Chino — a framework for scripted meta-applications

David ADLER
david.jo.adler@gmail.com

Abstract

Chino is presented, a framework for creating meta-
applications from Linux audio and Midi tools. It
provides command line options to create or open ses-
sions, a runtime user interface for adding, restarting
or removing applications and a hand-editable file for-
mat to which sessions are saved. Graphviz is used
to optionally display the layout of a session.

Chino itself is a Bash script that just provides
generic functionality, users can create presets to im-
plement what is desired for their use cases. Presets
are prototypes for sessions, multiple sessions can be
derived from a preset.

A preset is made up of a number of applications,
each defined as a program together with its usage.
For every application, the preset contains required
application files and a library file that, via variables
and functions, defines how the program is to be
started and interconnected. Defining applications
together with their connections results in dependen-
cies, which are tied via user-defined port-groups.

In this paper, we will explain the architecture of
Chino and take a look at some implications and lim-
itations of this session management model.

Keywords

Linux audio, Bash, session management

1 Introduction

Chino! is yet another approach to session man-
agement for Linux audio. It is geared towards
applications using the Jack Audio Connection
Kit (Jack) for audio and either Jack or the Alsa
Sequencer for Midi.

The modularity of UNIX/Linux software is
proverbial and usually well received. In the
realm of Linux audio, however, this apprecia-
tion hat its limits, as manually restoring modu-
lar sessions quickly becomes prohibitively com-
plex. Consequently, users often complain about

!The application, online documentation and an ex-
ample preset are available from http://www.chino.
tuxfamily.org.

the lack of a comprehensive session management
System.2

Regardless of complaints, some progress
is taking place. Jack Session, the
LADCCA/LASH/LADISH lineage and the
Non Session Manager are currently coexisting®
and the number of applications supporting one
or more of them is steadily increasing.

Those session managers are capable of stor-
ing and restoring an arbitrary setup, as long as
the applications involved are supported in some
way. A Chino session, in contrast, is restricted
to a limited number of setups prepared by the
user via presets. No support for a protocol by
applications is required, any application capa-
ble of restoring a previous state by command
line options and/or file loading can be used.

Once a preset is prepared, usage is dead sim-
ple. No manual connection making is involved
and all files belonging to a session are automat-
ically placed in an ordered manner below one
base directory.

In section 2 we will go through some underly-
ing concepts, followed by a description in sec-
tion 3 of how they are implemented. Those
two sections together explain the architecture
of Chino; providing useful knowledge for creat-
ing custom presets. While we can create ses-
sions based on an existing preset without such
a level of understanding, restricting oneself in
that way neglects one of the main features of
Chino, which is customisability. In section 4,
eventually, we will take a look at some of the
implications and limitations of the presented de-
sign.

?In February 2013, Dave Phillips started a thread
on the Linux Audio Developer (LAD) mailing list with
the subject line “So what do you think sucks about
Linuz audio?” that pretty much confirms existence
of those complaints. https://lists.linuxaudio.org/
mailarchive/lad/2013/2/5/196481

3Dave Phillips’ article “A brief survey of Linuz audio
session managers” from January 2013 on LWN.net gives
a good overview. https://lwn.net/Articles/533594/

http://www.chino.tuxfamily.org
http://www.chino.tuxfamily.org
https://lists.linuxaudio.org/mailarchive/lad/2013/2/5/196481
https://lists.linuxaudio.org/mailarchive/lad/2013/2/5/196481
https://lwn.net/Articles/533594/

2 Concepts

This section covers a number of concepts un-
derlying the design of Chino, without going too
much into detail. Having these concepts in mind
will aid us in understanding the subsequent sec-
tion covering implementation.

2.1 Sessions

While Chino does manage sessions, the term
session management is somewhat misleading.
As stated in the introduction, Chino lacks the
ability to just save and restore any setup involv-
ing supported applications. Sessions in Chino
might be better described as “instances of a
meta-application” or as “patch files” to which
the meta-application saves its state.

2.2 Presets

A Preset defines the meta-application of which
the sessions are instances. Chino, the core
script, only provides generic functionality.
Whenever running a session, it needs to be
pointed to a preset. Figure 1 shows the rela-
tions between Chino, presets and sessions.

the meta-application

meta-application

"patch files" of the |
\ | preset 1| / |preset 2

Figure 1: A preset—together with Chino—can
be viewed as a meta-application. Sessions de-
rived from that preset then are the “patch files”
saved by the meta-application.

It is up to the user to create one or more
presets in order to cover desired use cases, a de-
fault preset is provided as an example or start-
ing point.4

2.3 Applications

A preset defines a set of applications. An
application—in Chino—consists of three things:

1. the actual program used (like amSynth or
Pure Data);

4The default preset is documented on http://chino.
tuxfamily.org/preset.html.

2. application files belonging to the program
(patch files, configuration files and the like,
if any);

3. an application library, a text file in Bash
syntax defining how the program is to be
started and interconnected.

While the programs—of course—are installed to
the operating system, application files and ap-
plication libraries are part of the preset.

One program can serve as several appli-
cations. We could define two applications
amssynth and amsfilter, both using the pro-
gram AlsaModularSynth—in one case as a syn-
thesiser and in the other case as a filter.

Henceforth, we will use that distinction
between the terms program and application
throughout this document.

2.4 Methods

Applications are grouped into methods, cate-
gories for applications that can be handled in
similar ways. Methods are defined in method
libraries that are also part of the preset.

Two method types are hard-coded into Chino:
unique methods and channel methods (see fig-
ure 2).

hard-coded
(in Chino)

user-defined
(via preset)

\

channel (effect

/

0 ¢

misc

unique

method types| methods

applications

Figure 2: Method types, methods and applica-
tions.

e For unique methods, application names
are assigned to a consecutively filled array
of variable length. Entries must be unique,
thus the name.

http://chino.tuxfamily.org/preset.html
http://chino.tuxfamily.org/preset.html

e For channel methods, application names
are assigned to indices of a fixed-sized ar-
ray, where indices may be left empty. Ap-
plications need not occur uniquely within
a channel method. An obvious use case
(though not the only one possible) is us-
ing the index to connect an application to
a certain audio or Midi channel, thus the
name.

Introducing that extra layer of methods has
two main advantages. First, methods simplify
adding support for applications to a preset, as it
is often the method library that does most of the
work. Secondly, having channel methods allows
for some desirable flexibility in arrangement of
the connection graph.

2.5 Templates

In addition to pointing to a preset, we may op-
tionally point to a template session. Any ses-
sion derived from that same preset can serve as
a template. To illustrate this, figure 3 shows a
version of figure 1, modified to include a session
that points to a template.

Chino

[preset 1) [preset 2)

session B

Figure 3: session B uses preset 1 as a preset
and session A as a template.

2.6 Inheritance...
2.6.1

On running a session, missing application files
are copied from the template or preset, in that
order of precedence.

2.6.2

Libraries are sourced from the local session, the
template or the preset, in that order of prece-
dence.

Per default, application libraries will remain
with the preset. Unlike application files, they

...of application files

...of libraries

will not get copied to the local session.

For custom application behavior on a per-
session base, an option exists to “localise” a li-
brary. For making a session self-contained, an
option exists to localise all used libraries. Self-
contained sessions point to themselves as a pre-
set.

Libraries local to the template, however,
will get localised automatically; to not disrupt
matching pairs of application files and applica-
tion libraries for future child sessions.

2.7 Session hierarchy

Since applications are defined together with
their connections, they may depend on other ap-
plications providing for certain ports to connect
to. This leads to a hierarchical session layout, a
dependency tree.

Ports provided by the sound card and Midi
hardware (those devices are made applications
as well) will usually form the root of the hier-
archy. More layers can then be added to form
a virtual studio to the user’s liking. A mixer
might for instance form the layer on top of
the hardware ports, instruments and effects can
then be connected to the mixer.

Applications do not depend on other appli-
cations, they rather depend on or provide for
user defined port-groups. A port-group is just
a name for a set of port-variables to which the
real Jack/Alsa port names are assigned.

That way, applications providing for the same
port-group can be exchanged without breaking
the session. We could define two applications
seq24 and nonseq both providing for a port-
group SEQ; then either can be used as a se-
quencer without making any further changes to
the session.

Just as applications, methods may also de-
pend on and and provide for port-groups. In
the context of dependencies, we will sometimes
use the term nodes when referring to anything
that can depend or provide, i.e. either methods
or applications.

Dependencies are handled separately for au-
dio and Midi, so the place of a node in the de-
pendency tree is defined by four lists of port-
groups: audio depends, Midi depends, audio
provides and Midi provides. Collectively, we
will refer to them as anchors. We can make de-
pends optional by prefixing them with a colon,
this just suppresses the warnings otherwise dis-
played for unsatisfied depends.

Figure 4 shows the way a node is represented

in the session graph (or dependency graph) that
Chino displays using the Graphviz software, fig-
ure 5 shows the graph of a small session.

\ 4
s
s
Z
/<audio provides> <Midi provides>
<node ID>
\<audi0 depends> <Midi depends> >)

/

Figure 4: Representation of a node and its an-
chors in the dependency graph. Solid lines rep-
resent audio dependencies, dashed lines repre-
sent Midi dependencies.

/- | | N /- | | A\
001-chsy_yoshimi 003-chsy ams
ol - [
/~ SYNTH | | SYNTH)
ch_synth
\ MIXER | :REC | | :SEQ | MDR)
/ MIXER | REC | EFFBUS | | I
uqms_ardour
_ STEREO | | cc)
\
\

/" STEREO | | N /- | | éc\
ughw_stereo ughw_nano
1 -\ 1)
Figure 5: A session graph. Three unique

method applications are started: ughw_stereo
(a stereo sound card), ughw_nano (a Midi con-
troller) and ugms_ardour. The channel method
ch_synth has anchors, so it gets its own node
in the graph and its applications chsy_yoshimi
and chsy_ams drawn inside a cluster.

3 Implementation

Chino is written in the Bash scripting language.
This section goes into some detail on how it is
implemented.

3.1 Names

Rather strict rules exist regarding names of ses-
sions, methods, applications and port-groups.
The rules are ruthlessly enforced, as those
names are part of file paths, variables or func-
tions. Allowing special characters would just
not work and would be potentially harmful.

e Session names may only consist of letters,
numbers and underscores.

e port-group names may only consist of let-
ters and numbers. They must be unique
within each connection type (audio and
Midi).

e Method names may only consist of let-
ters and numbers. The first two charac-
ters of a method name must be unique
within each method type, those charac-
ters make up the method acronym (con-
sequently, method names must be at least
two characters long). Method IDs are the
method names prefixed with uq- for unique
methods and ch_ for channel methods.

e Application names may only contain let-
ters and numbers, names must be unique
within their method. Application IDs
are the application names prefixed with
ug<method_acronym>_ for unique meth-
ods and ch<method_acronym>_ for channel
methods.

Given that nomenclature, all method IDs and
application IDs will be unique strings within the
set of all methods and applications.

3.2 The session directory tree

To facilitate automated copying of application
files on creating or expanding a session, we must
make sure the directories and files of a preset are
named according to some rules.?

When running a session, its directory tree will
automatically get filled and supplemented with
files from the preset or template. At that point,
thus, we don’t need to meticulously follow nam-
ing rules anymore—Chino does it for us.

The base directory of a preset or session holds
one subdirectory <application_ID> for every
application. For presets, that is one for every
implemented application; for sessions, that is
one for every application that is or ever was part

5Naming rules are comprehensively covered in the
online documentation. http://chino.tuxfamily.org/
documentation.html#file

http://chino.tuxfamily.org/documentation.html#file
http://chino.tuxfamily.org/documentation.html#file

of the session (obsolete files do not get deleted
by Chino, as they might not be obsolete from
a user’s perspective). Those application subdi-
rectories hold the application files; applications
not needing files do not get such a directory.

The base directory of a session also holds the
session definition file <session_name>.sdef to
which Chino saves the session.

3.3 Libraries

A 1libs directory, below the base directory of a
preset, contains all libraries.

A file 1ibs/<session name>-1istlib is the
“root-library” of a preset. It holds arrays of
allowed methods and applications and sets the
initial array sizes for channel methods.

Methods and applications listed in 1istlib
are each defined in their own library file, method
libraries or application libraries respectively.

3.3.1 Variables in libraries

Via variables, all libraries define anchors of the
node they represent.

Method libraries additionally have a variable
that allows to give them a custom option in the
rutime user interface. In the default preset, the
ch_dssi method uses that feature to let users
split the configuration of ghostess into the the
parts belonging to the single DSSI plugins.

As shown in the example below, application
libraries additionally have variables defining a
number of properties: whether the application
comes with application files; whether a function
is required for adapting application files to their
new names after copying; what Midi system to
use and whether to disconnect autoconnected
ports.

FILE_ugms_seq24=’true’
MOVE_ugms_seq24=""

APRO_ugms_seq24=""
ADEP_ugms_seq24=""
MPRO_ugms_seq24="SEQ’
MDEP_ugms_seq24=":KBD :CC’

MIDI_ugms_seq24=’alsa’
AUTO_ugms_seq24=""

3.3.2 Functions in libraries

Via functions, methods and applications accom-
plish the rest of the work; like a solid-state Bash
session script ripped into pieces, those pieces
then being called on demand by Chino.

Method libraries must provide a number of
mandatory functions; requirements for applica-
tion libraries are largely determined by their
method.

If an application or a method has any anchors
defined, this triggers the requirement for addi-
tional functions to be present. Details on those
functions will follow in sections 3.6.3 and 3.6.4.

3.4 Steps

To illustrate what steps are about, it is useful
to picture the “lifecycle” of an application (not
in terms of code development but in terms of
running the application).

When manually running an application, the
single steps to be accomplished will be some-
thing along the line of:

e starting the program;

establishing audio connections;

establishing Midi connections;

making music (the “tweak-and-save loop”);

quitting the program.

The attempt to adapt those steps to match the
requirements of Chino led to the following list
of steps:

e assign for assigning an application to an
array and sourcing application libraries;

e check for checking whether an application
file is present, if applicable;

e list for displaying a summary to the user;

e copy for copying and renaming the appli-
cation file if the above check was negative;

e start for starting the program, includes
assignment of port-variables;

e acn for establishing audio connections us-
ing the assigned port-variables;

e mcn for establishing midi connections using
the assigned port-variables;

o the “tweak-and-save loop” (not a step);

e unassign for unassigning and killing an ap-
plication when removed using the runtime
user interface, or kill for killing an appli-
cation on quitting the session.

For each of those steps, a method Ili-
brary must provide a so-called step function
s_<method_ID> <step_name>(). Chino simply
calls the appropriate step function from the
method library whenever a step needs to be
done for one of the applications belonging to
that method.

3.5 Tasks

A task is just a series of steps that accomplishes
something useful.

Tasks may be vertical, calling a number of
steps for one application, e.g. for adding an ap-
plication to a session or for restarting an appli-
cation (see table 1).

| step [al [a2 [a3 | a4 |

assign s2
check s3
list s4
copy s5
start s6
acn s7
mcn s8
unassign s1
kill

Table 1: Illustration of a vertical task. An ap-
plication a3 is restarted in a session consisting
of applications al to a4. The task runs steps s1
to s8.

Tasks may be horizontal, calling one step for
all applications, e.g. for re-establishing all audio
connections (see table 2).

] step [al [a2 [a3 | a4 |
assign
check
list
copy
start
acn | s1 | s2 | s3 | s4
mcn

unassign
kill

Table 2: Illustration of a horizontal task. Au-
dio connections are re-established for all appli-
cations al to a4. The task runs steps s1 to s4.

Tasks may be both horizontal and vertical,
e.g. for opening a session (see table 3).

Tasks are part of Chino, so users won’t be
bothered with them. The appropriate tasks get
called whenever a session is opened or closed
or when applications are added, restarted or re-
moved.

3.6 Helper functions

Helper functions, prefixed with h_, exist for ev-
ery step except unassign. Helper functions are
never called by Chino itself, they are just tools

step [al | a2 [a3 | a4 |
assign | sl s2 s3 s4
check sb s6 s7 s8
list s9 s10 | s11 | s12
copy | s13 | s14 | s15 | s16
start | s17 | s18 | s19 | s20
acn | s21 | s22 | s23 | s24
mcn | s25 | s26 | s27 | s28

unassign
kill

Table 3: Illustration of a task that is both hori-
zontal and vertical. A session consisting of four
applications al - a4 is opened. The task runs
steps s1 to s28.

available to accomplish steps in standardised
ways; to be called from the step functions in-
side the method libraries.

The design of Chino attempts to find a rea-
sonable balance between being as generic as pos-
sible and making implementation of presets as
simple as possible. The combination of methods
and helper functions serves that goal.

In most cases, using helper functions is desir-
able, resulting in a method doing barely more
than calling the appropriate helper functions
with appropriate arguments inside its step func-
tions, as seen in the following example.

s_ch_synth_copy ()

{
declare -ri chan=$1
h_copy ch_synth $chan

Nevertheless, it is also desirable to have the
freedom of not using helper functions or using
them in non-standard ways, to adapt to non-
standard use cases. Three of the methods imple-
mented in the default preset are non-standard
in that sense:

e the unique method hw, for hardware de-
vices, neither using h_copy nor h_start ()
as those are not applicable to hardware;

e the channel method dssi, which uses one
instance of ghostess to harbour all DSSI
plugins assigned as applications to its chan-
nels;

e the channel method senv (from synthesis
environments) for instruments capable of
multi-channel audio and Midi, in which
the program is started just once for all in-
stances of the same application.

A few helper functions deserve a closer look,
since they implement essential functionality
within Chino.

3.6.1 h_assign

h_assign() sources libraries, thereby imple-
menting the inheritance rules for application li-
braries described in section 2.6.2.

3.6.2 h_copy

h_copy() copies application files, thereby im-
plementing the inheritance rules for application
files described in section 2.6.1. Application files
may be single files or directories containing files.

3.6.3 h_start

h_start() starts the program and calls the
appropriate assignment functions from the
method libraries and application libraries.

In the assignment functions, we assign real
Jack/Alsa port names to the appropriate port-
variables, a prerequisite for later having the con-
nection graph established.

For both anchor types—audio and Midi—
a respective assignment function is required
whenever the node has any anchors of that type.

To illustrate how h_start() works, let us
look at a case where it gets called for an applica-
tion that has audio anchors, thereby triggering
the necessity for Jack audio port assignment.

1. a snapshot of audio ports is taken via
jack_1sp;

2. an <application_ID> start() function
gets called from the application library,
starting the program;

3. After the new ports have appeared, another
snapshot of audio ports is taken.

4. Two newline separated lists—of new Jack
audio input and output port names—are
retrieved from a diff of the two snapshots;

5. The appropriate assignment function from
the application library is called with the
two lists as arguments.

Accordingly, new Jack-Midi and Alsa-Midi
ports are retrieved and passed to the functions
for assignment.

In the case of programs with many ports—
like a mixer with inputs, outputs, sends and
returns—it is helpful to make up a suitable
naming scheme for ports within the application,
then using tools like grep or sed for variable as-
signment.

3.6.4 h_acn and h_mcn

h_.acn() and h.men() call one connect-function
for each depend of the method and one for each
depend of the application.

In those connect-functions, we must establish
connections using the port-variables assigned
during the start step.

Two functions are available to aid in estab-
lishing connections:

e msaudioconnect () for ~ mono/stereo-

agnostic audio connections.

e ajmidiconnect() for Alsa/Jack-agnostic
Midi connections. Whenever required,
Chino will launch a2jmidid to facilitate
translation.

Both functions require certain suffixes being
part of the port-variable names, documented in
detail in the comments inside the libraries of
the dummy preset that comes with Chino for
documentation purposes.

If a depend is unsatisfied—i.e. either not
provided or ambiguously provided—no attempt
will be made to establish connections.

Connect-functions are not exclusively called
during the acn and mcn steps. The tasks for
adding or restarting applications will, after hav-
ing completed all steps, call connect-functions
for all nodes depending on newly provided port-
groups. That way the connection graph is kept
sane regardless of application launch order.

3.7 User interface

The user interface consists of the configuration
file, command line options and arguments, the
hand-editable session definition file and a run-
time user interface.

To give an examplary session definition file,
here is what a file defining the session shown in
figure 5 would look like.

NAME=graph
PRESET=/path/to/preset:preset_name
UQMETHS=hw msc

uq_hw=stereo nano

uq_msc=ardour

CHMETHS=synth
ch_synth-CH-001=yoshimi
ch_synth-CH-003=ams

Via command line, new sessions can be cre-
ated and existing ones can be opened. For con-
venience, some more options exist: for writing
a prototype session definition file and for creat-
ing new libraries by using existing methods or
applications as a template.

Whenever running a session, its base direc-
tory must be the present working directory. For
creating a new session, at least a session name
must be given.

$ chino -n name_of_session

To open an existing session, we point Chino
to the session definition file.

$ chino -o name_of_session.sdef

Once a session is running, the runtime user
interface offers keybindings to add, remove or
restart applications, to re-establish connections,
to localise libraries, to check dependencies, to
display the dependency graph and to save the
session state. The latter will only save the cur-
rent setup, state of the involved applications
needs to be manually saved to the appropriate
application files.

4 Conclusions

4.1 Field of application

Due to said differences, Chino does not so much
compete with the other session managers. Being
a command line tool that requires some editing
of Bash scripts for customisation, it will cer-
tainly not fulfil the desire of many users for a
comprehensive session manager with a graphi-
cal user interface.

Chino just attempts to fill a niche in the
ecosystem of session managers by embracing
modularity and customisability. One of its
strong points is the use of presets and templates,
although other session managers also offer fea-
tures in that direction.

Not being able to store any setup clearly is a
disadvantage, though one that is somewhat mit-
igated once the following assumptions are made:

e Any one user will only use a small subset
of all possible setups;

e The user will use that subset repeatedly.

Admittedly, those assumptions do not apply
to someone in the phase of exploring the variety
of Linux audio applications. For someone who is
comfortable with Bash and knows which set of
applications to use for what purpose, however,
Chino might be a convenient tool.

4.2 Session portability

Sessions turn out to be somewhat portable.
Limitations that come to mind are:

1. the session must either be self-contained or
its preset must be present on the host sys-
tem;

2. we might run into incompatibility-issues
when versions of programs are mismatch-
ing;

3. hardware requirements of the sessions, like
audio channel counts, must be met;

4. depending on the programs used, matching
sample rates might be required;

5. hardware applications might need to be
adapted to Jack/Alsa port names of the
host system;

6. program behaviour might differ due to local
configuration files.

While points (1) to (4) are mere facts, point
(5) can be resolved by agreeing on a naming
scheme for port-groups the hardware applica-
tions provide for, host systems can then use
their own hardware applications.

Point (6) can be mitigated if applications
make use of as many command line flags as pos-
sible, to override local settings. If the program
allows to specify a configuration file on the com-
mand line, we can include one as part of the
application.

4.3 Known issues

Due to the fairly small user base (consisting of
just the author himself), this list is most likely
incomplete.

e Establishing connections takes rather long
for large sessions.

e It takes time and care to build a preset
(though once that is accomplished, Chino
doesn’t get in the way anymore).

e It’s a crude hack still in development.

Given the last point, Chino actually runs sur-
prisingly well.

5 Acknowledgements

Sincere thanks go to all Linux (audio) develop-
ers, collectively constituting the giant’s shoul-
ders upon which this little script resides.

Thanks go also to the entire Linux audio com-
munity. Especially the mailing lists have pro-
vided some highly educational reading matter
over the years.

	Introduction
	Concepts
	Sessions
	Presets
	Applications
	Methods
	Templates
	Inheritance…
	…of application files
	…of libraries

	Session hierarchy

	Implementation
	Names
	The session directory tree
	Libraries
	Variables in libraries
	Functions in libraries

	Steps
	Tasks
	Helper functions
	h_assign
	h_copy
	h_start
	h_acn and h_mcn

	User interface

	Conclusions
	Field of application
	Session portability
	Known issues

	Acknowledgements

