ipyclam, empowering CLAM with Python

David GARCIA-GARZON
Departament de Tecnologia,
Universitat Pompeu Fabra
Tanger, 122-140
08018 Barcelona
Spain
david.garcia@upf.edu

Abstract

This paper introduces ipyclam, a new way of manip-
ulating networks in CLAM (C++ Library for Audio
and Music) by using the Python language. This ex-
tends the power of the framework in many ways.
Some of them are exploring and manipulating live
processing networks via interactive Python shells, or
extending the power of visual prototyping in CLAM
by adding complex application logic and user in-
terfaces with PyQt/PySide. The described Python
API, ipyclam, by redefining the engine layer, can be
reused to control other patching based systems such
as JACK, gAlan...

Keywords
Python, CLAM, Qt, patching

1 Introduction

CLAM (C++ Library for Audio and Music)!
is a free software framework to develop ad-
vanced signal processing systems [Amatriain et
al., 2007]. Some successful use cases include
instruments [Haas, 2001; Mann et al., 2007],
voice processing [Sommavilla et al., 2007], audio
and music information retrieval [Gémez, 2006;
Gouyon, 2005; Amatriain et al., 2005; Ong,
2007], and 3D audio [Arumi et al., 2009; Giulio
Cengarle, 2012].

As its name states, CLAM is a C++ frame-
work. General purpose dynamic languages,
such as Python, do not mix well with real-time
audio programming. Those languages hide as-
pects that are important to control in real-time
programming, for example, memory manage-
ment and operations that imply system calls
that could stall the real-time thread. But real-
time restrictions only apply to the processing
code. Properly designed audio software sepa-
rates the real-time code from the rest where
those restrictions does not apply: setup, user
interface, application logic... CLAM fosters a

"http://clam-project.org

Xavier SERRA-ROMAN
Imm Sound, a Dolby Company
Diagonal 177
08018 Barcelona
Spain
Xavi.Serra@dolby.com

programming style which clearly localizes real-
time code. For the remaining code without real-
time restrictions, Python may still have an in-
teresting role to play.

This paper introduces ipyclam, a new way of
manipulating CLAM data flow definitions (net-
works) by using the Python language. This
extends the power of the framework in many
ways. For example, it can be used to build
complex networks, like the one shown in Fig-
ure 1, that are hard to build by graphical means.
Those manipulations could be done interac-
tively, by integrating interactive Python shells
like IPython [Pérez and Granger, 2007], into
the CLAM patching tool, the NetworkEditor.
And last but not least, it extends CLAM graphi-
cal prototyping architecture, currently based on
graphical design tools that generate fixed data
flow and single dialog interfaces. With Python
we can add rich application logic and interfaces
based on PySide [Bert, 2012] or PyQt [Summer-
field, 2007] without raising the difficulty to the
point of requiring C++ development.

Figure 1: Complex networks are hard to design
by pointing and clicking.

The rest of this paper has the following struc-
ture: Key concepts of the CLAM framework are
introduced in section 2. Section 3 describes the
new Python API at user level. Section 4 ex-
plains the internal design and how it enables

the reuse of the user API for other patching sys-
tems. Section 5 explains how to build PyQt/Py-
Side interfaces that can be related to CLAM
networks and how all that leads to a more pow-
erful prototyping architecture. Finally, section
6 evaluates the already reached milestones and
the ones that are at reach from now on.

2 CLAM elements

This section will shortly introduce the basic
components of the CLAM framework needed to
understand this paper. A more insightful de-
scription can be found in the referred literature

about CLAM.
Controls

Processing
Algorithm

Output
Controls

Figure 2: A processing unit

Audio processing is modularized into objects
called processing units according the CLAM
meta-model [Amatriain, 2005]. A processing
unit consumes and produces data tokens by its
input and output connectors. Connectors are
called ports when data flow is continuous and
they are called controls when data is sent or re-
ceived unevenly. Token data can be any C+-+
type but each connector is bound to a single
type. When connecting connectors of different
processing units, they must be complementary
(input and output), same kind (port or control),
and same type (data token C++ class).

Each processing unit has a set of structured
configuration parameters. Configuration and
connection is done before run-time so that any
operation that requires resource allocation can
be done outside the real-time thread.

A network is a set of interconnected process-
ing units. The network schedules the execution
of the units under a given audio back-end (Por-
tAudio, JACK, LADSPA, LV2, VST...). Back-
end data is fed from and to special units in-
side the network called sources and sinks. Then

the network topology mandates the data-flow
scheduling [Arumi, 2009].

Ul binders are used to relate a CLAM net-
work to a user interface, currently Qt, but not
restricted to it. The programmer can establish
such relation by defining custom properties on
the elements of the user interface (widgets). Ul
binders detect such properties and add any re-
quired stuff to bind them to the network. Com-
mon examples of Ul binders are the ones used
to bind user interface for playback control and
monitoring, processing unit configuration, data
token visualization, and user control sending.

Ul editor
(Qt Designer)

Data-flow editor
(CLAM NetworkEditor)

v |

Processing unit XML E"h Widget
plugins plugins

Run-time engine
4 vy (Prototyper) v :
1Data-ﬂow builderl | Ul builder |

Runner

\
Audio Back-end

LADSPA VST
JACK V2 | CoreAudio

Figure 3: Visual prototyping architecture

All those elements enable the CLAM visual
prototyping architecture [Garcia, 2007] illus-
trated in Figure 3. Both the processing net-
work and the user interface can be designed with
graphical tools, CLAM NetworkEditor and Qt
Designer respectively. Both can be stored as
XML, loaded later in run-time, and related by
applying the binders. A tool called Prototyper
does that by taking the XML files by command
line.

Most elements in this architecture (process-
ing units, token data type handlers, back-ends,
UI binders, widgets...) can be extended via plu-
gins. Most of those extendible objects are avail-
able through abstract interfaces and factories.

3 ipyclam user API
3.1 Goals

ipyclam’s main goal is providing the API to be
able to build and explore a CLAM network.
Defining the processing code inside processing
units is reserved to C++ code to fit real-time
constraints.

An explicit choice has been taken on not de-
signing Python API as a direct map of the
C++ CLAM API, but to make it conveniently
Pythonic. Direct C++4 library mapping often
leads to a badly designed Python interface. De-
sign decisions taken in C++ API just because
of C++ idiosyncrasy, may get pointlessly repli-
cated in Python, and opportunities of using
Python features such as attributes, iterators,
generators or dynamic interface creation, may
get lost.

Another choice is to provide a powerful tab
completion for interactive Python shell. It is
not just about discovering the static API but
taking a step further and discovering the run-
time structure of the objects via tab completion.
Because of that, such structure should be avail-
able as completable attributes.

Convenient ways of expressing things are fa-
vored but whenever those convenient ways are
not expressive enough to express everything, in-
stead of discarding the convenient one, we add
the less convenient one as alternative.

For example, processing units are accessible
as network attributes with their names. Also
processing ports, controls and configuration pa-
rameters are accessible as processing attributes
as well. That interface is compact and conve-
nient when doing tab completion.

net.Sink.Audio

But this is not a general solution. Many
names are not valid identifiers. Subscript ac-
cessors are provided to solve those cases:

net ["A processing"]["1"]

Still, you may find two subelements of differ-
ent kind with the same name, or with a name
that matches an actual attribute or method of
the object. For those cases, it is useful to pro-
vide scoping attributes. So the syntax that will
always work would be:

net.processings["Sink"].inports["Audio

But this is more verbose than the first pro-
posal. It is a design choice when this kind of

situation appears, to provide both the conve-
nient and the complete options so we get the
best of them.

3.2 An example

This is a minimal example that creates a 3 chan-
nel cable, that just copies the input to the out-
put, and plays it under JACK:

from ipyclam import Network,
net = Network ()

creating units

net.source = "AudioSource"
net.sink = net.types.AudioSink

configuring

net.source.NSources = 3
net.sink.NSinks = 3

connecting

net.source > net.sink

Playing as JACK client for 1 minute
net.backend = "JACK"

net.play ()

time.sleep (60)

net.stop ()

time

3.3 Creating processing units

Notice that the first processing in the example,
source, is created by assigning a string, the pro-
cessing type name, to a new attribute with the
name of the processing. The second one, sink, is
created instead by using the 'net.types’ object.
Such object is convenient for interactive use to
discover the available types by tab completion.

>> net.types.Audio [tabl]
AudioSink, AudioMixer , AudioSource

If the unit name is not a proper Python iden-
tifier, the subscript syntax can be used as well:

net ["My Sink"] = net.types.AudioSink

3.4 Configuring

Configuration parameters can be accessed di-
rectly as direct attribute or subscript of the pro-
cessing unit. They can be accessed as well inside
the scoping attribute config to avoid conflicts
with other processing subelements or common
attributes and methods.

net.source.config.NSources = 3

Every time a parameter is set, the object is
reconfigured, but reconfiguration may be an ex-
pensive process. To address that issue reconfig-
uration may be held while setting a set of pa-
rameters for a given unit using the with state-

"] ment:

with net.mymodule.config as c
c.AParameter = "A Value"
c.AnotherParameter = 23.2

Configuration parameters are typed, type
checking is done on assignment rising TypeEr-
ror if the type is not the proper one. In CLAM,
configuration parameters can be instantiated or
not. In Python uninstantiated state is repre-
sented by the None value.

Some configurations are structured using pa-
rameters that are configurations themselves.
Such sub-configurations can be accessed as nat-
ural by accessing successive attributes.

net.mymodule.SubConfig.Paraml = 4

3.5 Connecting

The example uses the greater-than operator to
establish the connection. Both sides of the op-
erator refer to the processing units, but indeed
what gets connected are the connectors. So this
is a short-cut for connecting each port pair-wise:
net.source["1"] > net.sink["1"]

net.source["2"] > net.sink["2"]
net.source["3"] > net.sink["3"]

Or, generally, by using the iterators of inports
and outports attributes:
for inport, outport in zip(
net.source.outports,
net.sink.inports,

)

inport > outport

Similar iteration can be done with incon-
trols and outcontrols processing unit attributes.
They can be used as well with Python slices.
For example, if we want to reverse the channels:

net.source > net.sink.inports[::-1]

Or first and third to the first two:

net.source.outports[::2] > \
net.sink.inports [:2]

3.6 Playback control

The audio back-end can be set by assigning the
backend special network attribute. For exam-
ple, if we wanted to use the PortAudio audio
backend we could use:

net.backend = "PortAudio"

The network has several methods, pause(),
play() and stop(), to control the playback, and
several methods, isPlaying(), isPaused() and is-
Stopped(), to query the playback status.

3.7 Serialization

Networks can be loaded from XML files gener-
ated by NetworkEditor.

- CLAM Network Editor - Untitled [modified]
File Network Interface View Help
PEHEB OO EdcxsIMea aq B

Processing Toolbox A

v- Analysis =
= AudioWindowing F

Jsource

® CepstralTransform
= FFT
® FFT_fftw3

Filcer: <

Processing Toolbax | Description

: net.sink="AudioSink"

: net.source="AudioSource"

: net.sink.Nsinks = 4

: net.source.NSources = 4

: net.source. outports[:] = net.sink. inports[::-1]

<> D) >

Stopped HEEF—>

Figure 4: IPython console integrated in the Net-
workEditor interface

net = Network ()
net.load ("mynetwork.clamnetwork")
net.save ("mynetwork-copy.clamnetwork")

Indeed you can get the XML string for the
current network using axml().

print net.xml ()

Although XML is somehow readable, in fact,
we found that Python code is even more read-
able than XML. An ipyclam network is able to
generate code to reconstruct itself.

>> print net.code("mynet")

mynet = Network ()

mynet.sink = "AudioSink"
nynet.sink.NSinks = 3

This feature is quite powerful. Given a static
network stored as XML, it can be converted
to Python code and as Python code it can be
parametrized or turned into a more smart pro-
gram.

This also opens the door to the use of Python
code as serialization format instead of XML. In-
deed Python code using ipyclam API is more
compact and readable than XML. Despite that,
deprecating XML is not yet an option as it is
not save to use Python interpreter as parser. A
Python interpreter will allow to execute more
than just network definitions.

4 Implementation

This section gives a slight overview on how ipy-
clam API has been internally implemented and
how this design allows extending the use of the
API to control other patching systems.
ipyclam is designed in two layers as shown in
Figure 5. The user layer is the one that provides

™ . N
User API Engine API
Pythonic C like
Redundant — Narrow
Stateless Stateful
Convenient Functional
w v . b

Figure 5: Two layers architecture

the API explained on previous sections, with all
the sugar for the many redundant and pythonic
ways of expressing the same operation.

But that layer is stateless. In order to per-
form the actual operations it relies on a engine
layer which holds the actual state, in this case,
the C++ CLAM Network object. Those many
ways of performing a given operation at the user
API converge in a single entry point at the en-
gine layer resulting in a narrower API at that
level.

This design in two layers strengthens the re-
liability of the implementation. The user API
can be developed ignoring all the complexities of
the adapters to the C++4 CLAM code by pro-
viding a mock-up engine in pure Python. A
narrow engine API reduces the number of oper-
ations to test for the engine and centralizes the
state checks for the front-end testing. A state-
less front-end avoids errors on the bookkeeping
of duplicated information.

Another positive side effect of this design is
that this narrow engine API can be reimple-
mented to address any other patch like systems,
such as JACK, Patchage, gAlan... As result all
the rich ipyclam API interface can be reused for
those systems. Other patching programs can
integrate the Qt console like the one that now
NetworkEditor has and is shown in Figure 4.

5 Prototyping user interfaces

CLAM visual prototyping architecture, ex-
plained in section 2, provided a way to build
a simple audio application by joining two parts
designed visually: a CLAM network and a Qt
Designer interface. Although that architecture
generated decent applications, it has a clear ceil-
ing of what you can build. Applications are
limited to simple application logic, a single di-
alog and a fixed processing data-flow. If any-
one wants to go beyond that, C+4 program-

ming skills are required, so the learning thresh-
old goes up and the development work-flow gets
harder and slower [Garcia, 2007].

An intermediate solution is to introduce
Python as programming language for the user
interface and application logic. Python is easier
to learn and has a faster development work-flow.
This section explains some features of ipyclam
that facilitate building such applications and
shows some examples that illustrate the scope
of what you can do.

5.1 PyQt4 and PySide

Two Python bindings are available for Qt:
PyQt4? and PySide®. Each one uses a differ-
ent binding generator technology: PyQt4 uses
SIP while PySide uses Shiboken. The resulting
Python APIs are mostly identical, so writing
Python code that works for either is not hard.
ipyclam supports both. In the following exam-
ples, PyQt4 is used but using PySide is just a
matter of changing the import lines.

5.2 A Python based Prototyper

The following Python code provides a simplified
version of Prototyper.

import ipyclam, sys

from PyQt4 import QtGui
import ipyclam.ui.PyQt4 as ui
network setup

net = Network ()

net.backend = "JACK"
net.load(sys.argv[1])

ui setup

app = QtGui.QApplication ([])
w = ui.loadUi(sys.argv[2])
net.bindUi (w)

run

w.show ()

net.play ()

app.exec_ ()

net.stop ()

The interesting bits are the loadUi function
from the ipyclam.ui.PyQt4 module and the
bindUi method of the network. The loadUi
function is a helper that instantiates a Qt De-
signer file. The bindUi method applies all the
available binders to the user interface. Possible
bindings are searched recursively so you can use
it with a full interface as well as a single widget.

This snippet has the same restrictions as Pro-
totyper: It is general but it is limited to a single
processing data flow and a single interface with
no application logic.

2http:/ /www.riverbankcomputing.com /software /pyqt
3http:/ /www.pyside.org

The good news is that now we can
change that code to modify the network with
the ipyclam API exposed on previous ver-
sions and modify the interface with regular
PyQt4/PySide APIL.

5.3 Building interfaces from scratch

A counterexample would be building the pro-
cessing network and the interface without XML
files, that is, using ipyclam and PyQt4/PySide
APIs. A problem with this approach is that
some useful audio widgets provided by CLAM
as Qt plugins have no specific Python wrappers.
Providing such wrappers would imply to gener-
ate them for SIP and Shiboken for each spe-
cific widget class in the plugin. Instead, ipy-
clam provides a helper method to access the Qt
widget factory, which creates the widgets from
the class name string. Factory created widgets
are handled by the generic QWidget interface,
which includes composing them and accessing
their properties.

The following example implements an oscillo-
scope, by binding a CLAM Oscilloscope widget
with an AudioSource.

import ipyclam, sys

from PyQt4 import QtGui

import ipyclam.ui.PyQt4 as ui

network setup

net = Network ()

net.backend = "JACK"

net.source = net.types.AudioSource

ui setup

app = QtGui.QApplication ([])

w = ui.createWidget ("Oscilloscope")

w.setProperty("lineColor", "red")

w.setProperty (
"clamOutPort",

net.bindUi (w)

run

w.show ()

net.play ()

app.exec_ ()
net.stop ()

"source.1")

This example accesses specific behaviour of
the Oscilloscope, the lineColor, by using the
generic property interface. The same method is
used to set the binding property clamQutPort
that in a visually designed prototype should
have been defined with Qt Designer.

5.4 Hybrid approaches

Any combined approach is feasible. Figure 6
shows an example that comes with ipyclam that
combines a Qt Designer file with a coded inter-
face. Indeed, this example has some application
logic not available with simple visual prototyp-
ing. Notice that the combo box is filled with

A demo_ipyclam_pyqt_sms ¥ @ &

Play Pause Stop

SMSAnalysisCore v Configure

DryOutpuk

SMSAnalysisCare
SMSSynthesis_0
SMSSynthesis_1
SMSTranspose_0
SMSTranspose_1
Semitones_0
Semitones_1
Transposed_0

-0 | semitones
L | semitones

Transposition 1 >

Transposition 2 Lr

Figure 6: Extending with Python an existing
visual prototype that uses Spectral Modeling
Synthesis for a two voices transposition. The
extension provides detailed configuration of ev-
ery unit.

information, the names of the processing units,
taken from the network with the ipyclam APIL.
The configure button, instead of being a bound
widget, activates a function that takes the cur-
rently selected processing unit, and launches a
configuration dialog bound to the given process-
ing configuration.

6 Conclusions

The API presented in this paper offers a
new way of developing real-time audio appli-
cations by combining the power and flexibility
of CLAM, Qt and Python. The API has been
designed with a strong stress on convenience
and expressiveness which results in very read-
able and compact code.

An interactive Python console has been inte-
grated with the graphical patching tool. This
enables the user to build complex networks
by interactive programming, and having visual
feedback of the results. This work can be eas-
ily extended to other patching systems just by
implementing a narrow API.

Indeed, a promising engine to implement in
the future is one relying on JACK because
CLAM wusers are likely to be interested in
controlling JACK application interconnections

from the console, just as they control inner
units.

Another work to be done is providing some
useful examples built with ipyclam that give po-
tential users a clear idea of the horizons of the
platform. They also will help to mature the API
highlighting any unpolished edges left.

Right now, the platform excludes Python for
processing tasks. But Python has a nice collec-
tion of numerical libraries based on the numpy
package [Ascher et al., 1999]. They could be
used for processing algorithms for off-line pro-
cessing or situations where lesser real-time con-
ditions are required. Two approaches are being
considered. One is being able to implement pro-
cessing units in Python. The other is a Python
audio back-end where Python code feeds the
network with numpy arrays as audio input and
output.

7 Acknowledgements

We would like to thank Pau Arumi, Natanael
Olaiz and Eduard Aylon for helping us to define
and test the API. Part of this work has been
done using technical resources gently offered by
Fundaci6é Barcelona Media and ImmSound.

References

Xavier Amatriain, Jordi Massaguer, David
Garcia, and Ivan Mosquera. 2005. The clam
annotator a cross-platform audio descriptors
editing tool. 1

Xavier Amatriain, Pau Arumi, and David
Garcia. 2007. A framework for efficient and
rapid development of cross-platform audio
applications. ACM Multimedia Systems Jour-
nal. 1

Xavier Amatriain. 2005. An Object-Oriented
Metamodel for Digital Signal Processing with
a focus on Audio and Music. Ph.D. thesis,
Universitat Pompeu Fabra. 2

Pau Arumi, Natanael Olaiz, and Toni Ma-
teos. 2009. Remastering of movie soundtracks
into immersive 3D audio. In Proceedings of
Blender Conference 2009. 1

Pau Arumi. 2009. Real-time Multimedia
Computing on Off-the-Shelf Operating Sys-
tems: From Timeliness Dataflow Models to
Pattern Languages. Ph.D. thesis, Universitat
Pompeu Fabra. Master Thesis. 2

David Ascher, Paul F. Dubois, Konrad Hin-
sen, James Hugunin, and Travis Oliphant,

1999. Numerical Python. Lawrence Livermore
National Laboratory, Livermore, CA, ucrl-
ma-128569 edition. 7

A.C. Bert. 2012. Pyside. Chromo Publishing.
1

David Garcia. 2007. Visual Prototyping of
Audio Applications. Master’s thesis, Univer-
sitat Pompeu Fabra. 2, 5

Giulio Cengarle. 2012. 3D audio technolo-
gies: applications to sound capture, post-
production and listener perception. Ph.D. the-
sis, Universitat Pompeu Fabra. 1

Fabien Gouyon. 2005. A computational ap-
proach to rhythm description — Audio fea-
tures for the computation of rhythm periodic-
ity functions and their use in tempo induction
and music content processing. Ph.D. thesis,
Universitat Pompeu Fabra. 1

Emilia Gémez. 2006. Tonal Description of
Music Audio Signals. Ph.D. thesis, Universi-
tat Pompeu Fabra. 1

Joachim Haas. 2001. Salto - a spectral do-
main saxophone synthesizer. In Proceedings
of Mosart Conference 2001. 1

Steve Mann, Ryan Janzen, and James Meier.
2007. The electric hydraulophone: A hypera-
coustic instrument with acoustic feedbacks.
In Proceedings of the 2007 International
Computer Music Conference (ICMC2007),
pages 27-31. 1

Bee Suan Ong. 2007. Structural Analysis and
Segmentation of Music Signals. Ph.D. thesis,
University Pompeu Fabra, Barcelona, Spain,
February. 1

Fernando Pérez and Brian E. Granger. 2007.
[Python: a System for Interactive Scientific
Computing. Comput. Sci. Eng., 9(3):21-29,
May. 1

Giacomo Sommayvilla, Carlo Drioli, Piero
Cosi, and Giulio Paci. 2007. SMS-
FESTIVAL: a New TTS Framework. In
Models and analysis of vocal emissions for
biomedical applications: 5th International
workshop, pages 89-92. Firenze University
Press, December 13-15. 1

Mark Summerfield. 2007. Rapid gui program-
ming with python and qt: the definitive guide
to pyqt programming. Prentice Hall Press,
Upper Saddle River, NJ, USA, first edition.
1

	Introduction
	CLAM elements
	ipyclam user API
	Goals
	An example
	Creating processing units
	Configuring
	Connecting
	Playback control
	Serialization

	Implementation
	Prototyping user interfaces
	PyQt4 and PySide
	A Python based Prototyper
	Building interfaces from scratch
	Hybrid approaches

	Conclusions
	Acknowledgements

