
MorphOSC- A Toolkit for Building Sound Control GUIs with Preset
Interpolation in the Processing Development Environment

Liam O'SULLIVAN
Electronic & Electrical Engineering, Trinity College Dublin

Dublin 2, Ireland
lmosulli@tcd.ie

https://github.com/LiamOSullivan/MorphOSC

Abstract

MorphOSC is a new toolkit for building graphical
user interfaces for the control of sound using
morphing between parameter presets. It uses the
multidimensional interpolation space paradigm
seen in some other systems, but hitherto
unavailable as open-source software in the form
presented here. The software is delivered as a class
library for the Processing Development
Environment and is cross-platform for desktop
computers and Android mobile devices.
This paper positions the new library within the
context of similar software, introduces the main
features of the initial code release and details
future work on the project.

Keywords

Toolkit, Processing Development Environment,
Open Sound Control, User Interface, Preset
Interpolation.

1 Introduction
The control of complex, dynamic sound

typically involves manipulation of a large number
of parameters. Complex mappings that link one-
or-more input controls to one-or-more outputs
have been seen to be more effective for the
provision of engaging, expressive play than simple
one-to-one mappings [6]. One approach to the
control of multiple parameters in real time is the
use of a multidimensional space superimposed on
a two-dimensional graphical controller [10].
Particular settings for an ordered collection of
parameters can be associated with anchor points
on the controller surface and the movement of a
cursor provides an interpolated output value for
each parameter. The usefulness of such an
approach for the provision of musical control has
been noted previously in the above examples;
although independent control over each output is

compromised, an intuitive and 'playable' space is
provided. This two-input to many-output (two-to-
many) mapping can be well-suited for live
performance or the exploration of timbre spaces
generated when the interpolated output is sent to a
synthesiser.

Although several systems provide a graphical
user interface (GUI) to some implementation of
such a scheme, they are usually tied to a particular
application, are commercial products or are not
portable to multiple platforms. To address this, a
new code library is presented that facilitates rapid
prototyping of interfaces utilising preset
morphing- MorphOSC.

Section 2 of this paper briefly describes similar
work in the form of existing GUIs that allow
complex mappings through interpolated parameter
spaces. The design goals for the new tool are then
identified as a reaction to what is currently
available. Some background to one method of
parameter morphing is provided in section 3.
Section 4 outlines the current library
implementation, identifying key features of the
software in its current state. Future areas of
development are discussed in section 5 and final
conclusions are made.

2 Similar work
Several software systems exist that facilitate the

exploration of multidimensional parameter
spaces. While some of these are sophisticated
systems offering extensive functionality, it will be
shown that a gap exists for the approach being
outlined here due to the limitations described in
each case. Previous work by the author describes
a number of more general mapping interfaces [12]
and will not be repeated in this paper, but salient
examples of more general software controllers
and specific interpolating interfaces are now
presented.

mailto:lmosulli@tcd.ie
https://github.com/LiamOSullivan/MorphOSC

2.1 Interpolating interfaces
The provision of effective control of computer

music systems via preset interpolation has
historically been of interest. As far back as the late
1970s, researchers at the Inaís Groupe de
Recherches Musicales provided such functionality
in the GUI component of the SYTER system [5].
Today, the real-time processing capability of
desktop computers and even mobile devices means
that interfaces can be implemented as components
of a larger software system. The Max/MSP
programming environment [9] is a popular
example and provides many data-manipulation
tools; a recent implementation of an interpolating
controller for this environment is the nodes object.
This allows many inputs to be weighted and
combined to a single output based on the positions
of overlapping circular graphical nodes. Similarly,
the IRCAM MnM mapping toolbox, (part of the
FTM external object library [3]) allows the user to
build patches with existing Max/MSP GUI
elements. For instance, an example patch allows
the specification of two-to-many mappings using a
two-dimensional controller and a set of linear
sliders. The system can associate points on the
controller with particular slider arrangements and
value settings; moving between points provides a
smooth morph between the sliders' states.

The MetaSurface is an interface for
interpolating between parameter ‘snapshots’ for
two-to-many mappings [1] and an example
implementation is included with the AudioMulch
software [2]. Still more recently, one project [8]
provides a preset-interpolation interface for the
SuperCollider environment [18], designed for use
with a bespoke physical controller.

The above examples are part of more fully-
featured programs rather than standalone
controllers and/or are commercial products. They
cannot be used with Android mobile devices. The
ability to include subsets of output parameters in
the interpolation space is provided in some cases,
typically via check-boxes or a set-up dialogue.
However, an interface which uses the drag-and-
drop metaphor to manipulate parameter sets would
provide a more interactive experience. The use of
a multi-layered GUI approach would also allow
more complex mapping relationships to be built
and refined.

2.2 Standalone interfaces for Open Sound
Control

Software controllers already exist for mobile
and touch-screen devices that can output messages

over a network formatted using the Open Sound
Control (OSC) standard [11]. From simple
applications like andOSC [12] to more
sophisticated tools such as the popular TouchOSC
[15], these offer real-time control of musical
applications and exploit the multi-touch capability
of contemporary phones and tablets (as well as
additional sensor input from accelerometers etc.).
Although functionality-limited free versions are
available, they are not open source. Neither do
they provide an interpolation surface, meaning
this must be implemented on a networked
computer if required. This separates the mapping
configuration from the interface, inhibiting
engagement and obstructing work-flow A more
unified interface would facilitate greater
exploration of the parameter space and dynamic
mapping during performance.

2.3 Processing Development Environment
The Processing Development Environment

(PDE) is an open-source initiative that attempts to
make it easier for artists, designers and novice
programmers to implement computer-based
projects. It uses a streamlined form of the Java
programming language and has evolved to
become a very popular tool for creatives. Code
libraries provide additional functionality such as
enhanced interactivity and sound generation.

One such contributed library is the recent
JunctionBox toolkit [4], which can provide
interaction capability beyond the use of traditional
controller widgets. Code 'sketches' written in
Processing can include this library's functionality
to produce OSC messages triggered by common
mouse-based or multi-touch interactions (e.g.
scaling, rotation etc.). As the PDE now supports
rapid Android application prototyping1, this
allows easier implementation of novel OSC
controllers for mobile devices. However, as the
focus is on the generation of messages based on
common spatial manipulations of graphical
objects, it does not particularly address the
production of more complex GUIs including
preset-interpolation surfaces. Nevertheless, the
library serves as a useful template for the
provision of such functionality through a code
library for the PDE.

2.4 Project goals
The design goals which emerge from the initial

motivations for the project and subsequent
consideration of similar work are as follows:

1 As of version 2.0 beta 7, March 2013.

• Freely available, open source, cross-
platform compatible toolkit for rapid
prototyping of preset-interpolation
interfaces.

• Interaction design exploiting familiar
metaphors for intuitive configuration of
the parameter interpolation space (e.g.
drag-and-drop, layering).

• OSC-formatted output.

3 Interpolation methods
A full discussion of the various methods available
for interpolation between a set of scattered data
points is beyond the scope of this paper and the
reader is directed to an overview from the field of
cartography [7]. However, the techniques used in
some examples of similar interfaces are
summarised in table 1.

Software Method
SuperCollider

PresetInterpolator
Intersecting
N-Spheres

Max/MSP
nodes

Inverse Distance
Weighting

AudioMulch/
MetaSurface

Natural
Neighbour

Table 1: Interpolation methods used in some
existing GUIs for musical control.

The need for real-time performance and the
suitability of the software for mobile platforms
prioritises the use of computationally inexpensive
interpolation techniques. For the initial toolkit
release, the method of Inverse Distance Weighting
(IDW) was preferred.

3.1 Inverse-Distance Weighting
IDW is commonly called Shepard's Method

following an early documentation of the technique
[17]. In essence, it can assign values to unknown
points by calculating a weighted average of the
values at scattered sample points. The normalised
distances from the interpolation point to the
known values, dn, are used to scale the values of
each parameter at these points, pni, in an inverse
relationship. The results are then averaged,
meaning points further away have less effect on
the interpolated value of a particular parameter . A
general expression for the operation is therefore:

modification to the technique uses the square of
the distance involved and may be more suited to
the control of musical parameters, due to the non-
linear nature of certain aspects of human
perception and experience of the real world (e.g.
inverse-square law attenuation of sound with
distance). IDW considers all points on the
surface, but may also be modified to only
consider the nearest points and reduce the
computation required for interpolating the output.
Figure 1 shows an interactive Processing sketch
that outputs a set of interpolated values for a
three-dimensional parameter space mapped to a
two-dimensional controller surface2. This
illustrates how parameters at the interpolation
point (i.e. the output) are calculated from their
ordered counterparts at the 'known' sample points
(i.e. the anchor points).

Figure 1: Inverse Distance Weighting used to
interpolate values for the parameters at a point P

from a set of scattered sample points a, b, c and d.
The normalised values for the weights (inverse
distances) are shown along the vector lines and
three parameter values are placed at each point.

4 Implementation
The current toolkit was programmed in Java

and is available as a library for the PDE. This
includes example interfaces which can be loaded
into the environment and modified, or exported to
be run as standalone applications across multiple
platforms (OSX, Windows, Linux, Android).

The toolkit builds on the functionality of other
contributed libraries for Processing to allow easy

2 The Processing code for this example is avaliable at:
https://github.com/LiamOSullivan

https://github.com/LiamOSullivan/ProcessingMiscellany

Figure 2: Overview of the core library classes (rectangular boxes) of the MorphOSC toolkit.

integration into the work-flow of developers and
to keep the code base to a minimum. The library is
design to make use of the popular ControlP5 [15]
library for the provision of on-screen control
widgets, while the OSC subsystem uses the oscP5
library [16] to format output appropriately.

Settings for the constructed GUIs can be stored
and recalled using a preset file, formatted with
extensible mark-up language (XML) for ease of
portability.

Class Description

MorphOSC Base class, manages
interaction space.

Parser Parses subset of
widget fields.

MorphLayer Interactive GUI
element. Container for
(i), (ii), (iii).

(i)
MorphAnchor

Holds a set of
parameter values.

(ii)
MorphPoint

An interpolation
point.

(iii)
MorphParameter

Parameter value
parsed from widget.

OSCAgent Formats outgoing
messages.

Table 2: Core classes of the MorphOSC library.

The core classes that implement the MorphOSC
library are listed in table 2. Figure 2 outlines their
inter-relationships.

4.1 Usage
The library employs the conventions common to

contributed libraries for the PDE, as shown in the
example code of table 3. The base class for the

library is instantiated in the usual way, by passing
a reference to the parent PApplet (the
encapsulating class for a Processing program).
This effectively creates an interaction area at
runtime with the same dimensions as the parent.
Widgets are defined using the ControlP5 library
to implement the interface design in the usual
way. Any widgets which are to be included for
morphing are then added to the MorphOSC
instance using the add() method. This sends the
element to the Parser class; a subset of the
controller properties are extracted and a
MorphParameter instance for each added
controller is returned.

MorphOSC morph = new MorphOSC(this);

ControlP5 cp5 = new ControlP5(this);

Slider s = cp5.addSlider();

morph.add(s);

Table 3: Example Processing code. MorphOSC
and ControlP5 base classes are instantiated. A
slider is created and added to the MorphOSC

object.

All other public classes are modified at runtime
through interaction with the GUI.

4.2 Interaction Design
Manipulation of MorphOSC elements through the
interaction area depends on the current mode of
the interface, which can be in Edit Mode or
Performance Mode.

Figure 3: An example GUI created in Processing with MorphOSC and ControlP5. In the unlocked Edit
Mode, GUI elements may be modified but interpolation output may still be auditioned in real time.

MorphLayer number 3 is in focus and the various widgets for system settings are visible on the right
hand side of the screen.

4.2.1 Edit mode
When unlocked in Edit Mode, MorphOSC

elements may be created, modified and destroyed.
For example, a MorphLayer can be instantiated
with an event (e.g. a mouse click or a double
finger-tap) in free space on the interaction area.
Layers may subsequently be moved/ resized and
overlapping is possible. Any widgets which have
an associated MorphParameter are indicated in the
GUI with a unique colour. A MorphAnchor may
be added to a layer by using a drag-and-drop
action from the numerical value attached to the
corresponding widget. This adds the associated
MorphParameter to the layer and initialises the
MorphAnchor value for that parameter to the
current widget value. Additional parameters may
be added to existing anchors or anchors may have
their values overwritten by subsequent drag-and-
drop actions. Anchors may be moved about their
layer to reconfigure the underlying interpolation
space; finer control may be attained by moving
anchors further apart, for example.

Edit mode produces interpolated values for
parameters by dragging (with mouse or touch) in
free space. This allows the user to audition
parameter interpolation in real-time as they are

manipulating them, but is not meant to provide a
full performance mode.

4.2.2 Performance mode
When in the locked performance mode,

MorphLayers, MorphAnchors and other
instantiated classes cannot be modified other than
through the specification of MorphPoints to
generate interpolated parameter values.
Interaction with the MorphLayers produces
interpolated values for their associated
MorphParameters based on the arrangement of
MorphAnchors within them. MorphPoints
interpolate values from all layers behind them.
This means that subsets of parameters can be
associated with different layers and spatial
positions, providing a lot of flexibility in design
of the control space.

Performance mode contains the option to hide
all ControlP5 GUI elements so that the whole
space is available for gestural input.

5 Conclusion and future work
This paper introduced a new toolkit to aid in the

rapid development of GUIs utilising preset
interpolation for the control of sound over OSC.
A short review of similar work identified the need

for a code library for the popular Processing
environment, in order to allow cross-platform
interface development. Following a brief
discussion of a suitable interpolation method, the
new toolkit- MorphOSC- was then introduced and
key features were outlined.

The software is currently in beta version and
there is much work to be done to produce a
release candidate. A full evaluation of the system
is required to assess stability and performance.
Use of the system in a workshop setting is
proposed to evaluate usability and performance is
to be tested 'in the wild'.

The current system implements a simple
averaging interpolation scheme through IDW, but
as this can have some limitations (e.g.
computation time proportional to the number of
anchor points) other methods will be examined. It
is envisaged that the toolkit will serve as a test bed
for evaluating the effectiveness of various
interpolation methods for the provision of real-
time control of musical output.

This work forms part of a larger project which
attempts to leverage the benefits of two-
dimensional interfaces for musical control. The
multi-layer paradigm is seen as a strong metaphor
for the provision of intuitive interactions not
currently supported in existing software.

Acknowledgements
Thanks to Andreas Schlegel for both the oscP5

and controlP5 libraries. The author appreciates the
comments of the reviewers and the beta-testers for
their invaluable feedback.

References
[1] Bencina, R. The Metasurface – Applying

Natural Neighbour Interpolation to Two-to-
Many Mapping. Proceedings of the 2005
Conference on New Interfaces for Musical
Expression (NIME’05) (Vancouver, BC,
Canada, May 26-28, 2005), 101-104.

[2] Bencina, R., AudioMulch interactive music
studio. http://www.audiomulch.com/

[3] FTM & Co., IRCAM. http://ftm.ircam.fr/
[4] Fyfe, L., Tindale, A. and Carpendale, S.

JunctionBox for Android: An Interaction Toolkit
for Android-based Mobile Devices. Proceedings
of the Linux Audio Conference (LAC2012),
(CCRMA, Stanford University, CA, USA. April
12-15, 2012).

[5] Geslin, Y., Digital Sound and Music
Transformation Environments: A Twenty-year

Experiment at the Groupe de Recherches
Musicales. Journal of New Music Research
31(2): 99–107, 2002.

[6] Hunt, A. and Kirk, R., Mapping Strategies
for Musical Performance. Trends in Gestural
Control of Music, M. Wanderley and M.
Battier, Editors, 2000.

[7] Lam, N., Spatial Interpolation Methods: A
Review. The American Cartographer. 10(2):
129-149, 1983.

[8] Marier, M., Designing Mappings for
Musical Interfaces Using Preset Interpolation.
Proceedings of the Conference on New
Interfaces for Musical Expression (NIME '12),
(May 21 – 23, 2012, University of Michigan,
Ann Arbor).

[9] Max/MSP environment from Cycling 74.
http://cycling74.com/products/max/

[10] Momeni, A., Wessel, D., Characterizing and
controlling musical material intuitively with
geometric models. Proceedings of the 2003
conference on New Interfaces for Musical
Expression (NIME '03) (2003, National
University of Singapore, Singapore), 54-62.

[11] Open Sound Control.
http://www.opensoundcontrol.org

[12] O’Sullivan, L., Furlong, D., and Boland, F.
Introducing CrossMapper: Another Tool for
Mapping Musical Control Parameters.
Proceedings of the Conference on New
Interfaces for Musical Expression (NIME '12),
(May 21 – 23, 2012, University of Michigan,
Ann Arbor).

[13] Primevision andOSC Android application.
https://play.google.com/store/apps/details?
id=cc.primevision.andosc&hl=en

[14] Processing Development Environment.
http://www.processing.org

[15] Schlegel, A., Sojamo ControlP5 Library for
Processing.
http://www.sojamo.de/libraries/controlP5/

[16] Schlegel, A., Sojamo OscP5 Library for
Processing.
http://www.sojamo.de/libraries/oscP5/

[17] Shepard, D., A two-dimensional
interpolation function for irregularly-spaced
data. Proceedings of the 1968 23rd ACM
national conference, 517–524.

[18] SuperCollider. supercollider.sourceforge.net
[19] TouchOSC.

http://hexler.net/software/touchosc

http://supercollider.sourceforge.net/
http://hexler.net/software/touchosc
http://www.sojamo.de/libraries/oscP5/
http://www.sojamo.de/libraries/controlP5/
http://www.processing.org/
https://play.google.com/store/apps/details?id=cc.primevision.andosc&hl=en
https://play.google.com/store/apps/details?id=cc.primevision.andosc&hl=en
http://www.opensoundcontrol.org/
http://cycling74.com/products/max/
http://ftm.ircam.fr/
http://www.audiomulch.com/

	1 Introduction
	2 Similar work
	2.1 Interpolating interfaces
	2.2 Standalone interfaces for Open Sound Control
	2.3 Processing Development Environment
	2.4 Project goals

	3 Interpolation methods
	3.1 Inverse-Distance Weighting

	4 Implementation
	4.1 Usage
	4.2 Interaction Design
	4.2.1 Edit mode
	4.2.2 Performance mode

	5 Conclusion and future work
	Acknowledgements

