1 / 21 🔪 📄

WiLMA - Wireless Largescale Microphone Array

Christian Schörkhuber, Markus Zaunschirm & IOhannes m zmölnig

presented by Winfried RITSCH

April 30, 2014

・ロト ・個ト ・ヨト ・ヨトー

Outline

1 Motivation

2 System

3 Project

- **・ ロ ・ ・ 回 ・ ・ 三 ・** ・ 三 ・ のへ()

Motivation

Spatial Audio

- higher-order ambisonics
- some playback systems
 - ▶ e.g. IEM Cube, MuMuth,...
- few recording systems
 - Eigenmike
 - expensive
 - black box: not good for experimenting beyond the eigenmike specs

・ロト ・個ト ・ヨト ・ヨトー

use cases

multichannel recording

- spatial recordings
 - higher-order ambisonics
- large-scale recordings
 - recording of urban landscapes...

auditory scene analysis

- multichannel source separation
- event detection
- source tracking
- acoustical planning
- acoustical surveillance

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Scenarios

Decentralized Soundcard

- traditional multichannel recording
- easy setup
 - ▶ no cabling
 - automatic microphone localisation
- centralized recording
- centralized processing

Autonomous Recording

- synchronous, unsupervised recording
 - 1. hit 'start'
 - 2. leave the scene
 - 3. later collect the data

Autonomous Processing

- source separation
- source identification
- meta-data extraction
- • •
- processing on remote units

Requirements

we care for

- scalability
- high quality audio
- sample synchronicity
- "ease of use"

we don't care for

• latency (for now)

System

• Sensor Module

- Microphone(s) (up to 4 channels)
- Pre-amplifier
- A D-Converter
- Sync-Module
- "Digital Signal Processer"
- Transmitter
- Battery Pack
- Central Unit
 - off-the-shelf PC
 - controls multiple SMs

2

・ロト ・個ト ・ヨト ・ヨトー

Hardware (Sensor Module)

• Microphone Input

- THAT1570 pre-amplifier
 - controlled by THAT5173 via SPI
- AD1974 analog/digital converter
 - integrated PLL
 - ► 24bit
 - 4 channels
 - additional (digital) AUX input is multiplexed into channel#5..channel#8
- ► (optional) 48V phantom power

・ロト ・四ト ・ヨト ・ヨト

Synchronisation

- 32bit timestamp
- broadcast
 - ► sub-GHz ISM
 - ▶ @1Hz ↓
- Voltage Controlled Oscillator (VCXO)
 - controlled by FLL
- timestamp multiplexed into audio stream (AUX)

・ロト ・四ト ・ヨト ・ヨト

2

<u>13</u> / 21 🔪

Transmitter

• using trusted network stack

- Ethernet
- ► WLAN
 - ▶ 802.11n

(Operating) System

- Beaglebone A6
 - ▶ no FPU!
 - Beaglebone Black (not yet available at time of design)
- Ubuntu-11.10 (Oneiric)
 - ▶ linux-3.2.30
 - custom ALSA-drivers for AD1974

14 / 21 🔪 📄

Software Architecture

Controller

- handles all communication between CU and SMs
- user interface (on CU)
- system monitoring (on SM)
- implemented in Python/Qt

Audio Processor

- forked off (and watched by) Controller
- control-communication proxied via Controller
- streaming handled directly
- implemented in Pure Data

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Processing Plugins

- implementations for autonomous processing
- simple Pd-patch
 - well-defined interface (1 iolet \sim , up to 4 iolet \sim s)
 - no need for compilation to native code
 - easy deployment

Communication

using standard communication protocols

Service Discovery

- Sensor Modules announce themselves via ZeroConf/Avahi
- _wilma-sm._udp

Audio Stream

- Real-time Transport Protocol (RTP)
 - provides timestamps
 - supports multiple profiles/codecs
 - congestion control (via RTCP)

・ロト ・個ト ・ヨト ・ヨトー

Inter-Process Communication

- all communication via OSC
 - $SMs \Leftrightarrow CU$
 - \blacktriangleright infrastructure \leftrightarrow audio number cruncher
- CU sends /ping to SMs to query current state

18 / 21

People involved

Team

- Christian Schörkhuber
- Markus Zaunschirm
- IOhannes m zmölnig

Advisory Board

- Bernhard Auinger
- Winfried Ritsch
- Alois Sontacchi
- Franz Zotter

2

・ロト ・回ト ・ヨト ・ヨト

Availability

Software [Variable]

• GPLv2

http://github.com/iem-projects/WILMix

Circuitry

- no decision regarding licenses yet $\ensuremath{\mathbb{S}}$

2

<ロ> (四) (四) (三) (三) (三)

Thanks

- funded by the *MINT/Masse* program of the Austrian Federal Ministry of Science and Research
- presented by *Winfried Ritsch*!!!

