SuperCollider IDE: A Dedicated Integrated Development
Environment for SuperCollider

Jakob Leben
Koper, Slovenia
jakob.leben@gmail.com

Abstract

SuperCollider IDE is a new cross-platform inte-
grated development environment for SuperCollider.
It unifies user experience across platforms and
brings improvements and new features in compar-
ison with previous coding environments, making
SuperCollider easier to begin with for new users, eas-
ier to teach for teachers, and more efficient to work
with for experienced users. We present an overview
and evaluation of its features, and explain motiva-
tions from the point of view of user experience.

Keywords
SuperCollider, cross-platform, edit, code, GUI

1 Introduction

SuperCollider [McCartney, 2002] is a computer
music system that was originally developed by
James McCartney in the 1990s for Mac OS
and has been ported to Linux and eventu-
ally Windows after it was open sourced in the
early 2000s. It is a modular system based
on an object oriented programming language
(sclang) and a separate audio synthesis server
(scsynth)?.

1.1 History of SuperCollider and its
Coding Environments

SuperCollider is heavily influenced by Smalltalk
and was originally using a similar program-
ming model: it strongly coupled the interpreter
with the development environment. This in-
tegrated programming environment, commonly
referred to as SC.app was developed specifi-
cally for Mac OS and therefore was not portable
to other platforms. Nevertheless, it has been
preserved and evolved throughout the develop-
ment of SuperCollider to date, and is still in
very wide use.

When porting SuperCollider to Linux, Ste-
fan Kersten implemented scel, a SuperCollider

! A multiprocessor-aware alternative to scsynth is su-
pernova [Blechmann, 2011]

Tim Blechmann
Vienna, Austria
tim@klingt.org

editor mode for Emacs [Kersten and Baalman,
2011], which had been the most feature-rich so-
lution for a long time, as it not only supported
syntax highlighting, but also some introspec-
tion, a limited form of method call assistance
and support for the old HTML-based help sys-
tem.

At the moment, two other editor extensions
are part of the official SuperCollider distribu-
tion: scvim (for vim) and sced (for gedit). Be-
fore developing the SuperCollider IDE, one of
the authors of this paper also developed an ex-
tension for Kate (scate).

Apart from that, there have been other cod-
ing environments, either incomplete or not
maintained anymore: scfront (a Tcl/Tk based
editor), gcollider (a Qt-based editor) and ex-
tensions for the squeak Smalltalk environment,
the TextMate editor, Eclipse and probably oth-
ers [Kersten and Baalman, 2011]. A python-
based editor called PsyCollider [Fraunberger,
2011] had first been distributed with the Win-
dows port of SuperCollider, but later removed
from distribution, as the code was unmain-
tained, unstable and made obsolete when gedit
and sced were ported to Windows.

1.2 Motivation for the New IDE

The negative aspects of the situation prior to
SuperCollider IDE may be summarized as fol-
lows:

e The user experience vastly differs among
the different programming environments.

e No existing environment is working out of
the box on every supported operating sys-
tem.

e Some environments (e.g. scvim or scel) are
based on editors that are not very accessi-
ble for beginners.

The lack of a single cross-platform coding en-
vironment is a disadvantage (particularly for ed-

ucation of new users), because it renders impos-
sible the exchange of experience among people
who are forced to use different environments ac-
cording to what is available for their operating
system. Moreover, each programming environ-
ment has to be maintained separately, and long-
term maintenance turned out to be a problem.
The scarce development resources are spread
among different projects instead of focused on
a single system.

In late 2011 the authors therefore decided to
start the development of a new IDE dedicated
to SuperCollider (not merely an extension of a
general-purpose code editor). The goal was to
address all of the above issues by ensuring a uni-
fied user experience across all supported plat-
forms and making the IDE both easy to use for
beginners and powerful enough so that experi-
enced users would not feel the need to switch to
an advanced editor like Emacs.

The choice of Qt as the underlying GUI
framework for the IDE came naturally, as one of
the authors had previously reimplemented the
GUI programming classes of the SuperCollider
language itself using Qt, which turned out to be
quite a success.

2 Overview of the new IDE

2.1 System Architecture

Since an IDE demands a tight integration with
the target programming language, the question
was raised immediately whether the new IDE
should be coupled with the language interpreter
into one process, as is the case in SC.app, or
rather a separate process, as in existing editor
extensions.

Consideration of benefits and drawbacks of
the two options brought decision in favor of
separating the IDE from the interpreter: the
most important benefit of this strategy is that
the decoupling allows the IDE to survive po-
tential crashes of the interpreter, and maintain
responsiveness and control in case running some
SuperCollider code locks up in an infinite loop.

The major drawback of decoupling is in-
creased effort for inter-process communication
(IPC) with the interpreter. However, scel has
proved that a powerful set of features may be
built on top of IPC, and hence this did not out-
weight the benefits of decoupling.

2.2 Graphical Interface

Thanks to the Qt GUI framework, the appear-
ance and behavior of the GUI is largely equal

across supported platforms. Figure 1 shows the
default appearance on Ubuntu.

The IDE has a single-window design - it fea-
tures a single code editing widget at the center
of the main window. Tabs are used to switch
between multiple open documents. The editor
widget can also be split horizontally and ver-
tically to show more than one document at a
time.

Below the code editor, there is an area where
various tool panels are displayed on request via
keyboard shortcuts:

e Find/Replace: a standard tool for finding
and replacing text in the current document,
supporting regular expressions and backref-
erences in replacement

e Go-To-Line: a standard tool to quickly
jump to a line in the current document, by
line number

e Command Line: a tool for one-line
SuperCollider expressions to be evaluated,
featuring history

Along the edges of the main window, there are
dock areas, where other dockable widgets may be
placed:

e Integrated help browser
e Document browser

e Language interpreter output panel

These widgets can be easily drag-and-
dropped to different locations in the dock ar-
eas, either side-by-side, or stacked on top of each
other (with tabs appearing to switch among the
stacked widgets). They can also be undocked
and moved out of the main window (e.g. to
place them on a second screen etc.), or simply
hidden.

The status bar on the bottom of the main
window is used to show the state of the language
interpreter and the default synthesis server.
The server status box is a compact alternative
to the SuperCollider server window, showing
status information like CPU utilization, num-
ber of running synths, groups, synthdefs etc.

3 Interaction

Our guidelines in interaction design were to
minimize the amount of constantly visible con-
trols, so as not to clutter the GUI, but to make
the most used functionality quickly accessible
via keyboard shortcuts, and advanced features

P

dew: spacelab.scd (fust/local/share/SuperCollider/fexamples/pieces) - SuperCollider IDE

HAle Session Edit Mew language Help
< Documents spacelab.scd Ql DreamHouse.scd Ol autohausen.scd 0‘ < Help browser Home <5 - e Find,
spacelab.scd T | 4ok ok ok ok ok ok ok ok ok ok ko ko ok ko ko ko ko ok ok ok ok ok Home Browse Search Indexes ¥
DreamHouse.scd FAEE R Help - Table of contents ¥
autohausen.scd 3| s lab" -- Kraftwerk L
3| olc ol exercise -- jy
ook ok ok ok ok o sk kK sk Kok b sk sk o sk ok o sk ko sk skl ok sk o stk o kol sk ko sk ok ko sk ok ko kb ok ook o Hglr_\
EESEELEE LT N
g =
6| s = Server.default: e p M
7|s.boot; |
8 Documentation home
/4 SynthDefs // SuperCollider is an environment and programming
12| synthoef(vbd, { | out=0 | language for real time audio synthesis and algonthmic
13 Cvar osc, env; composition. It provides an interpreted object-oriented
14 osc = FSinOsc.arl40); language which functions as a network client to a state of o~
15 env = EnvGen.kr(Env.perci@, 0.05), donsAction: 2| ‘l"' setsaclbives covnal csables sl comias] 5
16 Out.arfout, Panz.arlosc, O, env));
17| I .add; ¢ Postwindow
18
19 JackDriver: connected SuperCollideriout_2 to systera
20 SuperCollider 3 server ready (debug build). [
21 JackDriver: max output latency 34.8 ms
22 : Receiving notification messages from server localho:s
23 ker perc(@, 0.05), doneAction: 2); Shared memory server interface initialized
24 out.arlout, Panz.ar(LPF.ar(Mix([FEEl, osc2]), 12000), 0, env)); a SynthDef
35| }).add; Busicontrol, 12, 1, localhast)
26 Synthi'resControl' : 1020)
27| SynthDefi\hat, { | out=0 | w|a Pbind
P — - SystenClock
® find: | osc 1 J F £ -
Replace: Replace Replace All [

Figure 1: SuperCollider IDE on

easily discoverable via the main menu and con-
text menus - i.e. menus that pop up when right-
clicking (or Ctrl-clicking) on a GUT element and
offer a choice of actions relevant for that ele-
ment. To combine accessibility and discover-
ability the following rule is applied: as much
functionality as possible is in the main menu,
and each item in any menu may be assigned a
shortcut.

We distribute the IDE with a large set of de-
fault shortcuts that cover most frequently used
functionality by both SuperCollider beginners
and experts, and try to adhere to shortcuts in
other coding environments.

3.1 System Control

The language interpreter is started automat-
ically with the IDE. Nonetheless, it can be
stopped and restarted at will via the main menu
or shortcuts, which is useful if code gets stuck
in an infinite loop, or the interpreter simply
crashes and stops by itself.

The audio server, on the other hand, is
not started automatically, but can be quickly
started using a shortcut or the main menu. The
menu includes other audio-related actions: to
dump the node tree, show sound level meters
and the like. All these actions may also be ac-
cessed via the context menu associated with the
audio server status box (see section 2.2 about
the status bar).

Interpreter; Server: [EliNiE

Ubuntu

3.2 Code Evaluation

Code evaluation is, naturally, the most valuable
functionality of a SuperCollider coding environ-
ment, and making it as practical as immagin-
able is of highest importance.

All existing coding environments support
evaluating a line of code using a keyboard short-
cut without the need to select the line. More-
over, since SuperCollider code is often evalu-
ated in groups of lines, there is typically support
for enclosing such groups in parenthesis, then
double-clicking one of the parenthesis to select
the contents in order to evaluate them. Such
groups of lines are commonly called regions.

Like scel has done previously, SuperCollider
IDE goes a step further by automatically de-
tecting the region enclosing the text cursor, so
it can be evaluated with a shortcut without the
need to select it. The evaluation behavior is in-
telligent: it will evaluate either the selection (if
any), or the current region (if any), or the cur-
rent line - where current means ‘at the position
of the cursor’.

Due to automatic region detection, large por-
tions of code may be evaluated without se-
lection. However, without any visual indica-
tion, this could easily create confusion and un-
certainty as to what code has been evaluated.
Hence, another very useful feature has been im-
plemented: evaluated code is highlighted, and
then the highlighting gradually fades away. An

additional benefit of highlighting is in demon-
stration scenarios: not only the demonstrator,
but the audience as well knows exactly what
code is evaluated, and when.

4 Code Editing

It is our goal for SuperCollider IDE to imple-
ment code-editing assistance on the level of sup-
port that general-purpose IDEs offer for most
widely used programming languages. Namely,
we consider the crucial features: syntax high-
lighting, automatic indentation, automatic code
completion and method call assistance.

4.1 Syntax Highlighting

Existing SuperCollider editor extensions typi-
cally reuse generic support of their host editors
for on-the-fly syntax highlighting. SC.app, al-
beit the oldest and most widely used environ-
ment, only updates highlighting on explicit re-
quest via the user interface.

Syntax highlighting in SuperCollider IDE has
been implemented to update on-the-fly, and
in a very efficient manner to never interfere
with code typing. Attention was paid to
strictly match the lexical rules obeyed by the
SuperCollider language compiler. As a result,
we have most efficient and correct syntax high-
lighting for SuperCollider language to-date.

4.2 Automatic Indentation

The IDE automatically indents code while typ-
ing, trying to mimic the most common ways
people would indent code by hand. Automatic
indentation may also be invoked explicitly for a
selection of lines.

Automatic indentation is done on the basis
of opening and closing brackets. When a line
break is entered, the new line is indented by
one level if the previous line contains any open-
ing brackets that are not matched with a closing
bracket on the same line. Whenever a closing
bracket is typed on a subsequent line, a previous
line containing the matching opening bracket is
searched for, and if the matching brackets are
the first and the last ones on their lines, respec-
tively, the current line is made to match inden-
tation of the line above. For example:

(
p = Pseq(l
Pbind(
\degree, Pwhite(0,5,5),
\dur, 0.1
),

Pbind (\degree, Pseq([6,7]))
1, inf)
)

As shown above, regions (see section 3.2) do
not contribute to indentation, as is common in
SuperCollider code.

One current issue with automatic indentation
remains to be addressed: indentation of line
continuations. It is common to have one ex-
pression extend over several lines; in this case,
it is typically desired to increase indentation on
all but the first line. For example:

In.kr(4, 2)
.1ag(0.3)
.linexp(0, 1, 10, 1000)

This is currently not implemented yet; a so-
lution will require enhanced grammatical anal-
ysis.

4.3 Automatic Completion

Automatic code completion (autocompletion)
consists of offering the user a selection of possi-
ble continuations of text being typed, based on
context.

Array . fil|
filename Symbaol [dass |
fill [Meta_Collection]
fillZD [Meta_Collection |
fillZD [Weta_Collection]
FllMD [Meta_Coll=ction]

Figure 2: Autocompletion in SuperCollider IDE

As a weakly-typed programming language,
SuperCollider poses limitations on the possibil-
ities of autocompletion, compared to strongly-
typed languages (e.g. C, C++). Namely, it is
not always possible to infer the type of a vari-
able identifier, and hence the set of its meth-
ods. We have worked in SuperCollider IDE
towards offering completion as far as possible
within these limitations.

Autocompletion is offered in the following
cases:

e (Class names:
Sin<...>

Since class names exclusively begin with
an uppercase letter, it is straightfoward to
complete them from the set of all classes.

e Method names following class names:
Array.<...>

They are completed from the set of class
methods of the readily-available class.

e Method names following literals and built-
ins

123.<...>
topEnvironment.<...>

They are completed from the set of instance
methods of the class inferred from the lit-
eral or the built-in.

e Method names following a variable name:
func.<...>

The class is not inferred, so the method is
completed from the set of all methods of all
classes.

Completion of methods of known classes
starts immediately when the dot ‘. is typed.
One exception to this is the case of methods of
Integer literals: it only begins after 1 character
has been typed, or else redundant completion
would be triggered on a dot in a Float literal,
which proved to be a rather annoying experi-
ence.

In other cases the list of candidates may be
quite large (the set of all classes, or all methods
of all classes), hence completion only starts after
3 characters have been typed.

Although the current code base would
easily support completion of built-ins (e.g.
topEnvironment) and method names in func-
tional notation (e.g. min(1,2)) we have decided
to avoid that. The reason is that, formally,
those cases would compete with other cases for
which we currently do not offer completion: e.g.
variable names in scope. It has been argued by
one of the authors that autocompletion options
may be understood (especially by novices) as
the set of all and the only allowed options in
a specific context, and hence misleading when
incomplete.

The completion menu is hidden if the cur-
rently typed text matches one of the options ex-
actly. In that case, the user’s intention has likely
been met, so the menu would only present an
obstacle to changing activity: evaluating code,
moving to another position in code, etc. How-
ever, this has been a point of debate, as it would
be possible to automatically detect the change
of activity and close the menu.

Although different aspects of usability often
demand trade-offs, we will continue to refine the

behavior so as to maximize usefulness and intu-
itivity of autocompletion.

As already noted, there is potential to im-
prove the domain of autocompletion to include:

e Variables in scope:

var abcdef; abc<...>

e Inferring class of Array and Event literals:
[1,2,3].<...>
(freq: 321).<...>

e Inferring class of variables by assignment
x = [1,2,3]; x.<...>

4.4 Method Call Assistance

Method call assistance involves displaying a list
of argument names and their default values,
to aid entering expressions for arguments in a
method call.

freq =440, phase =0, mul =1, add=0

SinOsc.ar(|

Figure 3: Method call
SuperCollider IDE

assistance in

It is implemented both for receiver notation
as well as functional notation. In functional no-
tation, an argument is prepended to denote the
receiver of the message.

The assistance is invoked when a relevant
opening bracket ‘(’ is typed, or a comma ‘,’ is
typed to separate arguments, and additionally
with a keyboard shortcut when the text cursor
is anywhere within the brackets surrounding the
arguments.

This assistance is subject to the same lim-
itations as autocompletion, due to a weakly-
typed language: to disambiguate the method,
its owner class must be known. However, we
have found a pragmatic solution: where the
class can not be inferred, we let the user pick
a class via a pop-up menu.

Hence, the following examples will offer assis-
tance directly:

SinOsc.ar(

123.forBy(

...while the following will first display a list of
classes that implement the method, then offer
method call assistance once a class is selected:

min (

x.play(

[1,2,3] .inject(

There is one special case in SuperCollider lan-
guage where the method name is not explicit,
namely an opening bracket immediately follow-
ing a class name:

Synth(

In this case, the class method ‘new’ is implied,
and SuperCollider IDE takes this into account
and offers appropriate assistance.

Once the assistance is invoked, the name
of the current argument being typed is high-
lighted, which is of great help when the num-
ber of arguments is large, or the expression for
an argument is very long. Moreover, one can
quickly insert and cycle through available argu-
ment names with a press of the Tab key, in order
to realize argument addressing by name, as in:

SinOsc.ar (456, add: 1, mul:

Once assistance has been activated for a
particular method call, it remains active in
the background while assistance for a nested
method call is being performed: when the user
finishes typing the inner call, assistance is au-
tomatically displayed for the outer call again.
This is especially useful in case assistance is
based on explicit class selection (as explained
above) - the selection is remembered during
nested assistances so that method disambigua-
tion does not need to be repeated.

As can be seen from examples above, this
assistance would also benefit from increased
ability to automatically infer classes from text.
Nevertheless, the described solution via explicit
class selection will remain to be useful where the
intended method is absolutely ambiguous.

4.5 Editing Shortcuts

Akin to powerful general-purpose development

environments, SuperCollider IDE provides a set

of actions that help navigate and edit code and

can be assigned arbitrary keyboard shortcuts.
Cursor movement actions include:

e Jump to next or previous empty line
e Jump to next or previous bracket

e Jumping to next or previous region
Editing actions include:
e Move current line up or down

e Copy current line up or down

e Comment or uncomment current line or se-
lection

The comment/uncomment action intelli-
gently uses either the single-line or the multi-
line comment syntax, whichever is more appro-
priate for the current selection.

5 Class Library Navigation

Within the SuperCollider community, the bor-
der between system developers and users has
always been quite fuzzy. Furthermore, writ-
ing musical code often involves development of
classes for purposes of a specific musical task
and for personal class libraries. Jumping from
code that uses a class to code that implements
it is hence a frequent need.

The SuperCollider language interpreter has
since the beginning featured introspection into
where each class and method is implemented,
and referenced within the class library. Ex-
isting development environments have already
harnessed these capabilities to offer navigation
between usage and definition via GUIL.

SuperCollider IDE attempts to exploit these
capabilities in most practical ways. Handy
shortcuts will pop up a dialog that lists all meth-
ods whose name matches the text under cursor,
or all methods of the class under cursor. Press-
ing Return on an entry will open the file at po-
sition where the selected method or class is im-
plemented. The same dialog contains a search
field which can be used to search for any class
or method. An equivalent dialog is implemented
also for class and method references: the listing
contains all methods that contain references to
another class or method.

The shortcuts and menu actions that bring
up these dialogs work just as well in the code
editor, as in any other GUI element that may
contain code: the command line, the post win-
dow, and the help browser. Moreover, invoking
help-related shortcuts within these dialogs will
navigate the help browser to the help page re-
lated to the class or method selected in the di-
alog. Help and class library navigation are thus
very efficiently linked.

6 Help

Recently, the traditional HTML-based help sys-
tem has been superseded by SCDoc, authored
by Jonatan Liljedahl, where help documents are
written in a markup language developed specif-
ically for this purpose and rendered to HTML
on demand. SCDoc also monitors the filesys-
tem for changes and updates its internal index
of available documents at runtime. The benefits

are:

e Content is separate from style; consistent
style can easily be applied to all documen-
tation.

e Content may potentially be rendered to
other formats than HTML, by implement-
ing different rendering components.

e Due to on-demand rendering and filesystem
monitoring, documentation served through
the system is always up-to-date with re-
spect to installed documents.

Interaction with SCDoc’s on-demand ren-
dering has previously only been implemented
within the SuperCollider language, using its in-
ternal GUI capabilities. The SuperCollider IDE
is the first code editing environment to integrate
the new help system into its own GUI. There are
two major benefits:

e Tighter integration with all the GUI com-
ponents.

e The last displayed document and the en-
tire browsing history is preserved across
class library recompilations and interpreter
restarts.

The help browser comes in form of a dockable
widget (see section 2.2). When the user requests
help using a related shortcut or menu action,
on-demand rendering is performed via the SC-
Doc system, and the resulting HIT'ML document
is displayed in the help browser.

The help system is tightly connected to many
GUI components: the help shortcut will recall a
relevant help document for the text under cur-
sor, when it is invoked within the code editor,
the command line, the post window, the help
browser itself, or - as noted above - for the se-
lected entry in the class and method implemen-
tation and reference dialogs. Example code in
help documents may also be evaluated. Another
benefit of integration with the IDE is that the
shortcut for evaluation is identical to the one in
the code editor, even when customized by the
user. Moreover, the same shortcuts as in other
GUI components may be used for class library
lookup (see section 5).

7 Sessions

A session is a snapshot of currently open doc-
uments and arrangement of GUI components
that may be restored after the IDE is restarted.

The IDE allows saving a number of different ses-
sions and quickly switching between them, mak-
ing it easy to store and recall the environment
for different tasks.

8 Configuration

Many aspects of SuperCollider IDE can be cus-
tomized, including:

e behavior of automatic indentation and code
evaluation

e colors of the editor component and syntax
highlighting

e keyboard shortcuts

The IDE also makes easy configuration of the
SuperCollider language interpreter. Class li-
brary directories to include and exclude from
compilation can be configured via the GUI, re-
moving the need to hand-edit the interpreter’s
configuration file. There is also a handy menu
action to open the SuperCollider startup file.

9 Conclusions and Ideas for Future
Development

SuperCollider IDE has successfully reached the
fundamental goal of providing a cross-platform
SuperCollider coding environment. Not only
has it integrated the individual strengths of pre-
vious coding environments, but it has brought
important improvements on its own. Immediate
benefits arise from a unified experience across
Linux, Mac OS X and Windows. Further-
more, sophisticated user interface design and
advanced coding assistance make it both easy
to use by novices and a powerful tool for expe-
rienced users and developers. In consequence, it
makes SuperCollider as a whole more accessible,
eases its education and exchange of knowledge,
as well as focuses future development work.

As described above, possibilities for improve-
ments have been detected especially at auto-
matic code indentation (4.2) and completion
(4.3), and method call assistance (4.4), and are
simply a matter of further work. Aside from
that, there are many ideas for future develop-
ment:

SCDoc Editing Support

Among the highest priority goals is support
for syntax highlighting and editing assistance
for the SCDoc markup language. This would
be a very welcome aid in writing SuperCollider
documentation, and might entice conversion of
remaining old HTML-based documentation to

the SCDoc format (there is a lot of unconverted
documents in various Quarks).

Scripting IDE Behavior

The standard SuperCollider class library in-
cludes the Document class which is used as a
generic programming interface to various cod-
ing environments. It allows for controlling the
open documents and manipulating with their
contents. SuperCollider IDE does not support
this interface yet, but the support for it is of
high priority, including its potential extension.

Code Snippets

An alternative code editing mode could in-
troduce code snippets as individual interactive
components. This would be an alternative for
the current concept of regions (3.2). The snip-
pets would be separated at the level of graphical
interface, instead of code syntax, which could
allow for instance to move them freely around a
“desk”-like area, hide and show them individu-
ally, and to evaluate their contents with a single
click.

Visual SynthDef and Pattern Composi-
tion

For some tasks it would be welcome to be
able to compose SynthDefs and Patterns in a
visual way, akin to visual programming lan-
guages like PureData, Max, etc. Various dif-
fuse efforts in this direction exist, mostly us-
ing the SuperCollider language itself. Most
elaborate effort is probably by Jonatan Lil-
jedahl in his ongoing development of algoSCore
- a SuperCollider-based successor to AlgoScore
[Liljedahl, 2011], which includes graphical com-
position of SuperCollider Patterns and Syn-
thDefs. We consider potential integration of
work in this field into SuperCollider IDE as a
great benefit.

Integration of User-Created GUI

GUI creation by users would also benefit from
a visual composition approach, as opposed to
writing SuperCollider code. Moreover, it would
be very practical if user-created GUIs could be
integrated into the IDE’s own GUI, as docklets
(2.2) or similar.

10 Acknowledgements

The authors would like to thank the vibrant
community of SuperCollider developers and
users for critical evaluation of SuperCollider
IDE and many useful insights. With such a
productive feedback and intensive involvement
in shaping ideas, even two lone developers never

feel lonely in their efforts. SuperCollider IDE is
much better because of you!

References

Tim Blechmann. 2011. Supernova - A
scalable parallel audio synthesis server for
SuperCollider. In Proceedings of the Interna-
tional Computer Music Conference.

Christopher Fraunberger. 2011.
SuperCollider on Windows. In Scott Wilson,
David Cottle, and Nick Collins, editors, The
SuperCollider Book. MIT Press.

Stefan Kersten and Marije A.J. Baal-
man. 2011. “Collision with the Penguin”:
SuperCollider on Linux. In Scott Wilson,
David Cottle, and Nick Collins, editors, The
SuperCollider Book. MIT Press.

Jonatan Liljedahl. 2011. Algoscore. http:
//kymatica.com/Software/AlgoScore.

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(4):61-68.

