
Design of an audio oscilloscope application

Fons ADRIAENSEN,

Casa della Musica,
Pzle. San Francesco 1,
43000 Parma (PR),

Italy,
fons@linuxaudio.org

Abstract

This paper documents some aspects of the design
of zita-scope, an Audio Oscilloscope application for
the GNU/Linux system. It is designed to permit
accurate display and measurements on audio wave-
forms captured from any source via the Jack audio
server. Topics covered include performance require-
ments, an analysis of some problems that need to
be considered, and an overview of the implemention
structure. The software will be available at the time
this paper is presented at the 2013 Linux Audio Con-
ference in Graz.

Keywords

linux, oscilloscope, audio measurement, time-
domain, jack

1 Introduction

The oscilloscope has for a long time been a stan-
dard instrument for any engineer developing au-
dio equipment, and in fact for almost everyone
’doing electronics’. In the all-digital era its im-
portance in an audio related context may have
declined a bit, except for debugging digital au-
dio hardware. Fact is that many measurements
on audio systems are better performed using
spectral analysis or dedicated tools, but in some
cases the ability to view the time-domain wave-
form and perform measurements on it remains
essential.

Very few Linux applications for this use seem
to exist. There are various ’scrolling scopes’
which will display a waveform in real time,
but don’t permit any form of measurement.
Some graphical synthesis environments include
a ’scope’ module or object, but these scopes are
little more than a toy. They allow the user to
see that a waveform is indeed a sine or a square
wave, or to get an idea of the waveform enve-
lope, but there it ends.

The only more ambitious application found
by the author at the time of writing was some-
thing called xoscope [1]. After some patching it
compiled, but it takes its inputs from /dev/dsp,

Figure 1: A sampled sine wave

EsounD or some esoteric hardware only, doesn’t
know about ALSA or Jack, and the user inter-
face really looks very dated. Probably its devel-
opment has stopped years ago.

Reasons for this state of affairs are clear
enough: ’technical’ applications (as opposed to
those meant for creating music) are a minority
interest, and actually creating a usable software
scope isn’t as simple as it seems — there is a lot
more involved than just ’plotting the samples’.

2 Requirements

Displaying samples is what any serious oscillo-
scope application must not do. If a signal con-
tains any significant energy above say 1/10 of
the sample rate, the sample values provide a
very bad or at least a quite unintuitive visual
representation of the actual waveform. See for
example Fig.1. After some training one may
be able to recognise this as a 14 kHz sine wave
sampled at 48 kHz, but in general it’s near im-
possible to obtain any meaningful information
from such a display.

Assuming a scope will be used to perform
measurements and not just as a visual gadget,



t

trigger

display range

AD B

C

t
d

Figure 2: Trigger and display range

the following should be considered essential:

• An accurate and stable display of the ana-
log waveform corresponding to a stream of
samples.

• A wide range of calibrated display ranges
and resolutions in both the time and am-
plitude domains.

• At least two and preferably more simultan-
uous channels.

• A flexible and accurate system allowing the
user to capture particular events in an au-
dio signal.

• The ability to store a signal and examine
it at all available gain and time resolution
settings.

• Calibrated markers to aid accurate mea-
surement.

• Responsive user controls, e.g. changing dis-
play parameters should produce an almost
immediate result.

And less essential but nice to have:

• Facilities to perform more complex mea-
surements, e.g. the RMS value of a range,
spectrum, etc.

• Remote control, allowing the applicatin to
be configured by and report to automated
test systems or scripts.

• ’Reasonable’ CPU and other resource us-
age.

3 Problem analysis

3.1 Triggering

While a scope can be used in free running mode,
in most cases a triggered display is essential.
The principle is illustrated in Fig.2. The user

will select a trigger condition, for example a pos-
itive going zero crossing. The start of the dis-
played range will then be at a fixed offset td
from that point, selected by the user. In many
cases the trigger point will be the start of the
displayed range (case A in the figure), but even
most analog scopes offer a delayed trigger option
(case B), with a delay that can be much longer
than the displayed range. A digital scope can
easily store the signal, and allow to display part
of the signal before the trigger (cases C and D).
This is very useful when the trigger condition
is the consequence of something that happened
before and which the user wants to investigate.

Triggering can be continuous or single shot.
In the first case, if a trigger has been found, and
as soon as enough signal has been captured to
fill the display and all of it is processed, the sys-
tem can start looking for the next trigger and
the cycle repeats. This could result in a very
high update frequency (if the display range is
short and close to the trigger) which would just
lead to an excessively high CPU load without
improving the visual result. In such cases look-
ing for the next trigger should be delayed by 50
milliseconds or so.

In the single shot mode, signal capturing will
stop at some point after the displayed range,
allowing the user to examine all of the stored
signal. In that case, the position of the trigger
point in the stored buffer becomes a parame-
ter that should be controllable by the user —
this determines how much he/she will be able
to scroll forward or back from the initial dis-
play range.

The usual trigger condition is the signal cross-
ing a given value in a specified direction, up or
down. This point needs to be determined with
high accuracy. Consider the following condi-
tions: we are looking in continuous trigger mode
at some high frequency waveform, with a dis-
play range of 50 microseconds (one period at 20
kHz). Assume the display is 1000 pixels wide.
Then each pixel corresponds to 0.05 microsec-
ond, and if we want a stable display the jitter on
the trigger position must be at least ten times
smaller than that value, say 5 nanoseconds or
around 1/4000 of a sample at a sample rate of
48 kHz. Simple linear or even cubic interpola-
tion on the original samples won’t be sufficient
to achieve this .

The solution used in zita-scope is to first up-
sample the signal selected as the trigger source
by a factor of 5. This means that even in the



worst case — a sine wave near half the sample
frequency — in each half cycle there will always
be samples covering the range of -0.95 to 0.95
times the amplitude, and triggering within that
range will be reliable. Assume the trigger level
is V with the signal going up. We scan the inter-
polated waveform for two consecutive samples
v0 and v1 such that v0 ≤ V ≤ v1. When these
are found, the signal is locally upsampled by a
factor of 25, and we search for v0, v1, v2 and v3
such that v1 ≤ V ≤ v2. Given these we can find
the best fitting parabola f(x) = ax2 + bx + c
with f(0) = v1 and f(1) = v2. Solving the
quadratic equation then provides the exact lo-
cation of the trigger point, with a worst case
error of around 1/100000 of a sample at the
original sample rate. The calculations are quite
simple but require some attention to cover spe-
cial cases, e.g. the quadratic coefficient could
be near zero. Four points rather than three are
used to provide an estimate of the quadratic
term at the center of the interval [v1, v2].

Another option, usually not available on ana-
log scopes, is to trigger on the first positive or
negative peak exceeding a given value. This can
be done using a similar method, in this case
searching e.g. for three samples v0, v1, v2 with
v0 < v1 > v2, and then solving the derivative of
the quadratic equation.

The first release of zita-scope can have up to
four displayed channels, and each of those can
be the trigger source. Also a separate trigger
input is provided. This can be used in the way
described above, or it can be put in ’digital’
mode, meaning that the trigger position will be
the first sample crossing a given value, e.g. an
impulse provided by some external software.

Another option is the manual trigger mode.
Clicking a button in the GUI generates a single
sample pulse on a trigger output, and the trigger
point is exactly one period later (looping the
pulse back to the digital trigger input would give
the same result). This can be used to measure
e,g, the impulse response of a filter.

Some other modes could be useful, for exam-
ple triggering on a MIDI note-on event delivered
via Jack-midi, for example to test the latency
of a soft synth, or on Jack transport reaching
a preset value. These could be built-in, or pro-
vided by a separate app connected to the exter-
nal trigger input.

3.2 Waveform display

As already illustrated by Fig.1, displaying the
waveform corresponding to a sampled signal in-
volves more than just plotting the sample val-
ues. A digital audio scope could have a horizon-
tal scale ranging from a second per grid division
down to a microsecond, a range of one to a mil-
lion. In all cases the user wants to see a more
or less accurate representation of the waveform.
For an analog scope this is no problem as both
the signal and the display device have ’infinite’
resolution. For a digital scope we need to con-
sider that the waveform is sampled and the dis-
play consists of discrete pixels.

The first question is which graphics library
will be used. On Linux, the choice is between
the basic X11 drawing routines and Cairo [2].
GUI toolsets offering a ’canvas’ object will also
use one of these. X11 graphics are defined en-
tirely in terms of pixels. Cairo offers subpixel
coordinates and anti-aliased line drawing. This
provides a much better visual quality, but not a
higher resolution.

On recent multi-core hardware there is really
no reason for not using Cairo or something sim-
ilar. The situation is different if somewhat older
systems are considered, e.g. a single core 2 GHz
Pentium 4. On such hardware, when drawing
four waveforms 20 times per second on a full
screen window, using Cairo can easily take the
CPU power to its limits.

The solution adopted in zita-scope is to pro-
vide both. By default Cairo will be used in all
cases, but there is an option to use X11 when
the display is updated at a high frequency, au-
tomatically switching to Cairo in all other cases.

Assume the display is showing one or a few
cycles of a sine wave, so each cycle has a nontriv-
ial width on the screen. An accurate display of
say 1000 by 1000 pixels requires something like
70 points per cycle in that case. This ensures
that the extreme values shown are no less than
0.999 times the real peaks (i.e. less than half a
pixel error), and the waveform doesn’t look like
a series of connected straight lines. Since the
frequency could be near half the sample rate,
this would require upsampling by a factor of at
least 35.

A brute-force technique would be to always
upsample by a factor of at least 35 and plot all
the points. But this would be very inefficient in
almost all cases. Consider a display that is 100
ms wide — this would mean 168000 points after
resampling, and most of the effort spent com-



puting and displaying them would be wasted as
the display doesn’t have the resolution required
to show all that detail. Clearly some better idea
is needed.

To get a grip on the issues involved we will
use the following parameters:

• Fsig : the original signal sample frequency,
e.g. 48 kHz.

• Fpix : the pixel frequency. For example if
we have 1 millisecond per division and a
division is 100 pixels, then Fpix is 100 kHz.

• Fres : the sample frequency after upsam-
pling.

Zita-scope uses two different algorithms and
display routines, depending on some of those
parameters.

If Fpix/Fsig ≥ 35, we compute one sample
per k pixels on the x-axis, with k integer. These
points are then plotted as a sequence of straight
lines. This provides the best that can be done
when using X11 (unless we would implement
some ad-hoc anti-aliasing scheme), and Cairo
will show a smooth anti-aliased line. In this
case we have:

k = bFpix/(35× Fsig)c
Fres = Fpix/k

In practice the value of k is limited to some
small value (currently 5, so there will be at least
one point every 5 pixels) to avoid having too
long straight lines.

In the other case, if Fpix/Fsig < 35, each x-
axis pixel is assumed to represent a range of
time, and we compute the minimum and maxi-
mum values the signal will take within that in-
terval. The resulting data are then plotted as a
series of vertical lines, one for each x-axis pixel.
For X11 this is again more or less the best we
can do. But this scheme doesn’t work well when
using Cairo if the signal doesn’t contain signif-
icant high (relative to Fpix) frequency energy,
and the resulting plot is reduced to a line in-
stead of being a broader band of pixels. The re-
sult isn’t much better than for X11 as we have in
effect disabled Cairo’s anti-aliasing capabilities.
This situation arises if the waveform is mono-
tonic within each time interval represented by
a single pixel. Fortunately there is an simple
solution, which is illustrated in Fig. 3.

In the right half of (a) we have a waveform
that can be assumed to be representable by a

(a) (b)

Figure 3: Connecting segments

Figure 4: Visual effect of connecting segments

smooth line. In this case we can replace the ver-
tical segments by connected lines just by mov-
ing the x-coordinates by half a pixel, and split-
ting the vertical segment at an extreme into two
lines, as shown in (b). This only requires the
original x,min,max data, and results in a dra-
matic improvement in display quality, as illus-
trated by Fig.4.

To compute the min,max pairs the display
algorithm upsamples the original data by a fac-
tor of at least 6, and such that we have a sam-
ple on every border between two adjacent pixels
— this ensures that there will be no gaps be-
tween segments. The extreme values can then
be found using inverse quadratic interpolation.
This is essentially the same algorithm used to
trigger on a peak, except that the function value
is computed instead of the argument, and con-
siderably less precision is required.



In this case we have

k = d6× Fsig/Fpixe
Fres = k × Fpix

The table below shows the resulting display
parameters as a function of the horizontal res-
olution, for Fsig = 48 kHz, and 100 pixels per
division. The SPP value is the number of sam-
ples (after upsampling) per horizontal pixel.

T/Div Fres/Fsig SPP
1 s 6.000000 2880/1

0.5 s 6.000000 1440/1
0.2 s 6.000000 576/1
0.1 s 6.000000 288/1

50 ms 6.000000 144/1
20 ms 6.041667 58/1
10 ms 6.041667 29/1
5 ms 6.250000 15/1
2 ms 6.250000 6/1
1 ms 6.250000 3/1

500 us 8.333333 2/1
200 us 10.416667 1/1
100 us 20.833333 1/1
50 us 41.666667 1/1
20 us 52.083333 1/1
10 us 52.083333 1/2
5 us 41.666667 1/5
2 us 104.166667 1/5
1 us 208.333333 1/5

In this example the switch between the two
algorithms discussed above occurs between 100
and 50 usecs per division.

Note that in both these cases one sample
per pixel is computed, but in a different way.
For the first algorithm the single sample cor-
responds to the center of an horizontal pixel.
For the second it is positioned on the border
between pixels.

To obtain this exact alignment of the upsam-
pled signal to the pixel grid we must initialise
the phase of the polyphase filter used by the re-
sampling algorithm to the required value. The
current release of zita-resampler includes sup-
port for this.

4 Software structure

4.1 Data flow

Figure 5 shows the main elements of the im-
plementation. Almost no work is done in the
Jack callback, it just copies the input signals to

a lock-free buffer. Apart from that it contains
some code to support the manual trigger mode.
All the rest is done in a non real-time context,
so zita-scope will impose only a very light load
on the Jack processing graph.

The lock-free buffer is around 1.5 seconds
long. In single-trigger mode input is discarded
until the user enables the next trigger, but the
lock-free buffer it is used to store the last second
of input. This ensures that this data is always
available at the next trigger (which may be a
manual one).

The trigger logic determines which part of
the input is copied to the capture buffer. In
continuous mode this will be little more than
the displayed range — if the user changes the
trigger position w.r.t. to the display range this
is taken into account on the next trigger. In
single-trigger mode the capture buffer can store
up to a few seconds of data, allowing the user to
examine any part of it. To allow triggering on a
wide range of signal levels the input gains set in
the GUI are taken into account by the trigger
algorithms, but the signals written to the cap-
ture buffer are always the original ones without
any gain applied.

The following step implements one of the two
algorithms presented in the previous section, de-
pending on the selected display range. These
computations are performed when the contents
of the capture buffer are updated by the trigger
logic, or ’on demand’ when the user changes the
time axis parameters.

The plotting routines finally display the data
on the screen. Any gain and vertical offset se-
lected by the user are only taken into account
at this point, so changing the these parameters
does not require recomputing the display buffer
data.

Some logic and state machinery is required
to coordinate all of this. For example, in single
trigger mode the display must be redrawn im-
mediately if the user changes any parameters,
while in continuous mode it could be better to
wait until the capture buffer is updated.

4.2 Display markers

To perform accurate measurements zita-scope
offers various types of on-screen markers, shown
as vertical or horizontal dotted lines on the dis-
play. Their absolute and relative positions are
also shown in numerical form. These numerical
values are always computed from the original
signal stored in the capture buffer, not from the



jack ports

lock-free buffer

capture buffer

display buffer

display

plotting routines

markers

jack_process()

upsampling

min/max

time 
trigger

markers

gain

gain

time 

offset

trigger logic and

processing

Figure 5: Processing flow

display data, and are not modified by any gain
or offset settings.

Time axis markers can be positioned manu-
ally, or snap to a zero crossing or a peak, using
the same algorithms as for triggering. Ampli-
tude axis markers can be set manually, or they
can follow the time axis ones on a selected chan-
nel, or snap to exact peak values. More complex
measurements (RMS levels, spectrum,. . . ) may
be implemented in future releases of the appli-
cation.

4.3 Additional facilities

Zita-scope offers some additional convenience
functions:

• Storing and recalling the complete state
of the instrument, including the capture
buffer. The data is stored as a regular CAF
audio file with the instrument settings in a
dedicated GUID chunk.

• Creating a PNG file of the current dis-
play. For images to be included in printed
documents the display background can be
changed to white.

5 Acknowledgements

The author has contemplated writing an oscillo-
scope app for years, but kept postponing it until
some Linux audio users got impatient and ’in-
creased the pressure’. Without them zita-scope
probably wouldn’t exist.

Writing this application in the relatively short
time it finally took was possible only because
of the existence of some excellent and well-
documented software taking care of some as-
pects, in particular Jack and Cairo.

A sincere thanks also to the (near future)
beta-testers who will without doubt provide in-
valuable feedback and suggestions for improve-
ments.

References

[1] T. Witham and B. Baccala, “Xoscope
for Linux.” http://Xoscope.sourceforge.
net/, 2009. [Accessed 27/1/2013].

[2] K. Packard et al., “Cairo.” http:
//www.cairographics.org/. [Accessed
27/1/2013].

http://Xoscope.sourceforge.net/
http://Xoscope.sourceforge.net/
http://www.cairographics.org/
http://www.cairographics.org/

	Introduction
	Requirements
	Problem analysis
	Triggering
	Waveform display

	Software structure
	Data flow
	Display markers
	Additional facilities

	Acknowledgements

