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Abstract
The  Pitch-class set theory [6]   and its extensions 
[8]  constitute  an  important  basis  for  mastering 
multi-  layered  atonal  composition.  The 
SuperCollider  [10] environment offers  significant 
possibilities  of  applying  this  technique  in  the 
creation of abstract Pitch-class designs that may be 
used  as  a  part  of  more  complex  algorithmic 
composition  developments.  This  paper  presents 
pcslib-sc a  quark (library)  for  Pitch-class  set  
design in SuperCollider and a use case in order to 
demonstrate its musical relevance. 
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1 Introduction

The  Pitch-class  Set theory  uses  both  the 
combinatorial and set theory to organize the twelve 
Pitch-classes of  the  tempered  system  in  Sets 
(Pitch-class Set will be from here abbreviated as 
PCS and Pitch-class as PC) in order to exploit their 
structural  properties on atonal music composition 
and analysis. Although it is evident that this system 
was inspired on the European pre and post serial 
atonal  music1,  it  was  initially  developed  by 
American  composers  and  theorists  like  Milton 
Babbitt [1], and Allen Forte [6].

Generally speaking, the PCS theory covers three 
aspects. The first aspect deals with the concept of 
the  PCS as  a  subset  of  the  Universal  Superset 
formed  by  the  twelve  Pitch-classes  (also  called 
“aggregate”)  and  the concepts  of  equivalence by 
inversion-transposition  that  generate  the  224 
different set classes. The second defines, encodes, 
analyses  and  classifies  the  structural  features  of 
each set class (such as, for example, their Interval 
Class  Vector).  The third  deals  with the possible 

1 Mainly,  the  music  of  Arnold  Schönberg,  Anton 
Webern and Alban Berg, the three leading composers 
of the so-called Viennese School.

relations between  PCSs and set classes and their 
significance in the musical context2.

A latter  projection of this  system explores the 
possibilities of disposition of PCSs in the musical 
space  producing  Combinatorial  Matrices 
(Combinatorial  Matrix  will  be from  here  on 
abbreviated  as  CM)  and  creating  abstract 
compositional designs3.

The  complexity  of  atonal  theory  makes  its 
practical application almost impossible without the 
aid of computer applications. Therefore, one of the 
computer  applications  developed by  the team of 
this project  was the  pcslib library  (by Pablo Di 
Liscia and Pablo Cetta [2]) to be used in the  PD 
environment (Pure Data, by Miller Puckette et al). 
pcslib  is a set of “external objects” that allow the 
work with PCSs and CMs in the PD environment 
[4].

pcslib-sc for  SuperCollider4 is based on  pcslib 
for PD with two small differences: 1) the adaption 
of  the  original  library  interface  to  a  more 
general-purpose  object-oriented  language  and  2) 
the generalisation of some functionality in relation 
to set theory.

Although  SuperCollider is  generally  more 
oriented  to  real-time  sound  synthesis  and 
algorithmic  composition,  its  language  is  very 
useful in manipulating and analysing musical data 
mainly because of its dedicated library. Therefore 
this  quark is intended to work with the structure 
generation approach of the PCS theory rather than 
the  pattern  generation,  task  that  can  be 
accomplished using the standard library.

This  paper  outlines  the  usage  of  three  main 
resources of PCS theory, its related data structures 
and  their  combined  use:  Pitch-class  sets, 
Pitch-class chains and  Pitch-class matrices.  The 
following discussion  assumes  that  the  reader  is 

2 For an extensive review on this specific  subject, 
see Di Liscia [5].

3 See Morris [7], [8].
4 pcslib-sc was written by Lucas Samaruga under the 

supervision of Pablo Di Liscia and can be obtained at:
https://github.com/smrg-lm/pcslib-sc.



aware of both the fundamentals of the PCS theory 
and of SuperCollider programming.

2 Data Structures

There are three main classes that are intended to 
work in combination for  the elaboration of pitch 
structures.  The  PCS class,  which  defines  a 
particular  PCS (together  with  its  properties  and 
operations), the  PCSChain  class, which defines a 
chain of PCSs and its elaboration methods and the 
PCSMatrix class,  which defines a  combinatorial  
matrix  of  PCS (together  with  its  particular 
properties, generation methods and operations).

The  PCS class  inherits  from the  library  class 
OrderedIdentitySet not  only  because  they  share 
common set  operations,  but  also  because  of  the 
importance of the Pitch-classes order for some data 
calculation.  PCSChain and PCSMatrix classes are 
more  likely  utility  classes  to  work  with  their 
respective PCS theory counterpart. The former is a 
list  and the latter represents a  matrix of  PCS.  In 
their combined usage, chains are built  from  PCS 
and  matrices  can  be  built  from  PCS or  chains. 
There  is  also  a  SCTable class, which holds  the 
Set-class (SC)5 table used for information retrieval 
from the PCS class.

These classes do not try to cover exhaustively all 
structural  processes,  but  rather  the  common 
qualities used for compositional design. Therefore, 
the  PCS class  is  the  most  complex  in  terms  of 
information  retrieval,  operations  and 
transformations, as they are the basic resources for 
further developments.

2.1 Basic Properties and Information

As stated before, the PCS class is the core class 
of  the  quark,  it  holds  all  the  operations  and 
properties related to the PCS theory.

A PCS can be built from its symbolic table name, 
consisting  of  its  cardinal  and  ordinal  numbers 
separated by  a  hyphen,  like '4-16'  or  '5-12',  but 
without the 'Z' pair identifier which can be queried 
with the  z method, e.g. '5-12' is written '5-Z12' in 
Forte's nomenclature [6]; or can be created from an 
array of numbers, like PCS[ 0, 1, 3, 5, 6 ] with the 
array syntax shortcut. Internally, the PCs are stored 
as an ordered set in modulo 12, so the conversion 
of an array of MIDI notes such as [ 77, 72, 54, 49,  
51, 60, 51, 48 ] will result in PCS[ 5, 0, 6, 1, 3 ].

Once the note numbers are stored in a  PCS its 
prime form,  normal order,  Forte's  name,  Z pair, 
interval-class vector,  invariance vector and cyclic  

5 In this paper SC stands for Set-class,  and it should 
not be confused with  SuperCollider,  which is written 
always with no acronym.

adjacent interval array, can be obtained from the 
SCTable through the PCS instance methods. Also 
the  twelve-tone  operators,  relations,  similarity 
and  status between different  PCSs and its  prime 
form are supported as basic operations aside of the 
inherited set operations.

2.2 Combined Use and Design Methods

PCSChain and PCSMatrix classes are related to 
the  pitch  design  in  one  and  two  dimensions 
respectively (see below). They holds the structured 
data as higher abstractions and provides different 
creation, information and manipulation methods.

PCSChain is  used  to  build  chains  with  the 
procedures explained in Section 3.2. The built lists 
can be used as streams by the pattern library.

PCSMatrix can be built with different methods: 
from arrays (a free matrix),  from chains (special 
cases were the chain is specially set, as explained 
in Section 3.1), from SC to build different Morris's 
CM  types,  and  from twelve-tone  operators  [8]. 
Basic  operations  like  swapping,  transposition, 
multiplications,  inversion,  rotation,  and 
information about the properties of a CM, such as 
sparseness and  fragmentation factors  and 
histogram of PC density are also provided [8]. The 
data of the rows and columns of the matrix can be 
converted back to PCS or used as streams as well.

3 Use  case:  constructing  Combinatorial 
Matrices from chains

In  this  section  a  use  case,  out  of  the  many 
possible using pcslib-sc, will be presented with the 
objective of  showing its  musical  relevance.  The 
particular  subject  of  PCS  composition addressed 
here will be CMs.  In the next section, the basic 
underliying theory of CMs is briefly explained.

3.1 Introduction  to  the  theory  of 
Combinatorial Matrices and chains

CMs are  two-dimensional  arrays  that  hold in 
their  vertical  and horizontal dimensions  PCSs of 
one or more SCs.  The classes of those  PCSs are 
referred to as the norm of a CM and are meant to 
produce  sonic  coherence  with  respect  to  some 
particular pitch organization. As shown in [7] and 
[8],  there  are  several  methods  to  deal  with  the 
construction of CMs, and several CMs types. The 
method  addressed  here  is  the  construction  of 
chains of PCSs.

Figure 1



A  chain  is  a  succession  of  PCSs that,  being 
considered  in  adjacent  pairs,  form  a  PCS of  a 
particular SC referred to as  norm. An example of 
such a chain is presented in Figure 1. The ordered 
succession  of  the  (unordered)  PCSs:  <  {094} 
{562} {79B} {A52} >6 constitutes a chain having 
the class 6-46 as its norm. The horizontal brackets 
show how the norm of the chain overlaps between 
the adjacent pairs of PCSs.

A chain with a unique norm may be taken as a 
basis for constructing a CM with the same norm. A 
chain constructed with the set class 5-15  together 
with its corresponding CM is shown below:

PCS chain:  < {01} {268} {07} {15B} {67} {028} 
{16} {57B} >

Resulting CM (Table 1):

01 268
07 15B

67 028
57B 16

Table 1

As can be seen, the union of the PCS of each one 
of the columns and each one of the rows of the CM 
form a PCS of the class 5-15 (the norm of the CM). 
The distribution of the  PCS in the resulting  CM 
may  be  further  improved  through  swapping 
operations7. One possible result would be (Table 2):

1 02 6 8
B 7 15 0
0 8 7 26

57 6 B 1

Table 2

3.2 Constructing chains

Essencially, it can be said that the method8 for 
chain construction consists in connecting different 
transposed  and/or  inverted,  partially-ordered 
versions of a PCS. Such partially ordered versions 
are the binary partitions of a  PCS which will be 
termed partitions. For example, the Table 3 below 
shows the ten different partitions of a  PCS of the 

6 The convention of representing PC 10 with an  A 
and PC 11 with  a  B will  be  followed  from here  for 
practical reasons.

7 Such  swapping operations are documented  in [7] 
and [8] and will not be explained here.

8 The method is fully explained in [7] and [8]. See 
also [3].

class 5-15, and has all the information needed for 
constructing a chain with this set-class as norm:

If,  for  instance,  the  partition F  (01|268)  is 
selected for  starting  the  chain,  the  different  2/3 
transposed and/or inverted partitions having a PCS 
of cardinality 3 that match the  PCS in the ‘right 
part’  of  the starting  partition are  candidates  for 
continuing the chain. When one of these candidates 
is  selected and added to the  chain,  there will be 
new candidates to continue the chain according to 
the new PCS added, and the procedure is continued 
as explained until it is decided that the chain must 
be finished or when a partition that closes the chain 
is found9.

5-15 {0,1,2,6,8}
Partitions 1/4

A 0|1268 1-1 4-16
B 1|0268 1-1 4-25
C 2|0168 1-1 4-16
D 6|0128 1-1 4-5
E 8|0126 1-1 4-5

Partitions 2/3
F 01|268 2-1 3-8
G 02|168 2-2 3-9
H 06|128 2-6 3-5
I 08|126 2-4 3-4
J 12|068 2-1 3-8
K 16|028 2-5 3-8
L 18|026 2-5 3-8
M 26|018 2-4 3-4
N 28|016 2-6 3-5
O 68|012 2-2 3-1

Table 3

3.3 Choosing  partition candidates

The explained method suggest  that  more than 
one candidate for continuing a chain may be found, 
depending  on  both  the  chain itself  and  the 
properties of the SC of its norm. If the norm does 
not  change  along  the  chain,  then  at  least  one 
candidate partition to continue it will exist10. When 
more  than  one  candidate  exists,  one  or  several 
selection criteria must be applied. A criterion for 
measuring the ‘qualification’ of a list of candidates 
is  to  score  them according their  contribution of 
new PCs  in the chain or,  if  the aggregate set  is 
complete, according the distance of the PCs added 

9 The  possibility  of  finding  a  partition that  may 
close the chain is explained in [7].

10 This partition may not be musically interesting, as 
it is the same partition in reverse order,.



to  their  previous presentation11.  Such criterion is 
formalized as:

score(cand i)=

∑
n=0

C i−1

dist ( pcn , cand i)

(S )C i

EQ. 1

Where S is the chain size (number of positions); 
Ci is the cardinality of the  ith PCS to be added; 
dist(pcn,  candi) =  S -  ( pos(pcn,  candi)  + 2) and 
pos(pcn, candi) is the last position in which the  pcn 

of candi  was found (i=0 to S-1, and n=0 to Ci). If 
the  pcn is  not  found in the  chain,  then  pos(pcn,  
candi)=0.

For  example,  considering  a  chain having  3 
positions (S=3), whose norm is of the class 5-3:

2  4  |  0  1  5  |  4  3  |

And the following candidates to be added with 
their scores (the repeated PCs are marked in Italics 
Bold):

candidate0 = {5 1 0}
score = [(3-3) + (3-3) + (3-3)] / (3*3) = 0
candidate1 = {B 0 1 }
score = [(3-0) + (3-3) + (3-3)] / (3*3) = 0.33…
candidate2 = {2 0 B}
score = [(3-2) + (3-3) + (3-0)] / (3*3) = 0.44…
candidate3 = {5 7 8}
score = [(3-3) + (3-0) + (3-0)] / (3*3) = 0.66…
candidate4 = {2 6 7}
score = [(3-2) + (3-0) + (3-0)] / (3*3) = 0.77…
candidate5 = {8 7 6}
score=[(3-0) + (3-0) + (3-0)] / (3*3) = 1

It  can  be  easily  seen  that  –according  to  this 
criterion- the ‘best’ candidate is scored by 1 and is 
also the one that adds three new PCs to the chain 
whilst the ‘worst’ candidate is scored by 0 and it 
merely repeats the  PCs of the  norm of the  chain. 
Finally, it is worth noting that is not mandatory at 
all  to select the candidate with the highest score, 
because there may be many other criteria by which 
a  PCS may not be considered a ‘good’ candidate 
(just  to mention one of them, the  PCS candidate 
may  belong  to  a  SC  that  was  decided  to  be 
excluded because of aural or stylistic reasons).

3.4 Constructing  chains with more than one 
norm

It  is  possible  to  extend the  already  explained 
method for constructing chains to obtain a CM with 

11 This criterion was formalized by Pablo Di Liscia 
[3].

different norms. A case having special relevance in 
music is presented here. If it is desired to achieve a 
CM whose vertical norm is always of the same SC, 
x,  whilst all the horizontal norms are of different 
classes,  a,  b,  c,  d and  e and  supposing  the 
cardinality of the norms is always 5, the scheme of 
the chain to be generated is shown in Table 412:

 a b c d e
** *** ** *** ** *** ** *** ** ***

x x x x

Table 4

That will be the base for the CM shown in Table 
5 below:

(sc) x x x x x
a ** ***
b ** ***
c ** ***
d ** ***
e *** **

Table 5

Achieving such structures is a key for mastering 
atonal  counterpoint,  since  they  may  be  very 
effectively  used  for  controlling  both  the 
simultaneity and the succession of PCs  and their 
SCs on a polyphonic musical thread.

3.5 Using  pcslib in  the  SuperCollider 
environment to construct chains and CMs

In  this  section,  a  use  case  in  which  the 
construction  of  the  chains  and  CMs  above 
mentioned will be presented.

Being the following PCSs:

a = PCS('5-1');
b = PCS('5-21');
c = PCS('5-35');
d = PCS('5-7');
e = PCS('5-33');
x = PCS('5-12'); // 5-Z12

A chain may be constructed using the methods 
explained  in  Section  3.2.  First  a  PCSChain  is 
created and  its  initial  norm  is  set.  Then  the 
candidates  for  continuing  it  are  computed  and 
evaluated,  and  a  selected  partition  out  of  the 
candidates list is added:

~chain = PCSChain.new.norm_(a);
~chain.candidates(false);
~chain.addCand(7);

12 Where each ‘*’ represents a Pitch-class.



Next,  the  criteria  described above  to  create  a 
chain is applied. Note that it is known beforehand 
that the chain can be constructed, so just to execute 
the  following  ad  hoc algorithm  is  needed  (the 
resulting chain is show in Table 6):

[x, b, x, c, x, d, x, e].do({ arg pcs;
  ~chain.norm = pcs;
  ~chain.candidates(false);
  ~chain.candList.notEmpty.if({
    ~chain.addCand(
      ~chain.scores.indexOf(
        ~chain.scores.maxItem
      );
    );
  }, {
    "candidates for %"
    .format(pcs.name).throw;
  });
});
A (5-1) B (5-21) C (5-35) D (5-7) E (5-33)

03 124 67 3AB 14 68B 5A 349 68 02A
X (5-Z12) X (5-Z12) X (5-Z12) X (5-Z12)

Table 6

Now a  PCSMatrix from the generated chain is 
created (shown in Table 7):

~matrix = PCSMatrix.fromChain(~chain);

setclass
411 X 

(5Z12)
X 

(5Z12)
X 

(5Z12)
X 

(5Z12)
A (51) 03 124
B (521) 67 3AB
C (535) 14 68B
D (57) 5A 349
E (533) 02A 68

Table 7

and the default swapping algorithm is performed 
to improve the distribution of the CM:

~matrix.swapping;

Finally, the PC 9 of the fourth row is duplicated 
in the first  column to keep all the vertical norms 
within the SC 5-Z12:

~matrix.addAt(3, 0, PCS[9]);

which will result in Table 8.

setclass X 
(5Z12)

X 
(5Z12)

X 
(5Z12)

X 
(5Z12)

X 
(5Z12)

A (51) 02 1 4 3
B (521) A 7 3 B 6
C (535) 6 1B 8 4
D (57) 39 4 5A 9
E (533) 0 2 A 6 8

Table 8

The  process  described  so  far  results  in  a 
particular  and  coherent  PCS  distribution in  two 
dimensions but it only defines the sonic potential of 
the pitch  organization.  There  are  many possible 
'realizations' of this structural  organization which 
will turn in different musical results. No rhythmic 
constrains  are  given  except  for  the  vertical 
alignment  that  provides  a  relative  temporal 
'window' within which the harmony can remain in 
norm. Other parameters of the pitch organization 
like register, range and timbre are not given either. 
All of these basic variables remain free for further 
development.

4 Conclusion

The pcslib-sc library presented in this paper is a 
flexible and robust tool for effectively handling the 
main  features  of  atonal  pitch  organization. 
Although the structures  that  can  be  created are 
highly abstract,  they may constitute the basis for 
pitched music organization. The realization of such 
abstract structures (i.e., the conversion of them in 
music)  requires  the  setting  of  numerous  sound 
features (such as  register,  duration, intensity and 
timbre among  others)  which are  suppose to  be 
congruent with the underlying pitch organization. 
SuperCollider is a very powerful environment for 
the latter accomplishment, and the objective of the 
pcslib-sc  library  was  to  add  to  it  yet  a  new 
extension of its capacities.    
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