
Pitch-class Set design in SuperCollider

Lucas SAMARUGA
Universidad Nacional de Quilmes

Roque Saenz Peña 180
Quilmes, Argentina, 1876

lsamaruga@becarios.unq.edu.ar

Oscar Pablo DI LISCIA
Universidad Nacional de Quilmes

Roque Saenz Peña 180
Quilmes, Argentina, 1876

odiliscia@unq.edu.ar

Abstract
The Pitch-class set theory [6] and its extensions
[8] constitute an important basis for mastering
multi- layered atonal composition. The
SuperCollider [10] environment offers significant
possibilities of applying this technique in the
creation of abstract Pitch-class designs that may be
used as a part of more complex algorithmic
composition developments. This paper presents
pcslib-sc a quark (library) for Pitch-class set
design in SuperCollider and a use case in order to
demonstrate its musical relevance.

Keywords

Pitch-class Set Composition, SuperCollider,
Musical Composition.

1 Introduction

The Pitch-class Set theory uses both the
combinatorial and set theory to organize the twelve
Pitch-classes of the tempered system in Sets
(Pitch-class Set will be from here abbreviated as
PCS and Pitch-class as PC) in order to exploit their
structural properties on atonal music composition
and analysis. Although it is evident that this system
was inspired on the European pre and post serial
atonal music1, it was initially developed by
American composers and theorists like Milton
Babbitt [1], and Allen Forte [6].

Generally speaking, the PCS theory covers three
aspects. The first aspect deals with the concept of
the PCS as a subset of the Universal Superset
formed by the twelve Pitch-classes (also called
“aggregate”) and the concepts of equivalence by
inversion-transposition that generate the 224
different set classes. The second defines, encodes,
analyses and classifies the structural features of
each set class (such as, for example, their Interval
Class Vector). The third deals with the possible

1 Mainly, the music of Arnold Schönberg, Anton
Webern and Alban Berg, the three leading composers
of the so-called Viennese School.

relations between PCSs and set classes and their
significance in the musical context2.

A latter projection of this system explores the
possibilities of disposition of PCSs in the musical
space producing Combinatorial Matrices
(Combinatorial Matrix will be from here on
abbreviated as CM) and creating abstract
compositional designs3.

The complexity of atonal theory makes its
practical application almost impossible without the
aid of computer applications. Therefore, one of the
computer applications developed by the team of
this project was the pcslib library (by Pablo Di
Liscia and Pablo Cetta [2]) to be used in the PD
environment (Pure Data, by Miller Puckette et al).
pcslib is a set of “external objects” that allow the
work with PCSs and CMs in the PD environment
[4].

pcslib-sc for SuperCollider4 is based on pcslib
for PD with two small differences: 1) the adaption
of the original library interface to a more
general-purpose object-oriented language and 2)
the generalisation of some functionality in relation
to set theory.

Although SuperCollider is generally more
oriented to real-time sound synthesis and
algorithmic composition, its language is very
useful in manipulating and analysing musical data
mainly because of its dedicated library. Therefore
this quark is intended to work with the structure
generation approach of the PCS theory rather than
the pattern generation, task that can be
accomplished using the standard library.

This paper outlines the usage of three main
resources of PCS theory, its related data structures
and their combined use: Pitch-class sets,
Pitch-class chains and Pitch-class matrices. The
following discussion assumes that the reader is

2 For an extensive review on this specific subject,
see Di Liscia [5].

3 See Morris [7], [8].
4 pcslib-sc was written by Lucas Samaruga under the

supervision of Pablo Di Liscia and can be obtained at:
https://github.com/smrg-lm/pcslib-sc.

aware of both the fundamentals of the PCS theory
and of SuperCollider programming.

2 Data Structures

There are three main classes that are intended to
work in combination for the elaboration of pitch
structures. The PCS class, which defines a
particular PCS (together with its properties and
operations), the PCSChain class, which defines a
chain of PCSs and its elaboration methods and the
PCSMatrix class, which defines a combinatorial
matrix of PCS (together with its particular
properties, generation methods and operations).

The PCS class inherits from the library class
OrderedIdentitySet not only because they share
common set operations, but also because of the
importance of the Pitch-classes order for some data
calculation. PCSChain and PCSMatrix classes are
more likely utility classes to work with their
respective PCS theory counterpart. The former is a
list and the latter represents a matrix of PCS. In
their combined usage, chains are built from PCS
and matrices can be built from PCS or chains.
There is also a SCTable class, which holds the
Set-class (SC)5 table used for information retrieval
from the PCS class.

These classes do not try to cover exhaustively all
structural processes, but rather the common
qualities used for compositional design. Therefore,
the PCS class is the most complex in terms of
information retrieval, operations and
transformations, as they are the basic resources for
further developments.

2.1 Basic Properties and Information

As stated before, the PCS class is the core class
of the quark, it holds all the operations and
properties related to the PCS theory.

A PCS can be built from its symbolic table name,
consisting of its cardinal and ordinal numbers
separated by a hyphen, like '4-16' or '5-12', but
without the 'Z' pair identifier which can be queried
with the z method, e.g. '5-12' is written '5-Z12' in
Forte's nomenclature [6]; or can be created from an
array of numbers, like PCS[0, 1, 3, 5, 6] with the
array syntax shortcut. Internally, the PCs are stored
as an ordered set in modulo 12, so the conversion
of an array of MIDI notes such as [77, 72, 54, 49,
51, 60, 51, 48] will result in PCS[5, 0, 6, 1, 3].

Once the note numbers are stored in a PCS its
prime form, normal order, Forte's name, Z pair,
interval-class vector, invariance vector and cyclic

5 In this paper SC stands for Set-class, and it should
not be confused with SuperCollider, which is written
always with no acronym.

adjacent interval array, can be obtained from the
SCTable through the PCS instance methods. Also
the twelve-tone operators, relations, similarity
and status between different PCSs and its prime
form are supported as basic operations aside of the
inherited set operations.

2.2 Combined Use and Design Methods

PCSChain and PCSMatrix classes are related to
the pitch design in one and two dimensions
respectively (see below). They holds the structured
data as higher abstractions and provides different
creation, information and manipulation methods.

PCSChain is used to build chains with the
procedures explained in Section 3.2. The built lists
can be used as streams by the pattern library.

PCSMatrix can be built with different methods:
from arrays (a free matrix), from chains (special
cases were the chain is specially set, as explained
in Section 3.1), from SC to build different Morris's
CM types, and from twelve-tone operators [8].
Basic operations like swapping, transposition,
multiplications, inversion, rotation, and
information about the properties of a CM, such as
sparseness and fragmentation factors and
histogram of PC density are also provided [8]. The
data of the rows and columns of the matrix can be
converted back to PCS or used as streams as well.

3 Use case: constructing Combinatorial
Matrices from chains

In this section a use case, out of the many
possible using pcslib-sc, will be presented with the
objective of showing its musical relevance. The
particular subject of PCS composition addressed
here will be CMs. In the next section, the basic
underliying theory of CMs is briefly explained.

3.1 Introduction to the theory of
Combinatorial Matrices and chains

CMs are two-dimensional arrays that hold in
their vertical and horizontal dimensions PCSs of
one or more SCs. The classes of those PCSs are
referred to as the norm of a CM and are meant to
produce sonic coherence with respect to some
particular pitch organization. As shown in [7] and
[8], there are several methods to deal with the
construction of CMs, and several CMs types. The
method addressed here is the construction of
chains of PCSs.

Figure 1

A chain is a succession of PCSs that, being
considered in adjacent pairs, form a PCS of a
particular SC referred to as norm. An example of
such a chain is presented in Figure 1. The ordered
succession of the (unordered) PCSs: < {094}
{562} {79B} {A52} >6 constitutes a chain having
the class 6-46 as its norm. The horizontal brackets
show how the norm of the chain overlaps between
the adjacent pairs of PCSs.

A chain with a unique norm may be taken as a
basis for constructing a CM with the same norm. A
chain constructed with the set class 5-15 together
with its corresponding CM is shown below:

PCS chain: < {01} {268} {07} {15B} {67} {028}
{16} {57B} >

Resulting CM (Table 1):

01 268
07 15B

67 028
57B 16

Table 1

As can be seen, the union of the PCS of each one
of the columns and each one of the rows of the CM
form a PCS of the class 5-15 (the norm of the CM).
The distribution of the PCS in the resulting CM
may be further improved through swapping
operations7. One possible result would be (Table 2):

1 02 6 8
B 7 15 0
0 8 7 26

57 6 B 1

Table 2

3.2 Constructing chains

Essencially, it can be said that the method8 for
chain construction consists in connecting different
transposed and/or inverted, partially-ordered
versions of a PCS. Such partially ordered versions
are the binary partitions of a PCS which will be
termed partitions. For example, the Table 3 below
shows the ten different partitions of a PCS of the

6 The convention of representing PC 10 with an A
and PC 11 with a B will be followed from here for
practical reasons.

7 Such swapping operations are documented in [7]
and [8] and will not be explained here.

8 The method is fully explained in [7] and [8]. See
also [3].

class 5-15, and has all the information needed for
constructing a chain with this set-class as norm:

If, for instance, the partition F (01|268) is
selected for starting the chain, the different 2/3
transposed and/or inverted partitions having a PCS
of cardinality 3 that match the PCS in the ‘right
part’ of the starting partition are candidates for
continuing the chain. When one of these candidates
is selected and added to the chain, there will be
new candidates to continue the chain according to
the new PCS added, and the procedure is continued
as explained until it is decided that the chain must
be finished or when a partition that closes the chain
is found9.

5-15 {0,1,2,6,8}
Partitions 1/4

A 0|1268 1-1 4-16
B 1|0268 1-1 4-25
C 2|0168 1-1 4-16
D 6|0128 1-1 4-5
E 8|0126 1-1 4-5

Partitions 2/3
F 01|268 2-1 3-8
G 02|168 2-2 3-9
H 06|128 2-6 3-5
I 08|126 2-4 3-4
J 12|068 2-1 3-8
K 16|028 2-5 3-8
L 18|026 2-5 3-8
M 26|018 2-4 3-4
N 28|016 2-6 3-5
O 68|012 2-2 3-1

Table 3

3.3 Choosing partition candidates

The explained method suggest that more than
one candidate for continuing a chain may be found,
depending on both the chain itself and the
properties of the SC of its norm. If the norm does
not change along the chain, then at least one
candidate partition to continue it will exist10. When
more than one candidate exists, one or several
selection criteria must be applied. A criterion for
measuring the ‘qualification’ of a list of candidates
is to score them according their contribution of
new PCs in the chain or, if the aggregate set is
complete, according the distance of the PCs added

9 The possibility of finding a partition that may
close the chain is explained in [7].

10 This partition may not be musically interesting, as
it is the same partition in reverse order,.

to their previous presentation11. Such criterion is
formalized as:

score(cand i)=

∑
n=0

C i−1

dist (pcn , cand i)

(S)C i

EQ. 1

Where S is the chain size (number of positions);
Ci is the cardinality of the ith PCS to be added;
dist(pcn, candi) = S - (pos(pcn, candi) + 2) and
pos(pcn, candi) is the last position in which the pcn

of candi was found (i=0 to S-1, and n=0 to Ci). If
the pcn is not found in the chain, then pos(pcn,
candi)=0.

For example, considering a chain having 3
positions (S=3), whose norm is of the class 5-3:

2 4 | 0 1 5 | 4 3 |

And the following candidates to be added with
their scores (the repeated PCs are marked in Italics
Bold):

candidate0 = {5 1 0}
score = [(3-3) + (3-3) + (3-3)] / (3*3) = 0
candidate1 = {B 0 1 }
score = [(3-0) + (3-3) + (3-3)] / (3*3) = 0.33…
candidate2 = {2 0 B}
score = [(3-2) + (3-3) + (3-0)] / (3*3) = 0.44…
candidate3 = {5 7 8}
score = [(3-3) + (3-0) + (3-0)] / (3*3) = 0.66…
candidate4 = {2 6 7}
score = [(3-2) + (3-0) + (3-0)] / (3*3) = 0.77…
candidate5 = {8 7 6}
score=[(3-0) + (3-0) + (3-0)] / (3*3) = 1

It can be easily seen that –according to this
criterion- the ‘best’ candidate is scored by 1 and is
also the one that adds three new PCs to the chain
whilst the ‘worst’ candidate is scored by 0 and it
merely repeats the PCs of the norm of the chain.
Finally, it is worth noting that is not mandatory at
all to select the candidate with the highest score,
because there may be many other criteria by which
a PCS may not be considered a ‘good’ candidate
(just to mention one of them, the PCS candidate
may belong to a SC that was decided to be
excluded because of aural or stylistic reasons).

3.4 Constructing chains with more than one
norm

It is possible to extend the already explained
method for constructing chains to obtain a CM with

11 This criterion was formalized by Pablo Di Liscia
[3].

different norms. A case having special relevance in
music is presented here. If it is desired to achieve a
CM whose vertical norm is always of the same SC,
x, whilst all the horizontal norms are of different
classes, a, b, c, d and e and supposing the
cardinality of the norms is always 5, the scheme of
the chain to be generated is shown in Table 412:

 a b c d e
** *** ** *** ** *** ** *** ** ***

x x x x

Table 4

That will be the base for the CM shown in Table
5 below:

(sc) x x x x x
a ** ***
b ** ***
c ** ***
d ** ***
e *** **

Table 5

Achieving such structures is a key for mastering
atonal counterpoint, since they may be very
effectively used for controlling both the
simultaneity and the succession of PCs and their
SCs on a polyphonic musical thread.

3.5 Using pcslib in the SuperCollider
environment to construct chains and CMs

In this section, a use case in which the
construction of the chains and CMs above
mentioned will be presented.

Being the following PCSs:

a = PCS('5-1');
b = PCS('5-21');
c = PCS('5-35');
d = PCS('5-7');
e = PCS('5-33');
x = PCS('5-12'); // 5-Z12

A chain may be constructed using the methods
explained in Section 3.2. First a PCSChain is
created and its initial norm is set. Then the
candidates for continuing it are computed and
evaluated, and a selected partition out of the
candidates list is added:

~chain = PCSChain.new.norm_(a);
~chain.candidates(false);
~chain.addCand(7);

12 Where each ‘*’ represents a Pitch-class.

Next, the criteria described above to create a
chain is applied. Note that it is known beforehand
that the chain can be constructed, so just to execute
the following ad hoc algorithm is needed (the
resulting chain is show in Table 6):

[x, b, x, c, x, d, x, e].do({ arg pcs;
 ~chain.norm = pcs;
 ~chain.candidates(false);
 ~chain.candList.notEmpty.if({
 ~chain.addCand(
 ~chain.scores.indexOf(
 ~chain.scores.maxItem
);
);
 }, {
 "candidates for %"
 .format(pcs.name).throw;
 });
});
A (5-1) B (5-21) C (5-35) D (5-7) E (5-33)

03 124 67 3AB 14 68B 5A 349 68 02A
X (5-Z12) X (5-Z12) X (5-Z12) X (5-Z12)

Table 6

Now a PCSMatrix from the generated chain is
created (shown in Table 7):

~matrix = PCSMatrix.fromChain(~chain);

setclass
411 X

(5Z12)
X

(5Z12)
X

(5Z12)
X

(5Z12)
A (51) 03 124
B (521) 67 3AB
C (535) 14 68B
D (57) 5A 349
E (533) 02A 68

Table 7

and the default swapping algorithm is performed
to improve the distribution of the CM:

~matrix.swapping;

Finally, the PC 9 of the fourth row is duplicated
in the first column to keep all the vertical norms
within the SC 5-Z12:

~matrix.addAt(3, 0, PCS[9]);

which will result in Table 8.

setclass X
(5Z12)

X
(5Z12)

X
(5Z12)

X
(5Z12)

X
(5Z12)

A (51) 02 1 4 3
B (521) A 7 3 B 6
C (535) 6 1B 8 4
D (57) 39 4 5A 9
E (533) 0 2 A 6 8

Table 8

The process described so far results in a
particular and coherent PCS distribution in two
dimensions but it only defines the sonic potential of
the pitch organization. There are many possible
'realizations' of this structural organization which
will turn in different musical results. No rhythmic
constrains are given except for the vertical
alignment that provides a relative temporal
'window' within which the harmony can remain in
norm. Other parameters of the pitch organization
like register, range and timbre are not given either.
All of these basic variables remain free for further
development.

4 Conclusion

The pcslib-sc library presented in this paper is a
flexible and robust tool for effectively handling the
main features of atonal pitch organization.
Although the structures that can be created are
highly abstract, they may constitute the basis for
pitched music organization. The realization of such
abstract structures (i.e., the conversion of them in
music) requires the setting of numerous sound
features (such as register, duration, intensity and
timbre among others) which are suppose to be
congruent with the underlying pitch organization.
SuperCollider is a very powerful environment for
the latter accomplishment, and the objective of the
pcslib-sc library was to add to it yet a new
extension of its capacities.

5 Acknowledgments

The authors thank to Universidad Nacional de
Quilmes (Buenos Aires, Argentina) for supporting
and hosting this research.

References

[1] Milton Babbit. 1961. Set Structure as
Compositional Determinant. Journal of Music
Theory 5, no.1, USA.

[2] Oscar Pablo Di Liscia. 2012. PCSLIB site.
https://puredata.info/Members/pdiliscia/pcslib/

[3] Oscar Pablo Di Liscia. 2012: PCSLIB
reference.
https://puredata.info/Members/pdiliscia/pcslib/H
elp-English.doc/view

[4] O. P. Di Liscia and P. Cetta. 2009.
Pitch-class composition in the pd environment.
XII Simposio Internacional de Computación y
Música, Recife, Brasil.

[5] O. P. Di Liscia. 2011. Medidas de similitud
entre conjuntos ordenados de grados
cromáticos. Revista de Investigación

Multimedia, Vol III, IUNA, Buenos Aires.
Argentina.

[6] Allen Forte. 1974. The Structure of Atonal
Music. Yale University Press. England.

[7] Robert Morris. 1984. Combinatorialty
without the aggregate. Perspectives of new
Music. USA.

[8] Robert Morris. 1987. Composition with
Pitch-classes: A Theory of Compositional
Design. Yale University Press. USA.

[9] Puckette, Miller. 2007. The theory and
technique of electronic music,
world scientific publishing co. Pte. Ltd.

[10] Mccartney, James. 2002. Rethinking the
computer music language: supercollider.
Computer music journal, 26:4:61-68, mit press,
massachussets.

	1 Introduction
	2 Data Structures
	2.1 Basic Properties and Information
	2.2 Combined Use and Design Methods

	3 Use case: constructing Combinatorial Matrices from chains
	3.1 Introduction to the theory of Combinatorial Matrices and chains
	3.2 Constructing chains
	3.3 Choosing partition candidates
	3.4 Constructing chains with more than one norm
	3.5 Using pcslib in the SuperCollider environment to construct chains and CMs

	4 Conclusion
	5 Acknowledgments

