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Abstract

The Muditulib library is introduced and explained.
Muditulib is mainly a library consisting of a collec-
tion of C header files that include functions written
for the purpose of tuning tonal music within the di-
atonic scale. This scale, as well as the library’s func-
tions, along with pitch representation systems, will
be explained in detail or just shortly with reference
to other literature. A music theoretical background
is useful, though not necessary. Along with the mu-
ditulib core functions an implementation for Pure
Data is published. Developers are encouraged to
write implementations for other synthesizers, music
production platforms or any other link in the chain
of tonal music production workflow.

Keywords

Tuning systems, pitch representation / MIDI, soft-
ware library.

1 Introduction

Muditulib is developed to make the tuning of
the common western (diatonic) scale easier,
without being restricted to equal temperament
of twelve tones per octave with a frequency ra-
tio of 2 : 1'. Music theorists and mathemati-
cians have developed many tunings for this scale
through the ages. Modern software like for ex-
ample SCALA? can map all possible tunings to
MIDI notes. In a flexible environment like Pure
Data® one could rather easily implement such
mapping oneself, so that is not the purpose of
the library. Muditulib doesn’t really map fixed
scales to MIDI notes, but offers multiple meth-
ods to tune notes or intervals more dynami-

!The standard equation for translating MIDI notes to
frequency is f = 440 - 2((m=69/12) ' where m is the MIDI
note number and f is the frequency in cycles per second.
In this tuning a diatonic semitone equals a chromatic
semitone. Moreover, expressed as frequency ratios, a
semitone equals the square root of a whole tone, thus,
on a logarithmic scale, the semitone equals half a whole
tone.

2http://wuw.huygens-fokker.org/scala/

3http://puredata.info/

cally. In that respect Muditulib is more familiar
to the Hermode tuning system?, although the
approach is quite different. Both SCALA and
Hermode will not be further explained here, for
that is beyond the purpose of this paper. The
next sentence deserves its own emphasized para-
graph.

Muditulib has got nothing to do with mi-
crotonality, microtonal music, or microtones,
whatever may be meant by those obfuscating
terms.

This document is rather intended as an expla-
nation of the software library Muditulib, along
with a short summary of my research within the
field of tuning and music theory, than purely
as a genuine scientific article that describes re-
search goals, methods, and conclusions. Its
purpose is to propose several tuning and pitch
representation systems to an audience of music
software developers.

2 The diatonic scale

In order to understand the approach described
here it will be helpful to explain a little bit
about the diatonic system, particularly the dis-
tinction of variable steps in a scale. This is done
most easily by freely citing a recent work by the
present author in the next two paragraphs [See-
len, 2014].

The terms chromatic and diatonic descend
from the old Greek musical system. Together
with the enharmonic they formed the three
tetrachords the Greek musical scales were made
up from [Grout and Palisca, 1988, ch. 1]. The
ancient tuning theory is clearly described by J.
Murray Barbour [Barbour, 2004, ch. II]. To-
day’s use of those terms is somehow related to
that of their namegivers, although the tetra-
chord itself lost its value. The diatonic scale is
a scale that consists of seven intervals or steps.
The eighth note, or the octave, is a repetition

4http: //www.hermode.com/index_en.html



of the first one, usually with a frequency ratio
of 2 : 1. Those seven steps are divided into five
larger ones, the whole tones, and two smaller
ones, the semitones. The scale then created is
actually the same as two Greek diatonic tetra-
chords on top of each other, at one side overlap-
ping (conjunct) and at the other side separated
by one whole tone (disjunct). By the chromatic
scale, however, usually a division of the octave
in twelve equal parts is meant, which is quite
different from an accumulation of Greek chro-
matic tetrachords.

So far I described the historical outlines of
the system. In the frequency domain the re-
lation between the octave x and whole tone T’
and semitone s is as shown in equation 1, where
1<s<T.

z="T° 5 (1)

The citation [Seelen, 2014] ends here. For
further reading I refer to the mentioned arti-
cle. The main point is that the tonal system
used as a starting point for the tuning system
is a 7-tone and not a 12-tone system, as west-
ern tonal music is often incorrectly described as.
This idea of a 12-tone system just evolved from
practical tuning matters concerning the 7-note
system. For clarity: the diatonic scale is a theo-
retic scale rather than a scale of fixed frequency
relationships®.

3 T's, a two-dimensional pitch
representation system

Traditional western music notation is based
on seven syllables® or alphabetical characters’,
which correspond to the graphical notes. In con-
trast to a one-dimensional representation like
MIDI note numbers, western music notation
makes a clear distinction between for example
a C-sharp and a D-flat. All theoretic tone in-
tervals consist of a number of whole tones and
semitones, instead of just a number of chromatic
semitones®. The system can therefore be inter-
preted as two-dimensional. In the previously
mentioned article [Seelen, 2014] the T's() tonal
representation system is proposed, consisting of

E.g. the diatonic perfect fifth can be tuned to %, as
well as 20712 and many other frequency ratios.

8do-re-mi-fa-so-la-ti

"C-D-E-F-G-A-B

8The word chromatic is emphasized for the reason
that this term can be interpreted in various ways and is
therefore confusing. In this case one twelfth of an octave
is meant.

the two values T, and s,, the number of whole
tones and semitones, respectively. Its advan-
tage is that it can be easily translated to the
MIDI note system as is shown in equation 2. Its
reference (1's(0,0)) is set equal to the C corre-
sponding to MIDI note 0. Therefore T's(25, 10)
corresponds to middle C (lilypond: ¢”).

m=2-T,+ s, (2)

Figure 1: Examples of [midi2ts] and [ts2symbol]
in Pure Data.

3.1 Ts to note name symbol

The translation of T's(T),,s,) to a note name
symbol (the Lilypond® standard) is done by
translating the total number of steps (7, + sy,)
to the root character plus octave designation'®.
Then the deviation from the reference of the
root character is calculated and translated into
an amount of flattening or sharpening.

3.2 Ts to frequency

This translation can be summarized to equa-
tion 3, where f is the frequency, A is the refer-
ence frequency for T's(29,11), corresponding to
the note a’, z is the frequency ratio for the oc-
tave, and r is equal to lsgr; and represents the
semitone to whole tone ratio.

f _ x((Tn729)+(sn711)-r)/(5+2-r) A (3)

Usually z is set to 2. The ratio r then de-
fines the kind of tuning. When r is set to about
0.6 the tuning could be said to be within the

http://1lilypond.org/
Division by seven and its remainder (modulo).



mean tone zone. r = 0.6 or r = % corre-
sponds to 31-TET, for each semitone is made
11

up from 3 and each whole tone from 5 dieses'".
The exact meantone (' = £1/5) temperament,
Pythagorean, and other examples and how their

parameters are calculated are shown in table 1.

Tuning / | Equation / Calcu- | Parameters
Tempera- lation
ment
Mean tone 5 = 22/(5+2n) r =~ 0.60628
3 _ 2(3+T)/(5+2r)
Pythagorean 2 r ~ 0.44247
r= logs __ log%%
T logT T log 2
Tritone tem- % = 2(8/(5+27)) r ~ 0.59006
perament
Stretched 9
5 _ (3)2/(3+7m) N
octave, 1=0) r = 0.63412
perfect 5th 5y (5+27)/2
and 3rds z=(3) x ~ 2.01246
19-TET s=21, T=2% |r=2
31-TET s=231, T=25 |r=2
53-TET §=2%,T=2% |r=4
Table 1: Tuning examples of the two-

dimensional system.

3.3 MIDI note numbers to T's

Ideally the MIDI note system is skipped in all
translations of tonal data. The translation from
Ts to MIDI, from two to one dimension as
shown in equation 2, leads to irreversible data
loss. The same applies to MIDI files exported
from Lilypond. However, even if composed dia-
tonic music material wouldn’t be translated into
MIDI anymore, still improvisations on MIDI
keyboards should be interpreted by the com-
puter. The simplest and probably best way of
doing this is to leave the decision to the per-
former.

"The diesis is the interval that remains to the octave
after an accumulation of three perfectly tuned (g) ma-
jor thirds (e.g. B-sharp to C). This typically mean tone
interval remainder is approximately a 31*" of an octave.
A.D. Fokker uses this term to indicate the smallest in-
terval in 31-TET [Fokker and Pol, 1942]

3.3.1 User-defined

In Muditulib this is done by setting a modula-
tion parameter (mod). The default (mod = 0)
is - as a starting reference - set to two flats (£
and B) and three sharps (F, C, and G), simi-
lar to the baroque standard. Every modulation
up replaces one note in the circle of fifths by
adding (1,—2) to its assigned T's value, start-
ing at MIDI note 3 (E-flat to D-sharp). In the
opposite direction it starts at MIDI note 8 (G-
sharp to A-flat). In the current implementation
each modulation change is calculated from a de-
fault array at ‘mod 0.

3.3.2 Real-time pitch spelling

Another way to enrich the poor MIDI note data
is the algorithmic approach. If, during a per-
formance, a listener is able to roughly extract
information about key, mode or tonality, the
computer should be able too, if programmed
according to a realistic cognition model. The
translation from MIDI note data to staff no-
tation or note names is called pitch spelling
and is generally not a real-time practice. Some
researchers have developed algorithms through
the last decades [Longuet-Higgins and Steed-
man, 1971; Temperley, 2004; Cambouropoulos,
2003; Meredith, 2003; Chew and Chen, 2005;
Honingh, 2006]. A very related topic is key-
finding. In the end such procedures are all about
saying something about the function of and rela-
tion between tonal events. For in some styles of
music it is not always clear in which tonal direc-
tion the music will develop, when no true sense
of tonality in that certain moment is present,
a perfect real-time solution is theoretically im-
possible. The duty of the algorithm, however, is
not offering perfect sheet music, but offering in-
put for a real-time controlled dynamic tuning.
Errors are acceptable, at least in cases where
the human perception is uncertain. Any un-
certain choice of the human tonal perception
corresponds to the same uncertainty of the al-
gorithm, ideally. An algorithm, developed by
the present writer, based on memory, predict-
ing, counting, averaging, and interval compar-
ing, will be included in the library.

4 Tts, adding a third variable

Just intonation is a tuning approach in which
all tone intervals are based on integer relation-
ships. Pythagorean tuning can be considered
‘just’. It is based on a perfect fifth (3 : 2)
and a perfect octave (2 : 1) ratio. All inter-
vals are then made up from powers of prime



numbers two and three!2. As the mean tone

temperament showed, however, the perfect ma-
jor third ratio is 5 : 4, but adding the number
five to the tuning system introduces a problem.
A major third cannot be divided into two equal
whole tones within just intonation, for the mean
tone is not an interval based on an integer rela-
tionship. Therefore, the major third is divided
into a large and a small whole tone. This way,
thirds, both major and minor, perfect fifths as
well as octaves, and therefore all octave inver-
sions of the mentioned intervals, can be tuned
correctly!3.

4.1 Tts to frequency

Tuning the T'ts values is not a great deal, for
there seems to be only one perfect solution, in
which all octaves, perfect fifths, and thirds are
tuned the most ideal way. Frequency ratios then

should be T = %, t = 1@0, and s = %—g. The
translation to frequency can be best summa-
rized by equation 4, where A is the reference

a’ at Tts(17,12,11)1,

9 (Tn—17) 10 (tn—12) 16 (sn—11)
— | = L = = A
=6 ) ()
(4)

However, still some adjustments are conceiv-
able. The 53-TET system for example, with
r= % and therefore approximately Pythagorean
tuning, can be divided into three variable steps.
Instead of a semitone of four commas'® and a
whole tone of nine, the semitones are enlarged
to five in favor of two of five whole tones. Note
that the result of this would not deviate very
much from the in equation 4 proposed tuning.

4.1.1 Turkish modes

An idea for further improvement would be
to combine both two- and three-dimensional
interpretations of 53-TET, or the three-limit
Pythagorean and the five-limit just intonation
instead. This would result in even more vari-
ables or steps, namely those used in Turk-
ish modes (makamlar): bakiye (4 commas),
kii¢iik micennep (5 commas), biyik micennep

12This is called three-limit.

13 According to renaissance counterpoint prescriptions
all intervals considered consonant [Mann, 1987], whether
perfect or imperfect, are now covered.

“That is, NOT the MIDI note number 69 is the ref-
erence.

15T contrast to 31-TET a part is called comma instead
of diesis. This comma refers to the syntonic comma,
which will be discussed later.

(8 commas), tanini (9 commas), and the
augmented second artik ikili (12 commas)!®
[Signell, 1986 1977]. Muditulib could then be
made very suitable for digitally synthesized re-
production of Turkish classical music or any-
thing alike.

4.2 Creating useful T'ts data

In contrast to T's data, Tts data cannot be ex-
tracted from regular scores when it concerns di-
atonic music. T'ts values shall then be obtained
from T's or even MIDI. This raises the prob-
lem of the syntonic comma, that is, the differ-
ence between the large and the small whole tone
(%). This means that to fit the needs of a cer-
tain interval, another interval might be tuned
too wide. In a dynamic tuning this comma can
be replaced on-the-fly. In a more fixed tuning
the comma will stick to its initial place and be
rather present. For example, from this point of
view Turkish modes are based on the placement
of syntonic commas, giving each makam its very
own character, based on some slightly wider and
narrower intervals!”. Only fifths and octaves
are always tuned into perfection. Omne could
possibly write a book about the placement of
the syntonic comma. However, for this moment
the present author prefers to skip such time-
consuming research effort and focusses on two
approaches, proposed in the next paragraphs.
Again, there is a relatively simple approach and
a more elaborate.

4.2.1 MIDI to T'ts, user-defined

The simple approach is the user-defined key set-
ting. The user defines the mode and the starting
MIDI note. Currently two modes are available,
one minor and one major, both displayed in ta-
ble 2. Different modes can be created by moving
the pattern to another reference MIDI note or,
of course, by editing the source code or submit-
ting a supported feature request'®. For a piece

16The mentioned augmented second, that is, a per-
fect fourth (22 commas) minus two large semitones (545
commas), is clearly not unique here and can not be con-
sidered an extra variable. The only difference is that
both Pythagorean (small) and five-limit (large) semi-
tones appear. That makes a total of four different steps.

"An example of this is the ugsak makam, starting
with the relatively small Pythagorean minor third (13
instead of 14 commas), although consisting of a small
large whole tone (8) and a large semitone (5) from the
tonic [Signell, 1986 1977].

8The pattern is best recognized by looking at the ‘dif-
ference’ column. The non-steps (places where no semi-
tone or step occurs, e.g. ‘T/s’) are grouped just like the
black keys on a keyboard.



in E minor one would usually choose ‘MIDI note
4’ as reference and ‘0’ (minor) as mode. These
default patterns are carefully chosen to enable
the best standard modulations from the refer-
ence key, without resulting in too many ‘mis-
placed’ commas'®. How these patterns were ac-
tually chosen is not discussed here, for the sake
of not going into detail of music theoretical con-
siderations too much. Furthermore, more re-
search on this topic would be desirable, for ex-
ample comparing these considerations to those
of how frets on a saz are placed.

Minor (0) Major (1)
Dif. | Total | C. || Dif. | Total | C
S - 0 S - 0
s s 5 T/s | T/s 4
T/s | T 9 | s T 9
S Ts 14 || s Ts 14
t/s | Tt 17 || t/s | Tt 17
S Tts 22 || s Tts 22
T/s | TTt 26 || T/s | TTt 26
S TTts 31 || s TTts 31
S TTtss 36 || s TTtss 36
T/s | TTTts | 40 || t/s | TTtts 39
S TTTtss | 45 || s TTttss | 44
t/s | TTTtts | 48 || T/s | TTTtts | 48

Table 2: Tuning patterns for the MIDI key-
board: modes and modulation options from a
reference tonic. Shown are the differences to
the previous MIDI note and the total amount
of distance to the reference in symbols and in
commas.

4.2.2 A pattern matching approach, or
the hexahord analysis algorithm

Another way of tuning is leaving this task
to, again, a real-time controlling algorithm.
For singers in the Middle Ages used Guido
of Arezzo’s hexachord to choose their pitches
[Grout and Palisca, 1988], the hexachord seems
very suitable for on-the-fly tuning purposes.
The next question is how the hexachord should
then be tuned. Hermann von Helmholtz has
been very helpful to answer this question for he
explains how medieval singers related each note
of the hexachord to a reference and what differ-
ences exist between major (on Ut) and minor
(on Re) modes [Helmholtz, 1896, ch. 18]. The

19F.g. the fourth of 23 commas on the subdominant
in minor mode (from Tts to TTTtss).

resulting conclusions are displayed in table 3.
The Re and Sol are placed one comma lower in
minor mode. However, for modulation purposes
the major hexachord is placed one comma lower
than the minor altogether. The translation from
Ts to Tts is done by pattern matching?’. The
choice between major and minor tuning of each
individual hexachord is done by a tonic-finding
algorithm.

] HUt\Re\Mi\Fa\Sol\La\
Minor 1018 |17 [22[30 |39
- t T S t T
Major 1 ]8 [16[21]30 ]38
- T t S T t

Table 3: The tuning of the hexachord, displayed
in commas.

5 Implementation

All the previously mentioned functionality will
be bundled into one file, a collection of C func-
tions?!. These functions will be explained in a
reference manual at http://muditulib.eu.

In essence this library is relatively small and
simple. The challenging part is probably the im-
plementation, depending on the environment.
An implementation for Pure Data is ready
yet and consists of C files written against the
Pd-API to create a collection of separate Pd
classes, along with the muditulib core func-
tions, a Makefile based on the template by H.-C.
Steiner, helpfiles and examples. An example of
the Pd-implementation is shown in figure 1.

6 Concluding remarks

The tuning approaches described here highly
depend on implementation possibilities. For
a low-level music production environment like
Pure Data there is actually no problem, al-
though this requires quite some background
knowledge from the user, both of music and tun-
ing theory. Most popular electronic music pro-
duction platforms, however, are mainly based
on the MIDI note system. Tuning workarounds
making use of ‘pitch bend’ are familiar to the
present author, though not a satisfying solu-
tion. Plans are to develop a file format other
than MIDI. More about such can be expected
in the near future. Any suggestions about file

20The pattern of the diatonic hexachord is T-T-s-T-T.
2mttp: //sourceforge.net/projects/muditulib/



formats or implementations and especially ques-
tions arising from implementation ambitions,
are very welcome.
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