
An Approach to Live Algorithmic Composition using Conductive

Renick BELL
Tama Art University
2-1723 Yarimizu

Hachioji, Tokyo 192-0394
Japan

renick@gmail.com

Abstract

Algorithmic composition can be done as a live per-
formance using live coding tools. An example ap-
proach to such performances is described. Using
the Conductive library for the Haskell programming
language in conjunction with some external tools,
samples are triggered according to interonset inter-
val patterns generated at a variety of densities. Au-
tomatic movement through those density levels is
accomplished through a specialized data structure,
which is also used to time-vary other parameter val-
ues. The performer manages the state of the above
items, and finally audio is output through effects.

Keywords

algorithmic composition, live coding, Haskell

1 introduction

This paper describes an approach to performing
extended sets of live algorithmic composition. It
was the author’s goal to perform generative mu-
sic live with the computer was an active partner
of the user. Rather than prepare data and al-
gorithms completely in advance, it was desired
that those algorithms or at least their param-
eters could be adjusted as the music is being
performed.

To carry out such performances, a live cod-
ing interface was chosen for its flexibility, its
light-weight character, its compatibility with a
tiling window manager, and its ability to em-
ploy a user interface that was already very fa-
miliar: the vim text editor and the command
line. Some further discussion on the reasons for
choosing this approach have been described in a
previous paper, which led to the development of
a Haskell library called Conductive to provide
some basic components for doing such perfor-
mances in conjunction with some external tools
(Bell 2011). Those tools alone had been deter-
mined insufficient for extended performances,
however. In order to fully realize such perfor-
mances, additional modules were developed.

Before explaining this system of tools, the
paper first briefly explains live coding. Tools
used in conjunction with this system are listed.
A brief review of Conductive core concepts is
followed by a description of additional mod-
ules developed for handling event density, time-
varying values, a sampling synthesizer, and mu-
table data. The paper concludes with a discus-
sion of the results of this approach and some
proposed future research directions.

2 live coding

According to TOPLAP, an organization for the
promotion of live coding, live coding practice
begins in the 80s. The 90s appear dry, while
the 21st century starts with the band Slub in
what TOPLAP calls the “projection era” and
continues to the present in which an increas-
ing variety of live coding systems are available
and used in performances (McLean and Others
2010). Now live coding conferences take place
(unknown 2013) and it is scheduled to be the
theme of an upcoming issue of Computer Music
Journal (McLean 2012).

Live coding enables a more abstract ma-
nipulation of a representation of music than
physical gestures used for playing instruments.
It is also thought to be more convenient in
many regards than windows-icon-mouse-pointer
(WIMP) software (Bell 2011).

From another perspective, it takes the po-
tential of algorithmic composition and turns
it into a live performance rather than a
write/compile/run loop from traditional soft-
ware development or electronic music compo-
sition. Seen this way, it can be thought of as an
extension of algorithmic composition practices
that could extend back as far as Ptolemy’s mu-
sic theory (Maurer 1999), and certainly as far
back as music dice games such as Mozart’s Dice
Music (Hedges 1978). More modern examples
of algorithmic composition practice include the
twelve-tone music of Schoenberg (Schoenberg

1999), work by Caplin and Prinz followed by
Hiller and Issacson (Ariza 2011), the aleatoric
music of Cage and Stockhausen (Kostelanetz
2002)(Paul 1997), Xenakis’s stochastic music
(Xenakis 2001), and the generative sequences
made in Max on Autechre’s Confield (Tingen
2004).

One of the drawbacks of live coding is the
hard mental operations that it requires. For
a more complete discussion of the usability is-
sues involved in live coding, see Blackwell and
Collins (Blackwell and Collins 2005). Another
factor is the potentially slow text manipulation
that live coding requires (Sorensen and Brown
2007).

The system described below is intended to ad-
dress some of these difficulties.

3 system and related tools

This section first explains what tools developed
by other authors are used when performing. It
then reviews some core concepts of Conductive,
and finally it describes the newly-developed as-
pects of Conductive.

3.1 tools developed by other authors

In order to use this system, there are some pre-
requisites.

The first of those is a Haskell programming
environment. The Glasgow Haskell Compiler,
which contains an interpreter (GHCi) that al-
lows the interactive evaluation of source code
(SL Peyton Jones et al. 1993), is used by the
performer to call functions from the Conductive
library. The process of writing source code and
sending it to GHCi is made more usable with
vim (a text editor) (Moolenaar 2008), tmux
(a terminal multiplexer)(Marriott and others
2013), and a vim plugin called tslime that allows
text to be sent from the editor to the interpreter
through tmux (Coutinho 2010).

As Conductive does not directly handle sound
synthesis, a method for synthesizing sound is
necessary. This paper describes the use of the
scsynth component of the SuperCollider pack-
age (McCartney 2010). At present, synthesis
events are programmed in Haskell and employ
Rohan Drape’s hsc3 Haskell library for commu-
nicating with scsynth (Drape 2009). A sam-
pler (described below) uses samples that have
been generally recorded and edited using Ar-
dour (Davis 2006), and they have largely origi-
nated from hardware synths. All of the samples
are individual sounds, from single-shot percus-

sion sounds to bass samples. Most are wav files
under 300 K.

Finally, in order to achieve a solid sound
closer to that of commercial releases or broad-
casts, the output of scsynth is processed through
Calf plugins hosted by the Calf stand-alone host
(Foltman et al. 2007). An EQ is followed
by a multiband compressor and then a limiter,
whose output is directed to the soundcard. Out-
put is also directed to JAAA for monitoring
(Adriaensen 2004). Patchage is used for ease of
routing (Robillard 2011). Recording of perfor-
mances is done with either Ardour (in the case
of audio) or gtk-recordmydesktop (in the case
of video) (Varouhakis and Nordholts 2008).

Figure 1: signal flow

3.2 summary of Conductive concepts

A system called Conductive is used, which is
a set of modules for the Haskell programming
language handling concurrent processes with a
music-oriented interface.

Some basic concepts for using Conductive in-
clude the notion of Players, action functions,
interonset interval (IOI) functions, and Tem-
poClocks. These concepts are explained in more
detail in a paper from 2011 (Bell 2011), but a
short summary is included here.

Players are representations of concurrent pro-
cesses that perform actions separated by peri-

ods of time called interonset intervals (IOIs). A
Player runs its specified actions and then waits
for an IOI determined by its specified IOI func-
tion. This loop is instantiated by employing the
“play” function with a Player as an argument.

Actions functions define what is done by a
Player. These actions could include triggering
a synthesis event or modifying the general sys-
tem state. The only limitation is their type sig-
nature, since Haskell is a statically-typed lan-
guage. This means that the types of arguments
to an action function are fixed, and they must
return the unit type in the IO monad, or “IO
()”. Currently, a sampler action is used pre-
dominantly.

IOI functions define how long to wait between
actions. Any methods available to the program-
mer could be used to generate those times, from
simply returning a value, such as one second, ev-
ery time, to table lookup of values, to the calcu-
lation of values based on complex mathematical
formulae.

One minor change from the 0.2 system of 2011
is that IOI functions now take additional argu-
ments and return the beat of the next event
rather than the IOI value directly. The play
function uses that value in conjunction with a
TempoClock to actually determine how long to
wait before running the next action.

4 new modules for Conductive

This section explains the new modules for Con-
ductive: density, TimespanMaps, and Muta-
bleMaps.

4.1 IOI values and density

Previously, IOI functions used hand-written IOI
patterns or patterns which were determined
mostly at random. A more sophisticated ap-
proach was sought that would require less man-
ual intervention during a performance.

The sequence of IOI values determines the
rhythm of a sequence of events. Rather than
enter sequences by hand, they are generated al-
gorithmically. The IOI patterns are looping or-
dered lists of IOI values in terms of beats, whole
or fractional.

Pattern generation is based on a performer-
selected core unit used to generate potential
IOI values. Selection of a core unit, in con-
junction with the length of the pattern, largely
determines the metrical feel of the pattern. A
list of scalars is determined by the performer,
from which a function randomly selects a user-
specified number of scalars.

The user specifies a number of subphrases
to generate and the length of those phrases in
terms of number of scalars to use, from which
the final phrase will be constructed. Those sub-
phrases are generated to the specified length
by randomly choosing the specified number of
scalars from the subset selected above and mul-
tiplying them by the core unit.

Finally, a user-specified number of subphrases
are chosen at random from the resulting list
by the algorithmic composition function. The
user determines the length of the final phrase in
terms of beats. If the length of the concatenated
subphrases does not equal the specified length,
the final IOI value is padded. If the length ex-
ceeds the specified length, the final IOI value is
truncated.

An example of those steps follows. Items are
determined by the user are followed with a “u”:

• core unit (u): 0.25
• potential scalars (u): 1, 2, 3, 4, 5, 6, 7, 8
• number of scalars to be selected (u): 5
• selected scalars: 1, 2, 3, 4, 6
• potential IOIs: 0.25, 0.5, 0.75, 1.0, 1.5
• number of subphrases (u): 2
• subphrase length (u): 3
• selected subphrase scalars: 1, 3, 2; 4, 1, 6
• initial subphrases: 0.25, 0.75, 0.5; 2, 0.25,
2.5

• phrase length in terms of subphrases (u): 3
• initial randomly determined phrase: 0.25,
0.75, 0.5, 0.25, 0.75, 0.5, 2, 0.25, 2.5

• total phrase length: 7.75
• phrase length in terms of beats (u): 8
• final phrase: 0.25, 0.75, 0.5, 0.25, 0.75, 0.5,
2, 0.25, 2.75

Given a particular IOI pattern, a series of re-
lated patterns (both denser and less dense) is
generated. It is built out to maximum and min-
imum density. This means making a list of IOI
patterns ordered in terms of density. When re-
ducing density, an item from the pattern is cho-
sen at random and combined with a neighbor-
ing value to yield a similar pattern of reduced
density. This process is repeated until the IOI
pattern contains only a single item. When in-
creasing density, an item is chosen at random
and replaced with two items: an item of lesser
value from the list of potential IOIs and the dif-
ference between the original IOI value and the
lesser value. This is repeated until all of the
items in the pattern are the smallest of the po-

tential IOIs. By sandwiching the original IOI
pattern between the less-dense and denser pat-
terns, a table is generated.

Here is a continuation of the previous exam-
ple:

• potential IOIs: 0.25, 0.5, 0.75, 1.0, 1.5
• input phrase: 0.25, 0.75, 0.5, 0.25, 0.75,
0.5, 2, 0.25, 2.75

• one level decrease in density: 0.25, 0.75,
0.75, 0.75, 0.5, 2, 0.25, 2.75

• second decrease in density: 0.25, 0.75, 1.5,
0.5, 2, 0.25, 2.75

• minimum density phrase: 8
• one level increase in density: 0.25, 0.5, 0.25,
0.5, 0.25, 0.75, 0.5, 2, 0.25, 2.75

• second increase in density: 0.25, 0.5, 0.25,
0.5, 0.25, 0.75, 0.5, 2, 0.25, 0.75, 2

• maximum density phrase: 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25

Based on a user-specified density value, a par-
ticular IOI pattern is chosen from the table.
The user queries the table with a value between
0 and 1, and a linear conversion to a list index
is done. The value returned is the IOI pattern
at that index.

Density values can vary with time. One
method for doing so is employing a Timespan-
Map, which is described below.

4.2 TimespanMaps

TimespanMaps are maps or dictionaries with in-
tervals as keys to any kind of value and a speci-
fied total length for the whole TimespanMap. In
the case of IOI pattern tables described above,
the values are either density values (for deter-
mining which IOI pattern to use) or an IOI value
to be selected from a particular IOI pattern.

A time in beats is passed to the dictionary.
The interval that time falls in is determined to
be the key, and the corresponding value for that
interval is returned.

TimespanMaps can be used for any param-
eter, not just the ones described above. For
example, in this system it also used for deter-
mining the amplitude and pitch of a particular
triggering of a sample, as well as which sample
to trigger.

The rate of change in a TimespanMap is up
to the user and can change within the map. The

number of items in a TimespanMap is limited
only by memory or performance constraints.
The range of time covered by a particular key
can be as large or small as the user determines to
be appropriate and is limited only by the Dou-
ble data type in the Haskell language (double-
precision floating point number).

A sample TimespanMap with a time length
of four might look like this:

• length: 4
• 0: “a”
• 2: “b”
• 2.5: “c”

When passed a time of 0, the TimespanMap
returns “a”. With 0.5, “a” is also returned.
With a time of 2.25, “b” would be returned,
and with a time of 3.5, “c”. If passed a time of
4, the list loops and “a” is returned.

Figure 2 shows the relationship between IOI
patterns and density tables. It includes one
TimespanMap mapping intervals to density val-
ues. Missing from the illustration (in order to
keep it less cluttered) is the fact that the IOI
patterns themselves are TimespanMaps from in-
tervals to IOI values. The figure shows the
calculation of the next IOI value of a running
Player from beat 16 to beat 24. The exam-
ple does not show the complete contents of the
density map in order to save space, but actually
generating a density map provides the full range
of IOI patterns.

Convenience functions for TimespanMaps
with random key values and interpolated
TimespanMaps (in which fixed-length steps are
linearly interpolated from a set of points in
time) are provided in the library.

In addition to using TimespanMaps with IOI
values and in density maps, they have been
used for samples. Previously, one Player was
assigned to each sample. In order to use 70
samples, it was necessary to instantiate 70 play-
ers. Managing 70 Players was challenging, so
the sampler was rewritten to employ a Times-
panMap. Subsets of sample sets are chosen at
random and one is assigned for each interval in
the map. When the sampler is triggered, the
sample is chosen according to the current beat.
By doing so, the number of Players needed was
reduced by roughly a factor of 10.

4.3 mutable state

Several stateful parameters have now been de-
scribed, and that state is stored in mutable data

Figure 2: an example showing the relationship between IOI patterns, density tables, and Times-
panMaps, based on the example from section 4.1

structures appropriately called MutableMaps.
They are maps containing keys and their corre-
sponding values, often a string key and a Times-
panMap as the returned value or a mapping of
string to string. These maps are stored in a con-
tainer. Previously, some stateful containers had
been used (MVar), but it was suspected that
the concurrent operations were not functioning
properly in all cases. This was replaced with
a TVar, which employs software transactional
memory (STM) in order to safely carry out con-
current processes. A full discussion of STM can
be found in Jones (2007).

Much of a performance consists of adjusting
this state by changing values or adding new key-
value pairs. The MutableMap data structure is
intended to make doing so easier, with conve-
nience functions for adding, deleting, or swap-
ping values, as well as changing keys.

Because this is live coding, it is easy to write
functions to execute multiple simultaneous state
changes. Once such functions have been de-
fined, they can be used with a single keyword:
the function name.

5 performance method

This section explains how the system above
is used to perform. It is divided into two
parts: preparation necessary before a perfor-
mance, and what occurs during a performance.

5.1 pre-performance preparation

An initiation module is prepared before per-
forming. This module imports the various Con-
ductive modules as well as other modules that
are useful during performance, such as those
in the Data.Map module or list utilities in
Data.List. This module also provides functions
for the initialization of the mutable state to be
used, such as synthesis parameters and refer-
ences to which sets of synthesis parameters each
Player is to use. It also contains the definitions
of actions to be used by those Players.

Immediately before the performance, neces-
sary applications must be launched: JACK,
Patchage, scsynth, calfjackhost, JAAA, ghci,
and vim. The necessary routing must be set
up between these applications, including manu-
ally routing audio in Patchage and setting vim
to send to ghci.

The Conductive modules are loaded in GHCi
as well as the previously prepared initialization
routines. Preparation of scsynth is done, and
samples are loaded into scsynth. For the sam-
pler to be effective for an extended performance,
it is necessary to prepare enough samples.

IOI patterns are generated along with their
corresponding density tables. TimespanMaps
are created to vary the density values used for
selecting IOI patterns. Players are specified,
along with their initial action and IOI functions.
The density patterns and IOI patterns are as-
signed to Players, which use the current beat to

determine a density and thus an IOI value to be
used between instances of triggering a sample.
The sample that is triggered is also determined
by a TimespanMap.

5.2 during a performance

When the data has been prepared, Players are
started according to user’s intentions for the
performance. As the Players are running, the
state is manipulated by the user to vary the per-
formance. This includes changing synthesis pa-
rameters or other system parameters. New pat-
terns can be generated by the performer running
the algorithmic composition routine described
above. New density maps can be generated and
assigned to Players. New samples can also be
loaded. During the performance, Players can
be stopped, restarted, or additional Players can
be added and similarly manipulated. It is also
possible to define new action functions or IOI
functions during a performance. All Players are
stopped when the performance has reached an
end.

Figure 3: performance flowchart

6 conclusion

This section evaluates the results of using the
system described above. It then describes some
directions for future research.

6.1 evaluation of results

The approach above makes it possible to per-
form for extended periods of time, mostly lim-
ited by the amount of samples that have been
prepared in advance. It is also necessary to use
different sets of parameters when generating IOI
patterns, such as differing numbers of scalars,
differing core unit sizes, and so on.

It is challenging to keep a mental model of
the parts described above during a performance,
even though what has been described is mainly
concerned with the timing of events and not
timbre. This suggests that adding the complexi-
ties of generating different timbres through syn-
thesis during performance will be burdensome.
Part of this burden can be overcome through
more practice with the system, but it seems that
there is still a higher-level of abstraction to be
achieved for optimal usage.

By using TimespanMaps with the sampler, it
was possible to reduce the number of players for
70+ samples from 70 Players to between four
and eight Players triggering hundreds of sam-
ples. This arrangement was found to be much
more manageable and sonically-attractive than
the previous one. It was very difficult previ-
ously to look at the list of Players and see which
ones were playing and which ones were not. It
also made changing the arrangement very hard,
as Player-related functions often required long
lists of Players. The current arrangement still
uses lists of Players at times, but the lists are
much shorter, rarely containing more than three
or four Players.

The lack of continuous timbral modification
through effects is a sore spot. A moving tim-
bre can make the sound much more lively, but
this is possible to a limited degree in the sys-
tem above because of the design of the current
sampler. Varying the sample of a particular
Player does change the timbre, but sometimes a
change which unfolds in a discernible direction
over time can be a more effective compositional
device. This has only been achieved in the cur-
rent version for the sample pitch and amplitude.

In the system described above, parameters for
synthesis are initiation-rate values. That means
that the timbre of a particular event does not
change over time other than what is contained
in the original sample.

Changing from MVars to TVars with STM is
thought to have solved some mysterious runtime
misbehavior.

Current methods for organizing the text data
or source code used during a performance are
poor. As a result, the text in the text editor
quickly becomes messy in the course of a perfor-
mance. That makes it harder to stay in control
of the performance or to run previously-defined
functions at the most ideal times. Maximum
effectiveness of use of the editor environment
probably has not yet been achieved. Editor us-

age skills or tools to aid in this are probably
needed.

6.2 future directions

Many things for this system can be developed.
Those possibilities include the following ideas.

Further refinements of the abstractions de-
scribed above can be done. That includes using
value-lists rather than single values as core units
in the IOI pattern generation process. More in-
telligent ways of generating the various densities
of those patterns can be imagined.

Methods for generating IOI patterns with a
greater sense of relationship is desired. While
the patterns generated above are related in
terms of density and rerunning a pattern gen-
eration function with the same parameters can
yield similar patterns, there must be more so-
phisticated ways to generate sets of related pat-
terns. More investigation into music theory and
the algorithmic composition techniques of oth-
ers is needed. Such research should be included
in future versions of the pattern-generation
functions.

Several chance operations are involved in this
approach. It would be desirable to try weighted
probabilities or other deterministic means as
substitutes for those chance operations.

An increased use of pitched synths can be
included. This will make it easier to achieve
the timbral variation desired as well as expand
the focus from its time-based focus at the mo-
ment to more involvement with the frequency
domain. An efficient, easy-to-use method of
synthesis that can also provide a wide range of
timbres is being sought. Samples are musically
effective but take a lot of time to prepare and
remove a level of spontaneity that is desired.

Algorithmic control of effects at various
stages would be nice. This means writing those
effects and the corresponding action functions.

Player processes which alter other running
Player processes should be experimented with,
such as Players that stop and start other play-
ers. Another possibility to try in the near future
is Players which change between sample sets.

Visualization methods for system state
should be undertaken.

A convenience function for concatenating
TimespanMaps is also desired.

Better methods for managing the code used
in a performance should be sought.

7 acknowledgements

Thanks to Henning Thielemann and the review-
ers for useful suggestions on the contents of this
paper. Thanks also goes to Akihiro Kubota and
Yoshiharu Hamada for research support.

8 bibliography

Adriaensen, Fons. 2004. “Kokkini Zita - Linux
Audio.” http://kokkinizita.linuxaudio.
org/linuxaudio/.

Ariza, Christopher. 2011. “Two pioneering
projects from the early history of computer-
aided algorithmic composition.” Computer Mu-
sic Journal 35 (3): 40–56.

Bell, Renick. 2011. “An Interface for Real-
time Music Using Interpreted Haskell.” In Pro-
ceedings of LAC 2011.

Blackwell, Alan, and Nick Collins. 2005.
“The Programming Language as a Musical In-
strument.” In Proceedings of PPIG05. Univer-
sity of Sussex.

Coutinho, C. 2010. “tslime.” http:
//www.vim.org/scripts/script.php?
script_id=3023.

Davis, Paul. 2006. “Ardour.” http://
ardour.org.

Drape, Rohan. 2009. Haskell supercollider, a
tutorial.

Foltman, Krzysztof, Markus Schmidt, Chris-
tian Holschuh, and Thor Johansen. 2007.
“Home @ Calf Studio Gear - Audio Plugins.”
http://calf.sourceforge.net/.

Hedges, Stephen A. 1978. “Dice music in the
eighteenth century.” Music & Letters 59 (2):
180–187.

Jones, SL Peyton, Cordy Hall, Kevin Ham-
mond, Will Partain, and Philip Wadler. 1993.
“The Glasgow Haskell compiler: a technical
overview.” In Proc. UK Joint Framework for
Information Technology (JFIT) Technical Con-
ference. Vol. 93.

Jones, Simon Peyton. 2007. “Beautiful con-
currency.” Beautiful Code: Leading Program-
mers Explain How They Think : 385–406.

Kostelanetz, Ric. 2002. Conversing with
Cage. Routledge.

Marriott, Nicholas, and others. 2013.
“tmux.” http://tmux.sourceforge.net/.

Maurer, John. 1999. “A Brief History of
Algorithmic Composition.” https://ccrma.
stanford.edu/~blackrse/algorithm.html.

McCartney, J. 2010. “SuperCollider Docu-
mentation.” http://www.audiosynth.com.

McLean, Alex. 2012. “Computer Music
Journal special issue on Live Coding \textbar
TOPLAP.” http://toplap.org/cmj/.

McLean, Alex, and Others. 2010. TOPLAP
website. http://www.toplap.org/index.php/
Main_Page.

Moolenaar, Bram. 2008. “The Vim Editor.”
http://www.vim.org.

Paul, David. 1997. “Karlheinz Stockhausen.”
interview, Seconds Magazine 44.

Robillard, David. 2011. “Patchage.” http:
//drobilla.net/software/patchage/.

Schoenberg, Arnold. 1999. Fundamentals of
Musical Composition. Ed. Gerald Strang and
Leonard Stein. Faber & Faber.

Sorensen, A., and A. R. Brown. 2007. “aa-
cell in Practice: An approach to musical live
coding.” In Proceedings of the International
Computer Music Conference.

Tingen, Paul. 2004. “Autechre, recording
electronica.” Sound on Sound 19 (6): 96–102.

Varouhakis, John, and Martin Nordholts.
2008. recordMyDesktop Version 0.3. 7.3.

Xenakis, Iannis. 2001. Formalized Music:
Thought and Mathematics in Composition. 2nd
ed.. Pendragon Pr.

unknown. 2013. “live.code.festival 2013 –
Call for Participation.” http://imwi.hfm.eu/
livecode/call/.

