
Live-Coding-DJing with Mixxx and SuperCollider

Antonio José Homsi GOULART
Computer Music Research Group

Instituto de Matemática e Estat́ıstica - Universidade de São Paulo
Rua do Matão, 1010 - Cidade Universitária - 05508-090 - São Paulo, SP - Brazil

ag@ime.usp.br

Abstract

This paper suggests a modified dance music DJ per-
formance, based on common DJing techniques en-
riched with live coding moments either mixed with
records or not, instead of only reproducing previous-
made tracks. That way, all the different possibilities
offered by live coding are put together with commer-
cial tracks, promoting live coding while maintaining
the dance music atmosphere and opening more im-
provisation possibilities for the DJ. It is also a funny
way to start learning programming and live coding.
All software involved are open-source and the work-
flow is based on the author’s. The primary intention
here is to stimulate DJs to try live coding, at the
same time helping to promote its sonority to audi-
ences other than experimental music enthusiasts.

Keywords

live coding, DJing, live performance, education

1 Introduction

A DJ work consists of researching a lot to find
the most suitable tracks for a specific venue and
selecting a good order to play them as a set.
Also important is the ability to mix, which con-
sists of beat-matching 2 tracks and make a tran-
sition from one to another, maintaining a con-
tinuous flow instead of separately starting each
track [Broughton and Brewster, 2006] [Collins
et al., 2013]. Mixxx1 [Andersen, 2003] is an
open-source digital DJing software suited for
that.

Another type of live music performance is live
coding, also called on-the-fly programming, in
which the programmer/performer augments or
modifies code while it is running and generat-
ing real-time sound, without the need to stop
or restart the program [Wang and Cook, 2004].
A lot of languages are suited for this task, and
one of the most popular is the open-source Su-
perCollider2 [McCartney, 2002].

1http://www.mixxx.org/
2http://supercollider.sourceforge.net/

In this paper a workflow based on a mixture
of DJing and live coding will be described. I
believe that documenting this process, which is
a very simple one but presents some technicali-
ties, might benefit or stimulate seasoned DJs to
incorporate new tools to their sets. At the same
time I hope that it helps promoting live coding
at mainstream venues and open-source software
to more users.

In sections 2 and 3 DJing and live coding
practices will be detailed. Section 4 describes
the live-coding-DJing method. Conclusions and
perspectives are analyzed in section 5.

2 DJing

The term DJ comes from Disk Jockey, referring
to the act of playing vinyl records for an au-
dience. In a typical configuration, a DJ would
work with two turntables and a mixer, so two
songs could be reproduced simultaneously, an
important issue to make the transitions.

When CDs became available more and more
people switched to the smaller and cheaper discs
and CD Decks, and nowadays many DJs work
only with a laptop computer. “(...) If they
lugged large boxes of records with them in the
1990s, after the millennium a tendency was evi-
dent toward lighter-weight luggage allowed by
fully digital track management in hard-drive
disk jockeying” [Collins et al., 2013].

No matter which media is chosen the DJ task
is the same: playing records one after the other,
mixing them, which consists of beat-matching
(getting the tracks to play at the same tempo,
with their beats synchronized [Broughton and
Brewster, 2003]) and then making the transi-
tion, which can be a blend (a gradual fade out
of the first track and fade in of the second) or a
cut (a sudden change of track being played).

The beat-matching stage is typically done
with a headphone: while the current song is re-
produced for the audience, the next one is re-
produced on the DJ’s headphones. Then the



tempo might be adjusted and after that the
beats synchronized. Instead of using the head-
phones, one could beat-match by looking at the
tracks’ waveforms, assisted by tempo and beat
detection software. There is also the more ex-
treme possibility of doing it by ear dispensing
headphones aid, mixing while both songs are re-
produced to the audience.

Some techniques [Broughton and Brewster,
2003] might make the blend more interesting:

• a simple blend using the faders: fade one
track out and the other one in (fade dura-
tions depend on the genres);

• matching phrases: dance music tracks are
divided in 4-bar phrases. Usually there are
clues at the end of these phrases, e.g. a
cymbal crash, extra drum beats or an in-
strument finishing a solo. When mixing, it
is important to match phrases and beats;

• take advantage of keys, and avoid key
clashes: some tracks sound bad when
mixed because their notes are not in the
same key. Some alternatives in this situa-
tion are mixing when one (or both) is just
percussion or pitch-shift one of them;

• equalization can be used to hide parts of a
song while keeping others: one example is
removing the bass line from a track and in-
troducing the bass line of a new song, then
do the same with the other parts;

• matching rhythms: some tracks fit to-
gether better than others, because besides
their harmonies and melodies match, their
rhythms fit perfectly together. Difficulties
arise when mixing two tracks with synco-
pation, or too many drumbeats.

Instead of blending a track with the subse-
quent one a DJ may cut, which is switching
sharply from one record to another without los-
ing the beat. Cuts tend to sound better with
sparse, percussive music, and bad with tracks
containing continuous melodies [Broughton and
Brewster, 2003]. Other alternatives are doing
stops (stop current track and then start the next
record after a while) or spin-backs (reverse cur-
rent track and then cut to the next one).

Some techniques were discussed but we shall
keep in mind that, as emphasized by Broughton
and Brewster, the most important thing about
DJing is choosing the records and the order to
play them, and after that the crucial decision

is where to put the joins. “Where the mix
occurs is more important than how it occurs”
[Broughton and Brewster, 2003].

A DJ software (or any task-specific applica-
tion) ties the user to its paradigms. All actions,
control structures, and interaction possibilities
are defined in advance. With a rigid interface,
they offer high visibility of available operations
and immediate gestural control for the live per-
former to adapt sound immediately and contin-
uously, but with reduced potential for creative
exploration [Blackwell and Collins, 2005].

Mixxx’s interface (Figure 1)3, for example,
contains buttons for loading tracks in 2 differ-
ent virtual decks, playing, stopping and loop-
ing them, setting cue points (important points
in the track, likely to be replayed), knobs and
faders for adjusting effects parameters, filters,
tempo and playback rate for each track, among
other functionalities, including a waveform vi-
sualizer for the loaded tracks.

Figure 1: Mixxx interface (Late Night Blues).

3 Live-coding

On the other hand comes the possibility of
working with interpreted computer languages,
modifying running algorithms on-the-fly and, in
the case of audio programming, getting real-
time sound as the program’s output. Brown
[Brown, 2006] defines live coding as a practice
where “digital content is created through com-
puter programming as a performance”.

The interface for live coding is only a text ed-
itor4 and a shell for feedback (although fancy
IDEs are available), which means that all the
actions are hidden in text commands. All the
exploratory possibilities of computer languages
are available for the performer, but no inter-

3picture from http://www.mixxx.org/press/
4For text-based languages. Graphical programming

languages, where programming is made linking objects
in a canvas are also available, e.g. PureData.



face with buttons prepared for interaction are
present. Therefore code must be written for all
the actions involved in sound production, which
can cause a high mental load specially in the
scarce-time situation of a performance.

Blackwell and Collins argument that besides
aesthetic reasons a key concern for someone to
choose the challenge of live coding instead of
using a pre-made software is that these “are
biased towards fixed audio products in estab-
lished stylistic modes, rather than experimen-
tal algorithmic music which requires the ex-
ploratory design possibilities of full program-
ming languages” [Blackwell and Collins, 2005].

Different approaches can be taken in a live
coding session, from a low level and mathemat-
ical one, writing complex algorithms that out-
put sound as they evolve, to a more high level
and simple approach, describing synthesis mod-
els and then sequencing sounds by specifying
values for the models’ parameters. These val-
ues can result from routines evaluation or be
directly chosen by the user. When working with
this instrument plus sequencer paradigm, code
can be viewed as a description of instruments
and a score (a scheduling of musical events).

This last approach represents in my opinion
the easiest way to live code, provided the artist
can describe a synthesis model, even if a sim-
ple one. Programming notes for melodies/har-
monies and rhythm patterns is simple, so it can
perfectly be combined with dance music. This
might be a naive approach for live coding, but it
is enough to synthesize sounds within the LCDJ
paradigm to be proposed.

3.1 The performance

In live coding performances usually the code
is projected for the audience. According to
Brown, most people like it but some people
find it a display of virtuosity and distraction
to the listening experience [Brown, 2006]. Alex
McLean, who plays raves and programmers
gatherings said “I prefer it when the audience is
dancing and doesn’t care how we’re making the
music” [Andrews, 2006].

A live coding session may start either from
scratch or with previous written code. In this
last case, the artist may augment, modify or fill
blanks. As time is scarce in a performance an
interesting trick is to prepare snippets of code
with the basic structure and syntax of the lan-
guage (or even snippets with the main sounds
and patterns of a personal production).

An alternative approach for live coding is do-
ing it in duos or larger groups, or even in an or-
chestra together with musicians playing acous-
tic instruments. That takes the pressure off a
single performer and, in the case of a live cod-
ing group, shares the algorithmic complexity be-
tween the members [Collins, 2011].

4 Why not doing both? LCDJ!

If someone is neither restricted to perform like a
DJ nor like a live coder, and if someone can ac-
cess tools for both occupations within the same
computer, why not playing DJ styles of mu-
sic adding some live coding moments, or why
not live code supported by nice tracks playing
along? Why not doing it if both tools are run-
ning on the same sound server?

In an interview, dance music duo Coldcut said
“The future of DJing is not about whether vinyl
will survive. The future of DJing is about me-
dia mixing. The DJ with two SL1200s [turnta-
bles] will fade out, but if he is clever, he’ll
evolve into a multi-armed posse manipulating
various sound and vision sources. There should
be a new name for this, maybe a media-jockey”
[Broughton and Brewster, 2003].

4.1 Suggestions for LCDJing

A LCDJ may start the performance playing a
record or coding (releasing initial sounds after a
while). In the second case the mood can be set
according to improvisational decisions made ex-
actly at the time of the performance, so a sound
that perfectly invokes the intended atmosphere
can be synthesized, instead of having to pick
one from the finite set that is the hard drive.

A LCDJ is able to jam with records via live
code, inventing new sounds or mimicking/em-
phasizing/satirizing the record’s. Stopping the
track for a solo is also a good move. In the
case of playing a personal production, different
versions of it can be improvised by modifying
code used to generate it (and that’s a good ap-
peal to produce music using code); that can also
be a way to tease the audience revealing pieces
of the upcoming track, an effect similar to cut-
ting back and forth between two beat-matched
tracks [Broughton and Brewster, 2003].

Another interesting option is routing audio
from Mixxx to SuperCollider, processing tracks
with infinite possibilities of effects, instead of
only applying some high-pass or low-pass filters
or common effects like flanging or ring modula-
tion (these are the options available in Mixxx’s
and other similar programs interfaces).



In my experience, mixing is where LCDJ true
potential is revealed. Instead of blending or cut-
ting like a DJ, a live-coding-DJ may live code
between tracks. A simple guide for that can be:

1. choose the next song to play in the set and
load it in Mixxx;

2. choose an instant in the current song to
start interacting;

3. start live-coding and interact (in any way)
with the current track;

4. when current track ends, take the live-
coding to a sonority suited to welcome the
subsequent track;

5. choose a moment and start the new track;

6. when it is suited, stop live coding and let
the new track fly.

Step 4 can be made at any pace and some
ways to welcome a track are by:

• invoking its rhythm;

• invoking its bass line, melody or harmony;

• making a sparse and percussive sound,
preparing for a cut;

• making a totally non-sense sonority that
brings tension to be released with next
track (perfect for tracks with a sweet and
melodic intro).

Of course there is always the option of not wel-
coming a track and live code for hours.

The blending techniques mentioned earlier
can be adapted for LCDJing. Some suggestions:

• matching phrases: mimic a bass line or
melody of current song and keep playing
it for a while until the song vanishes. Then
adapt it to an element present in next
track, start it and interact for a while;

• keys: start coding with current track, at
the same key. When it ends, progressively
add notes from another key, but without
clashing. When the sonority has been
taken to the same key as the next track,
all is set for a good entrance;

• equalization: a great chance to modify
tracks. Cut some parts of the current track,
for example, the bass line, and live code a
new one. When suited, introduce a sonor-
ity that resembles next track and call it;

• match rhythms: be the drummer, along the
current track, then solo, then with the new
one. Link tracks using percussive lines.

The techniques presented are the ones I could
come up with and test in some occasions, but
there is no limit for the possibilities in LCDJing,
besides what one can do with code. Feeling the
audience, the mood and the venue style are im-
portant clues for how far from mainstream a
LCDJ can go in a session.

4.2 Software involved

There are lots of nice applications for DJing5

and languages suited for live coding6. Depend-
ing on personal choices any combination of soft-
ware can be used for LCDJing. One could even
dispense DJ software and LCDJ using only a
language. In my experience Mixxx and Super-
Collider is a good pair for Live-Coding-DJing
performances because:

• both are very efficient, so LCDJing is pos-
sible even with a NetBook;

• Mixxx is very easy to learn and provides
all the tools a DJ need7, so common DJ
actions can be readily done instead of hav-
ing to code them;

• although a first contact with SuperCollider
might be frightening, its syntax makes it
easy and fast to code synth models and se-
quence patterns (all we need to LCDJ);

• both connect to Jack8, which allows au-
dio routing between software, so Mixxx
and SuperCollider can communicate, send-
ing and receiving audio to and from each
other. Some advantages and possibilities
have already been discussed;

• both are open-source, with all the related
advantages.

4.3 Simple Mixxx, to collide with
SuperCollider

Both newcomers and artists used to other DJ
applications will find it intuitive to work with
Mixxx. Its interface is really simple and ev-
erything necessary for LCDJ is available as a
shortcut in the computer keyboard. A quick

5http://linux-sound.org/ddj.html
6http://toplap.org/wiki/ToplapSystems
7http://www.mixxx.org/features/
8http://jackaudio.org/



read in the wiki9 and one is familiarized. The
community forums10 are also good resources.

In the author’s opinion a good practice for
DJing, specially LCDJing, is to avoid mouse
(time is scarce) and external controllers (save
money and space in the cabin/backpack and
make use of the laptop hardware as a whole).

4.4 Simple SuperCollider, to mix with
Mixxx

As it was highlighted above, the live coding
strategy proposed here is very simple; only in-
strument definitions and a way to sequence
sounds are necessary. For the instruments def-
initions the class SynthDef is used. Its syntax
is shown in Figure 2, with a simple sawtooth
oscillator and an ADSR envelope being defined.

Figure 2: Defining an instrument.

The classes Pdef and Pbind might be used
for the sequencing of sounds. The syntax is pre-
sented in Figure 3, with a pattern that repeats
the notes D,F,A (the degrees 1,3,5 are converted
intro freq values) sequentially, along with values
for each note duration and panning. Pseq picks
the argument vector values in a sequence.

Notice that each note attack time and reverb
mix (dry=0/wet=1) will have a random value
(Prand randomly picks values from the argu-
ment vector), so the instrument sound will al-
ways be changing. Models with more parame-
ters can offer a wide timbre variation.

The equivalent of this 30-line simple and flex-
ible implementation would hardly (if even possi-
ble) be attained in more rigid interfaces. Other
options for sequencing and more complex syn-
thesis models (and much more information) can
be found in the learning SuperCollider page11

and SC community12.

9http://www.mixxx.org/wiki/doku.php
10http://www.mixxx.org/forums/index.php
11http://supercollider.sourceforge.net/learning/
12http://supercollider.sourceforge.net/community/

Figure 3: Specifying parameters values and se-
quencing sounds.

5 Conclusions

DJing is a long-time established practice and
live coding a not so old one but it certainly has
already established its importance in contempo-
rary music practice. The workflow described in
this paper does not intend to dismiss such prac-
tices, only mix them in a way that is simple for
the seasoned DJ or anyone to try live coding
and benefit. At the same time it is a funny and
stimulating way to start programming, dive into
synthesis studies and learn more about open-
source software. Surely it only opens new pos-
sibilities for the artist.

Describing synthesis models, although a dif-
ficulty task at first, is definitely worth. The
sound palette of the producer will grow to the
point that besides having personal production-
s/tracks, a characteristic sound can also be
achieved. In a world where most commercial
electronic dance music sound so alike produc-
ing tracks and timbres is a good way for promo-
tion. Sharing snippets of code with nice sounds
and/or patterns also seems to be a good idea.

A pure live coding session aiming experimen-
tal music requires much more than only these
simple concepts presented here. With this ap-
proach, however, a good level of interaction with
dance music is possible because of its structure,
which is usually rhythmic and well defined, with
distinctive melodies and harmonies.

Whatever the genre of electronic music the
DJ wants to play, interaction with live coding
is possible - from abstract Ambient sounds to
the rhythmic beats of mainstream House - even
with the simple paradigm described in this pa-
per. Synthesis models can be as varied as the
creativity/ability of the artist; the instruments
can be sequenced with a fixed or (widely) vary-



ing timbre; the rhythm and notes patterns can
also be freely specified, even randomly (Why
not going for a track that wasn’t intended, just
because a random pattern resembled it?).

Although studio productions are not the in-
tended output of a LCDJ session, extra care
must be taken with the rawness of the synthe-
sized audio. Mainstream dance music records
are equalized, pre-mixed, well-balanced, com-
pressed and mastered, so in order to fit in new
sounds some sculpting is necessary, otherwise
they get the foreground and mask the record.
Usually, extra equalizing in the record plus a
little reverb and good positioning with panning
(that’s why they are in the example) in the live
coding sounds are enough to find them a spot
and prevent clashes.

A true improvising door opens with LCDJ.
Although DJs know specific tracks to invoke dif-
ferent types of emotions, and DJing is based on
improvisation according to the audience mood,
the set of possibilities is finite, unless music is
created on-the-fly.

The same way that a performance in group
relieves part of the pressure on each artist, live
coding along records also has the same effect.
More time is available to analyze and shape
sounds, impose a rhythm and write code.

Screen projection, although explored in pure
live coding sessions, may be discarded in LCDJ.
Code may be too simple, it would be a distrac-
tion for dancers and a spoiler for the set. How-
ever it depends on the venue, as more advanced
programmers and specific audiences might like.

Of course the practice is not restricted to
Mixxx and SuperCollider. Great software and
languages are available for DJing (xwax, termi-
natorX, etc.) and live coding (ChucK, Pure-
Data, etc.). However, Mixxx’s interface might
be more familiar for seasoned DJs, especially
those who work with turntables/decks or OSs
other than Linux, and SuperCollider efficiency,
along with Patterns Library - easy to learn and
use - makes it a good option to start.

LCDJing would also be possible dispensing
the DJ software and using only a live coding
language. However, a DJ application facilitates
performing common DJ tasks (creation/man-
agement of a playlist in the performance, ad-
justing tempo with a knob twist, cueing points
in tracks and scratching), relieving the mental
load that coding every move would create.

My impression on playing as a LCDJ is that
people accept rhythmic live coding moments as

unknown yet good track passages, when appro-
priately presented and not overdone. More ab-
stract coding moments brings tension and cu-
riosity, which calls that magical record.

6 Acknowledgements

I would like to thank CAPES for financial sup-
port and Flávio Schiavoni for suggestions on
this work, and I wish that those who haven’t
tried live coding yet feel stimulated to do it, spe-
cially children learning music, music producers
and DJs. Starting LCDJ in duos is also great!

References

Tue Haste Andersen. 2003. Mixxx: Towards
novel dj interfaces. In Proceedings of the 2003
Conference on New Interfaces for Musical Ex-
pression, NIME ’03, pages 30–35, Singapore,
Singapore. National University of Singapore.

Robert Andrews. 2006. Real djs code
live. Wired, technology news. Retrieved
01/20/2014 from � http://www.wired.com/
science/discoveries/news/2006/07/71248 �.

Alan Blackwell and Nick Collins. 2005. The
programming language as a musical instru-
ment. In Proceedings of Psychology of Pro-
gramming Interest Group, pages 120–130.

Frank Broughton and Bill Brewster. 2003.
How to DJ right: The art and science of play-
ing records. Grove Press, New York.

Frank Broughton and Bill Brewster. 2006.
Last night a DJ saved my life. Headline Book
Publishing, London.

Andrew R. Brown. 2006. Code jam-
ming. M/C: a journal of media and cul-
ture, 9(6), December. Retrieved 01/19/2014
from � http://journal.media-culture.org.au/
0612/03-brown.php �.

N. Collins, M. Schedel, and S. Wilson. 2013.
Electronic Music. Cambridge Introductions
to Music. Cambridge University Press.

Nick Collins. 2011. Live Coding of Conse-
quence. Leonardo, 44(3):207–211.

James McCartney. 2002. Rethinking the com-
puter music language: Supercollider. Com-
put. Music J., 26(4):61–68, December.

Ge Wang and Perry R. Cook. 2004. On-the-
fly programming: Using code as an expressive
musical instrument. In Proccedings of the In-
ternational Conference on New Interfaces For
Musical Expression, pages 138–143.


