
Music for Programmers (MFP): A Dataflow Patching Language

Bill GRIBBLE
grib@billgribble.com

Abstract
MFP is a graphical dataflow patching language in
the tradition of Max/MSP and Pure Data. It ex-
pands on its predecessors by integration of higher-
level language constructs from Python, including
a variety of data types and operations and the
widespread use of the Python evaluator. A new lex-
ical scoping system, a layers approach to building
logical code blocks, and a UI optimized for keyboard
control are also featured.

Keywords
Patching languages, Python, JACK, OSC, Pure
Data

1 Introduction

Graphical patching languages have a number
of basic principles in common. A “patch” is a
computer program specified by a diagram. The
patching system acts as the development envi-
ronment, compiler, and interpreter for this pro-
gram. The diagram consists of processing el-
ements and connections between them in the
form of patch cords or virtual wires. Typically
patches exist and operate in 3 domains: the
graphical domain, which includes the visual el-
ements displayed in the patch and any inter-
active controls such as buttons and sliders; the
control or symbol domain, where patch elements
communicate by sending discrete messages; and
the signal domain, where communication is in
blocks of audio data.

Possibly because the “patching” metaphor is
so familiar to electronic musicians, there exist
several patching languages for audio and music,
both commercial and FLOSS. Notable examples
include Miller Puckette’s languages (Max/MSP
[Puckette, 1989], jMax, and Pure Data [Puck-
ette, 1997]), Blechmann’s Nova/SuperNova
[Blechmann, 2008], and Ross Bencina’s Au-
dioMulch [Bencina, 1998]. The notion of a vi-
sual graph of processing nodes is also popular in
other domains, notably scientific data collection
where National Instruments’ LabView [National

Instruments, 1986] has used this metaphor since
1986.

In the Linux audio world, Pure Data is prob-
ably the leading patching system. Its large li-
brary of built-in and third-party modules make
it a versatile toolbox for audio synthesis, per-
formance control, interfacing with experimen-
tal input and output devices, video creation,
and video interpretation. The user and devel-
oper communities are full of enthusiastic, help-
ful, and talented people. In short, Pure Data is
awesome.

However, in my experience with Pure Data
I have been frustrated at times with the diffi-
culty of simple operations with basic data types
like strings and lists. I am more proficient as a
programmer than as a musician, so this kind of
thing annoys me perhaps more than most PD
users. Often third-party packages are required
to perform what seem to be elementary opera-
tions on data. Interpreting literal data entered
in message boxes, or building non-numeric val-
ues, often requires trial-and-error and results in
solutions that are nonintuitive for the non-guru.
Resolving issues of names and namespaces of-
ten involves what appear to be kludgy solutions
(I’m looking at you, $0).

When I was faced with tackling a significant
project in PD (a system to analyze the dynamic
behavior of a piece of external audio equip-
ment), I simply could not bring myself to do
it. I wanted a different tool, with more support
for general-purpose programming and a more
familiar approach to data. This was the genesis
of MFP.

I began to explore starting from a few basic
goals:

Use Pure Data’s graphical metaphor and
idiom as a baseline, without attempting to
preserve compatibility

Expose Python wherever possible, and use
plain Python data natively

Rethink name resolution and scoping

Implement a clean and simple GUI that as-
sists in the construction of patches

Expand the range of system, file, and string
operations, to make general-purpose pro-
gramming easier

Integrate readily into a variety of audio
production workflows as an instrument, a
forensic tool, or an audio swiss army knife

The work-in-progress result of this explo-
ration is MFP. MFP includes elements famil-
iar to high-level language programmers, with
a standard library and graphical presentation
layer that will be familiar to users of Max/MSP
and Pure Data, though there are many differ-
ences large and small.

My hope is that it will appeal to patching mu-
sicians while providing a stronger foundation for
analytical, scientific, and general-purpose pro-
gramming. The popularity of tools like Lab-
View in domains other than music shows that
dataflow patching systems can be useful in a
variety of control and analysis tasks, given an
appropriate infrastructure. MFP should be of
interest to musicians, particularly those focused
on the symbolic domain (MIDI, OSC, and gen-
erative music applications) where Python will
provide significant leverage, but also to audio
software developers, plugin authors, and record-
ing engineers who need to build custom tools to
interact with audio data.

2 Architecture

MFP is implemented in Python 2 [Van Rossum,
2010a], with C extensions for real-time DSP. In
order to mitigate Python’s Global Interpreter
Lock (GIL) bottleneck [Van Rossum, 2010b],
processing for each of the three domains (graph-
ical, control, and signal) is performed in a sep-
arate process. The three processes (“nodes”)
are coupled via the multiprocessing facility
present in Python 2.6 and later.

A patch, as represented in the user interface
for editing or control, appears as a multi-layered
diagram of visual elements such as boxes, con-
trols (sliders, buttons) and displays (indica-
tors, meters, signal graphs) connected by lines
representing communication pathways. Some
connections terminate in vias, which represent
invisible communications between endpoints.
Each element in the display domain has a cor-
responding unit or connection in the control do-
main, and may or may not have elements in the

Figure 1: “Hello, world” program in MFP
(doc/hello world.mfp)

signal domain. The use of layers, “wired” con-
nections within a layer, and vias between layers
evoke a printed-circuit board metaphor, but this
is not rigorously followed.

The “hello, world” example in Figure 1
demonstrates the basic properties of an MFP
patch in the simplest way. The literal string
“hello, world!” is contained in a message box,
which is an interactive element that emits its
contents when clicked. The print object is a
processor which prints its argument to the MFP
log window.

In this example we see the first differences
from Pure Data: in PD, it is not possible with-
out some difficulty to print messages contain-
ing commas, since strings are not one of the
basic “atom” types that can be represented
in message boxes. In MFP, the literal con-
tents of the message box are interpreted at cre-
ation time by the Python evaluator; a mes-
sage box can contain any Python expression,
including literal data or code that evaluates to
a Python object. In this case, if the message box
was filled with the text ", ".join(["hello",
"world!"]), which is an idiomatic Python ex-
pression for joining a list of strings into a sin-
gle comma-separated string, it would have pro-
duced the same message to the log when clicked:
"hello, world!"

2.1 Layers

Layers break a patch into “pages”, providing vi-
sual grouping and separation of elements, and
are are somewhat equivalent to code blocks
in traditional languages or subpatches in Pure
Data. Layering is a key mechanism for program
decomposition in MFP.

Figure 2 shows views of a more complex
multi-layered patch and the application context
when using it. This patch implements a basic
looping sampler inspired by the Akai Headrush

looping pedal. Four layers group the elements
of the patch into blocks. The Front Panel layer
of the patch contains the user interface: sig-
nal level meters for input and output, indica-
tors of current state, and two buttons to control
the sampler. The Buffer Control layer contains
the state machine controlled by the front-panel
buttons, with transition actions that change the
configuration of the sampling buffer at the core
of the patch. The third layer, Audio Processing,
contains the signal input/output and the sam-
pling buffer object. Finally, the Indicators layer
updates the front-panel indicator toggles based
on the state machine state.

This patch demonstrates how layers enable
program decomposition in a way similar to Pure
Data’s subpatches. Each layer contains a block
of functionality, with send/receive vias show-
ing names for inputs and outputs of the block.
The organization is not as structured as Pure
Data’s subpatches, but has the advantage of
being clearly a different mechanism from patch
reuse (Pure Data “abstraction”).

The Python-familiar will note that the con-
tents of many of the message boxes in the
Buffer Control layer (those which are a series
of comma-separated key=value assignments)
are not exactly valid Python code. This is
MFP-specific syntactic sugar for the Python ex-
pression dict(key1=value1, key2=value2) to
create a dictionary object.

2.2 Control domain

The control domain is the backbone of MFP’s
processing, and the control node is the master
and controller of the MFP application.

The control node hosts zero or more patches,
where each patch is an instance of the Patch
class. Each Patch consists of a connected graph
of processors (instances of the Processor class).
A Processor instance has one or more inlets
and zero or more outlets. Each inlet may be
connected to zero or more outlets of other pro-
cessors, and each outlet to zero or more inlets
of other processors. Communication between
processors consists of sending a message from
an outlet of one processor to an inlet of an-
other. The distinguishing feature of control do-
main communication is that it happens in dis-
crete chunks called messages.

Messages sent between processors in the con-
trol domain are ordinary Python objects of any
type: numbers, strings, lists, dicts, functions,
or other class instances. This is significantly

Figure 2: Looping sampler (doc/looper.mfp)

different from Pure Data and other patching
languages, which define a limited set of “atom”
types that can be used within the patch.

In many cases it is useful to think of a mes-
sage processor as a function or method, where
the arity is determined by the number of in-
lets. This model is supported by MFP’s default
marshaling policy, which buffers inputs to all
inlets until a message is received on a “hot” in-
let. Pure Data also takes this approach. By de-
fault, only the leftmost inlet (inlet 0) is “hot”,
but that behavior may be changed by a particu-
lar Processor subclass. The processor’s trigger
method is then called to perform message pro-
cessing. Functions of null arity are triggered
by any input on their inlet (by convention, the
special value Bang).

2.2.1 Method calls and dispatching

In other cases it is useful to think of a processor
as an object with methods of its own. For exam-
ple, a number box might have an API to control
the number of decimal digits to display. In in-
teractive usage, configuration of this property
might be accomplished by a dialog or key se-
quence, but the underlying mechanism is going
to call a configure method somewhere down
the line. In the spirit of exposing Python where
possible, we allow patches to directly call meth-
ods on the objects that make up the patch.

The control domain structure of MFP
matches fairly neatly with a message passing
metaphor for method calls. A method is called
on a control-domain object by sending it a mes-
sage representing the method call. In MFP, the
message is an instance of MethodCall. This ob-
ject captures the name and any arguments of
the method call (other than the object to call
the method on, which is always the recipient of
the MethodCall message).

MFP provides classes and syntax to support
this style of usage by allowing for concise and
flexible creation of MethodCall objects. The
example in Figure 3 shows a patch fragment
that uses @conf(digits=3) as syntactic sugar
for MethodCall("conf", digits=3). When
this message is received by the number box, the
method conf is called, with the keyword argu-
ment digits having the value of 3. The conf
method is supported by all Processor instances
as a way to directly set GUI display parameters.

Note that this activity is represented by
objects in the graphical domain (mostly
PatchElement subclasses) but the Python eval-
uation and message passing all takes place in

Figure 3: Sending a method-call
object to change displayed digits
(doc/enum control.mfp)

Figure 4: Custom method dis-
patch (doc/dispatch caller.mfp,
doc/dispatch callee.mfp)

the control domain.

User patches can dispatch their own method
calls using the [dispatch] builtin. This proces-
sor outputs any method call objects sent to the
patch as a (name, MethodCall) tuple suitable
for input into the [route] processor. The com-
panion [baseclass] processor handles method
resolution for methods implemented by the base
class. Figure 4 shows a patch fragment handling
dispatch of methods m1, m2, and m3, while pass-
ing all others back to the Patch class for reso-
lution as methods of the Python Patch class or
its base class Processor.

2.2.2 Names and scoping

At first glance, names may not seem to be
that important in a patching language. Patch
connections directly designate the caller and
callee objects without need for names. In re-
ality, larger patches need to hide some con-
nections for readability and structure. Pure
Data provides the [s name] and [r name] pair
(send/receive), which create a “virtual patch ca-
ble”, as well as some special message-box syn-
tax to send messages directly to an [r]. MFP
uses send/receive via pairs for the same pur-
pose. In both cases, names are required to con-
nect sender to receiver.

MFP gives each Patch a lexical scope, and
allows each layer of the patch to either use the
patch scope or to specify a different one. Sepa-
rate scopes can make it possible to hygienically
copy a layer or a group of layers without name
collisions. For example, a synthesizer patch
could use hygienic layer duplication to create a
dynamic number of polyphonic voices, if a single
voice was built in a layer or set of layers sharing
a scope distinct from the patch scope.

As a consequence, there is no need to “man-
gle” names to make them unique to a patch in-
stance in MFP. Names are automatically scoped
within the patch instance where they are cre-
ated. This contrasts with Pure Data, where
names are global by default; names intended to
be local use the magic variable $0, which ex-
pands to a unique-per-patch symbol, as part of
the variable name. For instance, the name foo
would be global, and a message sent to foo from
any open patch will go to all recipients of foo
messages. $0-foo would be local to the patch
containing it.

2.3 Signal domain

The signal domain component of MFP is pri-
marily implemented in a C library containing
the Python extension mfpdsp. MFP uses the
JACK Audio Connection Kit (JACK) [JACK
Team, 2002] to interface with the system audio
hardware and other audio applications.

As in the control domain, processing is im-
plemented in a connected graph of processing
nodes. However, communication between nodes
is a block-based stream of sample data rather
than a sequence of messages. For simplicity, the
processing block size used is always the JACK
block size, but this will likely change in future
releases.

A patch element which performs signal pro-

cessing activity will have both a control domain
representation (an instance of a Processor
class) and a signal domain representation (a C-
allocated instance of struct mfp proc). The
identity between the two is maintained using
an integer obj id which is shared.

JACK does the hard work in the signal layer,
and there are only a few built-in DSP operations
(about 20 in all) which, frankly, are not that in-
teresting: arithmetic, comparisons, simple oscil-
lators/noise, delay/buffering, simple filters, en-
velope follower. It is expected that LADSPA
(and, later: LV2, etc) plugins ([LADSPA Team,
2000], [LV2 Team, 2008]) will provide the more
sophisticated DSP processing tools.

The graph topology of the signal processing
network imposes some ordering on execution of
the node algorithms. A particular node is only
ready to process when all its inputs have been
computed. To manage this, a simple scheduling
step is performed whenever nodes are added or
removed. Units that are marked as generators
(their output in a particular processing cycle is
not dependent on their input during that cy-
cle) are always ready to process, nodes directly
connected to them may be processed next, and
so on. It is possible for cycles in the connec-
tivity graph to make a network that cannot be
scheduled. In this case, a delay of at least one
processing block must be added to break the
cycle.

Communication within the signal layer is
driven by the JACK callback thread and is de-
coupled from the message domain. Interaction
between message and signal occurs at block
boundaries and consists of parameter get/set
and simple messages from the signal back to the
message layer. This allows the real-time com-
ponent of the system to operate without a de-
pendency on the timeliness of processing in the
message domain.

2.4 Graphical domain

The graphical UI borrows its appearance heav-
ily from Pure Data. Each processor is repre-
sented by a visual element, with connections
represented by lines. Most processors have sim-
ple flow-chart style representations, with dis-
tinctive shapes providing cues as to their func-
tion.

Control of the UI is largely keyboard-driven.
The modal input system is patterned after text
editor controls, stacking modes based on the
current context. Authoring and editing of a

Figure 5: Graphical patch element types
(doc/gui elements.mfp)

patch can be accomplished without using the
mouse or touchpad at all, though a combina-
tion of pointing and typing is more efficient.

The UI is implemented using the Clutter
([Clutter Team, 2006]) and Gtk+ toolkits. Fig-
ure 5 shows samples of each visual type of
element, though one representation (such as
the button) can have several distinct identities
depending on parameters (clickable or display
only, momentary or latching, etc). The func-
tional element types are:

Processor box: The most common element,
a plain box containing the name and initializa-
tion arguments of the processor. Arguments are
interpreted by the Python evaluator at creation
time.

Message box: Interactive element emitting
a message when clicked. The message is dis-
played in the element and is interpreted by
the Python evaluator when entered through the
GUI.

Text comment: Free text display. Uses
Pango markup1 to enable a variety of text
styles, sizes, fonts, and colors.

Slider control/Bar meter display: Ver-
tical or horizontal slider/meter with optional

1An SGML-like syntax, see http://www.gtk.org/
api/2.6/pango/PangoMarkupFormat.html

scale display. Displays a solid bar indicating
a value, draggable for slider control

Number box: A simple box for inter-
actively entering or editing a number. Re-
sponds to mouse and keyboard actions to incre-
ment/decrement the value, and emits the value
as a message when it is changed.

X/Y chart: Multi-curve scatter/line chart
with plot, roll, and signal-view (oscilloscope)
modes. Can work in the control domain as
a scatter plot or strip chart, or in combina-
tion with a shared memory signal buffer as an
oscilloscope-type display.

Toggle button/indicator: Two-state but-
ton with visual indicator of on/off state. When
created as an indicator, it shows the underlying
state but does not respond to clicks.

Momentary (“bang”) button: Emits a
Bang object (or other object as configured)
when clicked. This is similar to a message box,
but does not display the value to be sent.

Send and receive vias: Circular pads rep-
resenting the end points of an invisible virtual
patch cord ([s name] and [r name] in Pure
Data). The name and appearance are inspired
by printed circuit board vias, which are conduc-
tive pathways connecting one layer of a circuit
board to another.

3 Extensibility

User-created processing modules in the signal
and message domains can be loaded at runtime
via several mechanisms:

Patch file discovery. When a reference to
an unknown processor type is made, the search
path is crawled to find a patch file (*.mfp) with
a matching name. User patches are equivalent
to builtins, except for the additional overhead
of network iteration.

Processor subclassing. User code loaded
at startup or patch load time can create new
Processor subclasses which can be referenced in
patches.

User-specified function wrapping. A
utility API is provided to wrap arbitrary
Python functions or methods as MFP proces-
sors. Code in user rcfile or other startup file
can create simple or complex processor types
using these tools.

Automatic Python callable wrapping.
An attempt to create a Processor will succeed if
any Python function with the specified name
is known to the MFP evaluator at runtime.
The matching function will be automatically

wrapped in a simple Processor subclass that
uses introspection to discover the arity of the
provided function.

Compiled DSP processor definitions.
Dynamically linked libraries containing DSP
type definitions can be loaded at runtime via
dlopen. A simple C-language processor type
definition API makes creation of new unit types
straightforward.

Plugin hosting. LADSPA plugins can
be hosted and controlled via the [plugin~]
builtin.

4 Interoperability

MFP implements interfaces to other software
via open standards:

JACK: MFP is a standalone JACK ap-
plication. The number of input and output
ports is specified at app startup time. Sup-
port for JACK MIDI, transport, and timecode
is planned.

Open Sound Control (OSC): Every MFP
object in the control domain has an OSC
address and can receive messages in nu-
meric or Python expression form. Every
Processor supports OSC controller learning
via the @osc learn method. OSC message
send and additional routing for incoming mes-
sages are provided through builtin processors
[osc in] and [osc out].

MIDI: The ALSA sequencer API is used
to provide MIDI I/O. MIDI data is processed
in the message domain, and is routed in
and out via the [midi in] and [midi out]
builtins. Chasing and generating MIDI time-
code is planned.

LADSPA: A builtin DSP type hosts
LADSPA plugins. LADSPA plugin meta-
information is used to add input and output
ports for all plugin parameters at run time. An
LV2 host is planned.

5 Implementation status

As of the submission of this paper (Feb 2013)
MFP is under heavy development leading up
to an initial public release. The functionality
described in this document is implemented and
exercised by demonstration patches provided in
the source code repository.

Much of the development process has been
exploratory in nature, so the feature set as a
whole is a bit spotty. Significant features are
missing or incomplete, including the ability to
have more than one patch open for editing,

exported patch UIs (“graph-on-parent”), host-
ing LV2 and other types of plugins, support
for session APIs, online help and other doc-
umentation, undo/redo, menu control of most
functions, and saved configurations (presets) in
patches.

6 Getting MFP

Source code and issue tracking for MFP are on
GitHub:

https://www.github.com/bgribble/mfp

The project is licensed under the GNU Gen-
eral Public License (GPL) version 2. Your inter-
est and participation is invited and welcomed.

References

R. Bencina. 1998. (Software) AudioMulch.
http://www.audiomulch.com.

T. Blechmann. 2008. nova - A New Com-
puter Music System with a Dataflow Syntax.
Bachelor’s thesis, Vienna University of Tech-
nology, Vienna, Austria.

Clutter Team. 2006. (Software) Clut-
ter Project. http://www.clutter-project.
org.

JACK Team. 2002. (Software) JACK Audio
Connection Kit. http://www.jackaudio.
org.

LADSPA Team. 2000. (Software) LADSPA
Project. http://www.ladspa.org.

LV2 Team. 2008. (Software) LV2 Project.
http://lv2plug.in.

National Instruments. 1986. (Software) NI
LabVIEW. http://www.ni.com/labview/.

M. Puckette. 1989. (Software) Max/MSP,
currently distributed by Cycling ’74. http:
//www.cycling74.com/max.

M. Puckette. 1997. (Software) Pure Data.
http://www.puredata.info.

G. Van Rossum. 2010a. Python 2.7 Docu-
mentation. http://docs.python.org/2.7/.

G. Van Rossum. 2010b. Python 2.7
Python/C API Reference Manual: Thread
State and the Global Interpreter Lock.
http://docs.python.org/2/c-api/init.
html#threads.

