and sliders enable parallel
use and fast switching.

• Module identity change by shield re-
placement. If the shield provides an iden-
tifier for the RPi that represents the mod-
ule’s intended function (e.g. an LADSPA
plugin ID), the RPi may automatically
start any associated software or plug-in
that implements the module’s function in-
dicated by the shield.

This way configuring an RPi as a dedicated
module boils down to connecting a specific
shield with knobs and sliders to it. The RPi’s
SD card holds the software for any supported
module, and when plugging in a shield, the RPi
can determine which module to represent.

4.4 Shield Design

While the author has not (yet) developed a
shield, the design idea is simple and straight-
forward. We need circuitry connected to the
RPi’s GPIO pins that converts input from ana-
log controls like knobs or sliders into digi-
tal signals. There are shields available with
exactly this feature[abelectronics.co.uk, 2013;
Raspberry Pi Foundation, 2012a; Modern De-
vice, 2014]. Even cheap A/D converters are suf-
ficient for low frequency signals such as move-
ments of knobs and sliders[Sklar, 2012] and
accessible via SPI[Brownell and others, 2013;
Gzamboni, 2013]. Rotary encoders can be di-
rectly connected to the GPIO pins, as they
simply consist of mechanical switches. The
shield should contain a small serial EEPROM
for uniquely identifying or describing the mod-
ule’s function and maybe storing a user-defined
module label. The label must be stored on
the shield, not on the RPi’s SD card, as is
names the module’s function as stamped by the
shield, regardless of the particular underlying
RPi. Maybe designing and producing proper

shields for our synth modules can emerge as can-
didate for a tiny crowdfunding project.

5 Evaluation

Our attempt to set up a modular synthesizer
using out of the box software shows remarkable
limitations that should be considered as feature
requests for the software that we discuss.

5.1 Audio Data Routing

VCO

Master JACK Server

ALSA

n n n

n n n

Figure 3: Routing via Master JACK Server

The probably most obstructive issue is the
central routing of all audio data via the mas-
ter JACK instance. The netJACK2 approach as-
sumes a single master instance[Stéphane Letz
et al., 2009]. Similarly, in netJACK1 a slave
can only be connected to one master at a time.
The master’s backend (e.g. an ALSA sound de-
vice) determines the sample rate and format for
all commnunication with all participating JACK
slave instances. To prevent the master becom-
ing a bottleneck, we would prefer RPi hosting a
slave and a master JACK instance.

The qjackctl application follows the JACK
and netJACK design and provides a GUI for con-
figuring routing between the single master and
multiple clients / slaves. If in a future version
of JACK / netJACK multiple masters were sup-
ported, we would like to have an extended ver-
sion of qjackctl capable of managing connec-
tions between two remote master instances.

For evaluating the impact of central routing,
we measured the master JACK CPU load as a
function of the number of audio channel connec-
tions. We connected three RPis to our notebook
(Quad Core i5-2430M @ 2.4 GHz), used as con-
trol host for running the master JACK server.
One of the RPis served as array of n oscilla-
tor outputs; the other two modules just looped
through data from their n input channels to
their n output channels. That is, for each chan-
nel audio data flows from the oscillator to the
notebook, then to the first loop-through module

and back to the notebook, then to the second
loop-through module and back to the notebook
and finally to the ALSA backend device (Fig. 3).
That is, for n channels, there are 6n connections
configured in qjackctl.

We measured the CPU load reported by
jack cpu load() and varied the number of chan-
nels per module. Each box plot shows the range
of CPU load of 480 samples (1sample/sec ×
8min). For n > 18 (i.e. > 108 connections), se-
vere problems like xrun errors and JACK crashes
arised. Below this threshold, the system be-
haved smoothly with moderate load (Fig. 4).
For comparison, the overall CPU load shown
by xosview kept below 0.7.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

2 4 6 8 10 12 14 16 18

C
P

U
 L

o
a
d
 R

e
p
o
rt

e
d
 b

y
 j
a
c
k
d
_
c
p
u
_
lo

a
d
()

Number of Channels per Module

CPU Load on Master JACK Server

Quartiles

Figure 4: CPU Load on Master JACK Server

qjackctl often unexpectedly exited (with
exit code 0), when a remote client reappeared
after reboot. Sometimes it did not recognize
when the connection to a remote client broke
down due to client shutdown (maybe due to
some problem of netJACK2). The master JACK
server crashed when trying to connect more
than 21 channels to the ALSA backend.

5.2 Labelling of Modules

On our control host notebook running
qjackctl, by default all JACK slaves ap-
pear as clients with the name of the host they
are running on. While this is reasonable default
behaviour, we have a network of RPis with
basically identical software setup. Therefore
all RPis will appear as JACK clients labelled
“raspberry” – the default host name for the
Raspian Linux distribution. We could configure
individual hostnames for each RPi, but it is
the type of synthesizer module that should be
displayed rather than a host identifier. Also, we
do not want to change the host name each time
the RPi changes the type of module. Luckily,

netJACK2 provides command line option -n to
explicitly set the client name. For example,
jackd -R -d net -n low-pass will result in
a client called low-pass (Fig. 5). In netJACK1,
there is no comparable option.

Figure 5: Slave started with jackd -R -d net
-n low-pass -C 3 -P 4

5.3 Number of Channels

By default, a netJACK client is started with
a number of audio input and output channels
equal to that of the soundcard, i.e. mostly 2 for
stereo sound. In contrast, a synthesizer module
may have an arbitrary number of inputs and
ouputs. Luckily again, the netJACK2 backend
provides the command line options -C, -P, -i,
and -o to specify the number of audio input,
audio output, MIDI input, and MIDI output
channels, respectively (Fig. 5). In netJACK1,
the corresponding options are named -i, -o, -I,
-O, respectively.

5.4 Labelling of Channels

The module software should be able to config-
ure the names of a JACK slave’s audio and MIDI
input and output channels individually. For ex-
ample, an oscillator may have a pitch control in-
put, a noise content control input, a left channel
audio output and a right channel audio output.

In JACK, port names can be set with the
function jack port set name(jack port t
*port, const char *port name). They are
initially set to capture n or playback n for
inputs or outputs, respectively. When the
function is executed on the RPi, it refers
to the port name locally shown on the RPi.
Unfortunately, netJACK does not report slave
port names to the master. Instead, on the
master JACK instance, remote client channels
always appear as from slave n, to slave n,
midi from slave n, and midi to slave n
(Fig. 5).

Of course, if software running on the con-
trol host has knowledge about all synthesizer
module types that may appear in the network,
it may derive labels channels labels from the
slave’s name. This workaround however does
not qualify as out of the box solution.

5.5 Boot Time

Our NOOBS based setup takes almost one minute
of time for booting an RPi. For an embed-
ded system that you want to immediately start
working with, this time is far too long. There
exist tailored kernels and software configura-
tions for faster booting, reduced to a minimum
of what is required for the dedicated purpose.
Choosing a fast SD card may speed up boot-
ing as well as using the kernel’s fastboot op-
tion. RPi users report tips und tricks to re-
duce its boot time to as low as less than 20
seconds[Raspberry Pi Foundation, 2012b].

6 Conclusions

Linux on Raspberry Pi is almost mature for im-
plementing our vision of a modular synthesizer
based on a network of RPis connected to a note-
book or PC as control host. The most outstand-
ing problem in our setup is that all audio and
MIDI data is routed through the master JACK
instance running on the control host. Instead,
the RPis should be able to communicate directly
with each other. This approach however would
require multiple JACK master instances to be
part of the communication network, while the
netJACK architecture currently assumes a sin-
gle master instance.

As the RPis are run in headless mode, on the
control host we would like to run an applica-
tion capable of configuring the complete sys-
tem. In particular, setting up direct connections
between two RPis (once it will be supported)
reaches beyond the scope of qjackctl. An ex-
tended version of qjackctl could turn out es-
sential for our vision. The overall stability of
qjackctl should be improved.

For using existing LV2 plugins, there is miss-
ing some JACK client serving as LV2 plugin host.

The author plans to get in contact with
the authors of the depicted software to solve
remaining issues. The example & testing
code of this study is available at http://www.
soundpaint.org/rpi-modular-synth/. The
author wants to thank the anonymous reviewer
for pointing out some missing point for true out
of the box spirit and a further reference.

References

abelectronics.co.uk. 2013. ADC Pi - 8
Channel Analogue to Digital converter
for the Raspberry Pi computer boards
ADC PIV2. http://www.abelectronics.
co.uk/products/3/Raspberry-Pi/17/
ADC-Pi-V2---Raspberry-Pi-Analogue-to-\
Digital-converter.

archlinux.org. 2012–2014. Pulseau-
dio/examples - archwiki. https://wiki.
archlinux.org/index.php/PulseAudio/
Examples#PulseAudio_over_network.

David Brownell et al. 2013. spi-
dev. https://www.kernel.org/doc/
Documentation/spi/spidev.

Juan-Pablo Caceres and Chris Chafe.
2010. JackTrip: JackTrip Documentation.
https://ccrma.stanford.edu/groups/
soundwire/software/jacktrip/.

freedesktop.org. 2013. Network.
http://www.freedesktop.org/wiki/
Software/PulseAudio/Documentation/
User/Network/.

Modul 9 GmbH. 2013. Hifiberry
dac – linux configuration — crazy
audio. http://www.crazy-audio.
com/projects/hifiberry-mini/
hifiberry-mini-linux-configuration/.

Gzamboni. 2013. SPIdev. http:
//linux-sunxi.org/SPIdev.

jack devel@jackaudio.org. 2012. Discussion
of the jack audio server and jack applica-
tions: Netjack for Thinclients Instead of
Pulseaudio. http://comments.gmane.org/
gmane.comp.audio.jackit/25406.

jackaudio.org. 2006-2014. JACK — connect-
ing a world of audio. http://jackaudio.
org/.

Mirko Lindner. 2013. PulseAudio
4.0 verringert Latenz und steigert
Geschwindigkeit - Pro-Linux. http:
//www.pro-linux.de/news/1/19858/
pulseaudio-40-verringert-latenz-und-\
steigert-geschwindigkeit.html.

Linuxaudio.org. 2014. Raspberry Pi and
realtime, low-latency audio [Linux-Sound].
http://wiki.linuxaudio.org/wiki/
raspberrypi#on-board_audio.

LV2. 2014. LV2 Trac. http://lv2plug.in.

Modern Device. 2014. Lots of
Pots Board for Raspberry Pi.
http://moderndevice.com/product/
lots-of-pots-lop-board-for-raspberry-pi.

radscan.com. 1996–2013. The Network Audio
System (NAS). http://www.radscan.com/
nas.html.

Raspberry Pi Foundation. 2012a. Gertboard
— Raspberry Pi. http://www.raspberrypi.
org/archives/tag/gertboard.

Raspberry Pi Foundation. 2012b. How
to speed up boot time if run headless?
http://www.raspberrypi.org/phpBB3/
viewtopic.php?f=29&t=25777.

Raspberry Pi Foundation. 2012c. Rasp-
berry Pi – I2S: Anyone got it running?
(answer is yes!). http://www.raspberrypi.
org/phpBB3/viewtopic.php?t=8496.

Raspberry Pi Foundation. 2012d.
Raspberry Pi - Model A Q: Can it
be USB client instead of USB host?
http://www.raspberrypi.org/phpBB3/
viewtopic.php?f=63&t=15696.

Raspberry Pi Foundation. 2014a. Downloads
— Raspberry Pi. http://www.raspberrypi.
org/downloads.

Raspberry Pi Foundation. 2014b. Raspberry
Pi — An ARM GNU/Linux box for $25. Take
a byte! http://www.raspberrypi.org.

Mikey Sklar. 2012. Analog In-
puts for Raspberry Pi Using the
MCP3008 — Adafruit Learning Sys-
tem. http://learn.adafruit.com/
reading-a-analog-in-\and-controlling-\
audio-volume-with-the-raspberry-pi/
overview.

stackexchange.com. 2013. hardware
– How fast is GPIO+DMA? Multi
I2S input – Raspberry Pi Stack
Exchange. http://raspberrypi.
stackexchange.com/questions/9646/
how-fast-is-gpiodma-multi-i2s-input.

Stéphane Letz et al. 2009. Walk-
Through/User/NetJack2 Jack Audio
Connection Kit – Trac. http://trac.
jackaudio.org/wiki/WalkThrough/User/
NetJack2.

