
Routing Open Sound Control messages via vanilla JACK to build low-latency event
translator/filter chains and map unconventional controller data to musical events
INTRODUCTION
We have run continuously into situations where it would have been of advantage to have a means to route OSC directly via JACK. There would be multiple benefits:

Sample-accuracy, low-latency, less context switches, same routing infrastructure and session management for OSC and MIDI.

Support for more complex real-time event data, e.g. for continuous controllers and motion or gesture driven sound synthesis.

Tighter coupling between OSC and MIDI, possibility for on-the-fly translation of the two.

As it turns out, we can have all of this with vanilla JACK already, by piggybacking on top of JACK MIDI, one has to be cautious though not to interfere with the latter.

METHODS

Route raw OSC messages via JACK MIDI ports
Make use of JACK MIDI infrastructure, simply replace raw MIDI with raw OSC
messages. JACK is indifferent to what the raw bytes encode and will handle
routing and multiplexing for you. OSC types are not network encoded while inside
the JACK graph. Each message has a timestamp, there are no bundles.

C-Type Description MIDI OSC

uint32 t time 23 44
size t size 3 20
uint8 t * buffer 09 a0 7f /hello��,s��world���

OSC message → JACK event
Inject single OSC messages at the beginning of the next sample period.

OSC packet (UDP/TCP)

/hello s ’world’

JACK OSC events

period (n)

00 /hello s ’world’

OSC nested bundles → JACK events
Unroll OSC bundles into single messages, translate between NTP timestamps and
JACK frame times, add to sorting event queue for later dispatch into JACK graph.

OSC packet (UDP/TCP)

#bundle 00000000.00000001

#bundle d6ecd330.58399c7b

/tuio2/frm it 3459 d6ecd330.58000000

/tuio2/tok iiifff 129 0 0 0.89 0.23 0.0

/tuio2/alv i 129

#bundle 00000000.00000001

/s new siiisisi ’base’ 129 0 0 ’out’ 0 ’gate’ 0

#bundle d6ecd330.583a1200

/n set iififsi 129 0 0.89 1 0.23 ’gate’ 1

JACK OSC events

period (n)

00 /s new siiisisi ’base’ 129 0 0 ’out’ 0 ’gate’ 0

period (n+2)

33 /tuio2/frm it 3459 d6ecd330.58000000

33 /tuio2/tok iiifff 129 0 0 0.89 0.23 0.0

33 /tuio2/alv i 129

period (n+3)

12 /n set iififsi 129 0 0.89 1 0.23 ’gate’ 1

Case Study 1: Ardour Seq → SuperCollider → Ardour
From Ardour sequencer to scsynth in the same JACK process period.

Ardour

j2amidi

JACK MIDI

sclang

ALSA MIDI

scsynth

UDP/TCP OSC

JACK AUDIO

Ardour

Translator
(Tjost)

JACK MIDI scsynth

JACK OSC

JACK AUDIO

Discriminate between JACK MIDI and JACK OSC ports
Make use of the JACK metadata API to mark JACK MIDI ports used for OSC
routing, makes JACK OSC clients aware of each other.

Key Value

’http://jackaudio.org/event/type’ ’Open Sound Control’

’http://jackaudio.org/event/OSC/type’ ’TUIO 2.0’

’http://jackaudio.org/event/OSC/type’ ’SuperCollider’

Tjost is JACKified Open Sound Control Transmission
Tjost is a reference implementation of a scriptable event translator, handles OSC
via UDP/TCP/JACK, JACK/ALSA MIDI, JACK AUDIO, embeds LuaJIT tuned
for realtime execution in a JACK process thread.

main event queue

real-time Lua logic event processor

input module 2

source 2

input module N

source N

module

event queue

output module A

sink A

module

event queue

output module B

sink B

module

event queue

output module Z

sink Z

input module 1

source 1

aggregate

sort

real-time events

(internal of JACK graph)

real-time events

(internal of JACK graph)

ringbuffer

non real-time events

(external of JACK graph)

non real-time events

(external of JACK graph)

Ringbuffer

JACK client process callback

Case Study 2: TUIO → MIDI + SuperCollider
Inject TUIO from UDP into JACK graph, translate to general on/off/set events,
route to downstream translators to steer SuperCollider or some JACK MIDI app.

Chimaera

TUIO client (Tjost)

UDP OSC

Translator (Tjost-01)

JACK OSC

Translator (Tjost-02)

JACK OSC

scsynth

JACK OSC Yoshimi

JACK MIDI

JACK AUDIO

UDP OSC packet (Chimaera)
#bundle d6ecd332.5a3cf000
/tuio2/frm it 3460 d6ecd332.58000000
/tuio2/tok iiifff 234 1 128 0.89 0.23 0.0
/tuio2/alv i 234

JACK OSC events (Tjost)
33 /on iii 234 1 128
33 /set iff 234 0.89 0.23

JACK OSC events (Tjost-01)
00 /s new siiisi ’base’ 234 0 1 ’out’ 0
33 /n set iififsi 234 0 0.89 1 0.23 ’gate 1

JACK MIDI events (Tjost-02)
33 91 4a 7f // note on
33 e1 0a 3f // pitch bend
33 b1 21 1a // controller fine
33 b1 01 7f // controller coarse

DISCUSSION

Problems!
Legacy clients cannot distinguish between JACK MIDI and JACK OSC.

Only JACK clients which route OSC set the event type via the metadata API
and thus are aware of each other.

JACK MIDI and JACK OSC can be connected by jack connect.

As long as OSC stays in the JACK graph we are fine, but when one tries to
export the event, e.g. to ALSA (a2jmidid) or NetJACK2, clients will expect
MIDI data.

Fixes?
Generalize JACK MIDI for arbitrary unidirectional events (MIDI, OSC, . . . )?

Define jack event * and alias to jack midi * (downwards compatibility)?

Use metadata API to set event type of a given port (MIDI, OSC, . . . )?

By default an event port would have type MIDI (downwards compatibility)?

User can overwrite event port type, e.g. to route OSC?

Modify jack connect to only connect event ports with matching event types?

Only allow MIDI to exit JACK graph, e.g. to/from ALSA, NetJACK2, . . . ?

Include libjack osc into JACK, or provide it as an extension?

Hanspeter Portner (dev@open-music-kontrollers.ch) Routing Open Sound Control via vanilla JACK . . . Linux Audio Conference, 1-4 May, 2014 1 / 1


