
Creating LV2 Plugins with Faust

Albert Gräf
Dept. of Computer Music, Institute of Musicology

Johannes Gutenberg University (JGU) Mainz, Germany
Dr.Graef@t-online.de

Abstract

The faust-lv2 project aims to provide a complete
set of LV2 plugin architectures for the Faust
programming language. It currently implements
generic audio and MIDI plugins with some in-
teresting features such as Faust MIDI controller
mapping, polyphonic instruments with auto-
matic voice allocation and support for the MIDI
tuning standard. You can use these architec-
tures to quickly turn Faust programs into work-
ing LV2 audio e�ects and instrument plugins,
ready to be run with LV2-capable DAWs such as
Ardour and Qtractor. The plugin architectures
and some helper scripts are now also available
in the Faust distribution, and the Faust online
compiler supports these as well.

Keywords

Faust, LV2, plugins, audio, MIDI.

1 Introduction

Most Linux audio users will be familiar with
David Robillard's LV2 [4], the successor of the
venerable LADSPA plugin standard. LV2 has
been supported by major Linux DAWs such as
Ardour and Qtractor for quite some time, and
version 1.0 of the standard has been released in
2012, so that LV2 host and plugin authors now
have a stable speci�cation to base their work
on. LV2 is much more complex than LADSPA,
but it is also much more capable. In particular,
it supports both audio and MIDI plugins and
can thus be used to develop audio e�ects as well
as software instruments. One of LV2's strong
points is that it is extensible, so that new ex-
tensions for various special needs can be devel-
oped and deployed in LV2 hosts with (relative)
ease. This makes LV2 very �exible. A number
of both open source and proprietary suites of
LV2 plugins have been developed or ported over
to LV2, such as Calf, CAPS, TAL, drowAudio,
Loomer and linuxDSP, so that Linux audio users

now have a variety of high-quality plugins avail-
able to them. Nevertheless, compared to other
plugin standards such as Steinberg's VST, the
number of available plugins is still quite small.
The goal of the faust-lv2 project is to bring

LV2 to Faust, Grame's funtional DSP program-
ming language [3], so that LV2 plugins can be
developed more easily. The interface is imple-
mented in terms of corresponding LV2 archi-
tectures for Faust. At present two architecture
(C++) �les are provided, one for ordinary au-
dio (e�ect type) plugins and one for polyphonic
MIDI (instrument type) plugins.
We should note here that this is not the �rst

time that LV2 has been targeted by Faust de-
velopers; projects such as Sampo Savolainen's
Foo YC-20 organ emulation [5] or the Guitarix
tube ampli�er simulation by Hermann Meyer
and others [1] utilize Faust as well. However,
the goal of faust-lv2 is di�erent. The archi-
tectures provided by faust-lv2 are completely
generic and thus allow you to compile any Faust
source and get a working LV2 plugin from it.
There is a growing collection of Faust programs
available, ranging from simple routing and pan-
ning plugins to sophisticated sound e�ects and
instruments such as the Faust Synthesis Toolkit
[2]. faust-lv2 enables you to use all of these
in your favourite LV2 host without any further
ado. Many sources will work out of the box,
while others may require a few edits to make the
Faust program behave nicely as an LV2 plugin.
And of course faust-lv2 now also provides a con-
venient way to develop new sound modules and
instruments in Faust and deploy them as LV2
plugins (in fact, recent posts to the Linux audio
mailing lists seem to indicate that faust-lv2 is
already being used that way in some projects).
This paper gives a brief overview of faust-lv2

and how you can use it to compile your own plu-
gins. We also discuss major features and current
limitations of the software and give an outlook
on future work. We don't go into all the gory

details here, however, so the interested reader
should refer to the extended version of this pa-
per at the faust-lv2 website for more informa-
tion:

http://faust-lv2.googlecode.com

2 Installation and basic usage

Chances are that if you are running a recent
Faust version (Faust 0.9.58 will do) then faust-
lv2 is already included, so you don't have to
install anything extra. faust-lv2 is also fully
supported by the Faust online compiler, so you
can just drop your dsp sources there and, after
a few clicks, grab your ready-made LV2 plugin
bundles, even without installing Faust on your
computer.
Another option is to install faust-lv2 from

the source distribution tarball available at the
faust-lv2 project website. As a bonus this also
gives you a few plugin examples you can start
playing with. The package also demonstrates
how you can put together your own LV2 plugin
collections ready to be compiled from source.
faust-lv2 is distributed as free and open-source
software, licensed under the LGPL. More de-
tailed information about the source package can
be found at the project website. Brie�y, if you
go this route then you can compile and install
faust-lv2 as follows:

./waf configure && ./waf && sudo ./waf
install

This will install both the Faust architecture
�les and the sample plugins under /usr/local,
so that you can compile your own plugins and
try the sample plugins in your favourite DAW.
You can also just drop your Faust dsp �les into
the effects and synths subfolders and have
them compiled and installed when running waf.
Alternatively, if you already have Faust in-

stalled, you can also employ two convenience
scripts faust2lv2 and faust2lv2synth dis-
tributed with recent Faust versions, which make
the creation of LV2 bundles very easy; this is
also the approach shown in the remainder of this
paper.
If you want to learn exactly how this works,

you should note that compiling LV2 plugins us-
ing Faust is a bit more involved than usual. This
is because LV2 plugins aren't mere shared li-
brary (.so) �les, but collections of libraries and
RDF description �les in Turtle syntax (.ttl) in
their own directory. This is also known as an

LV2 bundle. The precise steps needed to cre-
ate plugin bundles with Faust are described in
the extended version of this paper and in the
faust-lv2 online documentation, both available
at http://faust-lv2.googlecode.com. Devel-
opers may want to study these if they want to
come up with their own build systems for com-
piling Faust LV2 plugins.

3 Supported plugin types

At present, faust-lv2 supports two types of plug-
ins: the usual audio processing plugins as well as
MIDI-driven software synthesizer plugins. To-
gether these should cover most common uses in
Linux audio software.

3.1 Audio plugins

Audio plugins can be added to the signal
pathway in a DAW in order to realize au-
dio e�ects such as ampli�cation, panning, �l-
tering, distortion, chorus, reverbation, etc.
They are implemented by the lv2 architec-
ture. Please check the lv2.cpp �le in the faust-
lv2 distribution or the Faust library directory
(/usr/local/lib/faust or /usr/lib/faust in
most installations) if you are interested in how
exactly these plugins are implemented. Plugins
created with the lv2 architecture provide the
following basic features:

• Audio inputs and outputs of the Faust dsp
are made available as LV2 audio input and
output ports.

• Faust controls are made available as LV2
control ports with the proper label, initial
value, range and (if supported by the host)
step size. Both �active� (input) and �pas-
sive� (output) Faust controls are supported
and mapped to the corresponding LV2 in-
put and output ports, but note that most
LV2 hosts don't provide access to LV2 con-
trol output ports (a.k.a. Faust passive con-
trols) at this time.

• If the dsp de�nes any controls with corre-
sponding MIDI mappings (midi:ctrl at-
tributes in the Faust source), the plugin
also provides an LV2 MIDI input port and
interprets incoming MIDI controller mes-
sages accordingly.

• Plugin name, description, author and li-
cense information provided as metadata in
the Faust source are translated to the cor-
responding �elds in the LV2 manifest of the
plugin.

http://wiki.faust-lv2.googlecode.com/hg/faust-lv2-lac13-full.pdf
http://faust-lv2.googlecode.com
http://faust.grame.fr/index.php/online-examples
http://faust-lv2.googlecode.com
http://faust-lv2.googlecode.com

The architectures also recognize the following
Faust control metadata and set up the LV2 con-
trol port properties accordingly. Note that some
of these properties rely on extensions which may
not be supported by all LV2 hosts. Please refer
to the LV2 documentation for a closer descrip-
tion of these options.

• The unit attribute (e.g., [unit:Hz]) in the
Faust source is translated to a correspond-
ing LV2 unit attribute. The host may then
display this information in its GUI render-
ing of the plugin controls.

• LV2 scale points can be set with the
lv2:scalePoint (or lv2:scalepoint) at-
tribute on the Faust side. The value of this
attribute in the Faust source takes the form
of a list of pairs of descriptive labels and
corresponding values, for instance:

toggle = button(
"trigger [lv2:scalepoint on 1 off 0]");

The host may then display the given scale
points with a descriptive label in its GUI.

• The lv2:integer attribute in the Faust
source is translated to the lv2:integer LV2
port property, so that the control may be
shown as an integer-only �eld in the host's
GUI.

• The lv2:hidden or lv2:notOnGUI attribute
maps to the LV2 notOnGUI port property,
so that hosts honoring this property may
suppress the display of this control in their
GUI.

It is worth noting here that the special treat-
ment of MIDI controllers and metadata in the
Faust source can also be turned o�, either with
corresponding waf con�gure options (when us-
ing the faust-lv2 source package) or by disabling
corresponding conditional compilation symbols
in the lv2.cpp �le.
For instance, consider the chorus.dsp exam-

ple in the faust-lv2 source (cf. Fig. 1).
Compiling this program to an LV2 bundle can

be done conveniently with the faust2lv2 helper
script included in recent Faust versions:

faust2lv2 chorus.dsp

This leaves a subfolder named chorus.lv2
with the LV2 plugin (.so �le) itself and the
requisite .ttl �les in the current directory.

You can just copy this folder to /usr/lib/lv2,
/usr/local/lib/lv2 or any other directory on
your LV2_PATH to have the plugin recognized by
your DAW or other LV2 host program.
Besides the usual options supported by Faust

compilation scripts, faust2lv2 also understands
the following target-speci�c options:

• -nometa: Normally, metadata in the Faust
program (plugin description, author infor-
mation, etc., as shown in the chorus ex-
ample) will be translated to corresponding
LV2 properties so that this data becomes
available in the LV2 plugin host. When us-
ing the -nometa option, the metadata from
the Faust source is ignored, which may be
useful if you prefer to specify the corre-
sponding information by manually editing
the manifest.ttl �le in the plugin bundle.

• -nomidicc: If you specify this, the plugin
will not process any MIDI control data.
This might be useful if the built-in MIDI
control processing of the plugin gets in the
way of the plugin host's own MIDI con-
troller and automation features.

• -uri-prefix URI : This option speci�es
the URI pre�x of the plugin. The ar-
gument must be a valid URI designa-
tion which, together with the name of
the plugin uniquely identi�es the plu-
gin; please check the LV2 documentation
for details. By, default, the URI pre�x
http://faust-lv2.googlecode.com will be
used. You may want to replace this with
the URL of the website where your plugins
can be downloaded, or any other (possibly
abstract) URI pre�x which uniquely iden-
ti�es your plugins so that they don't clash
with other LV2 plugins installed on your
system.

• -dyn-manifest: This enables dynamic
manifests in the plugin, see Section 4.2
below for details. Note that to make
this work, your LV2 host must support
dynamic manifests. (For hosts like Ar-
dour and Qtractor which are based on
David Robillard's lilv library, you'll have
to make sure that lilv was built with the
--dyn-manifest waf con�gure option.)

Note that the faust-lv2 source package sup-
ports similar (as well as a bunch of other) op-
tions when con�guring the package; run ./waf

declare name "chorus";
declare description "stereo chorus effect";
declare author "Albert Graef";
declare version "1.0";

import("music.lib");

level = hslider("level", 0.5, 0, 1, 0.01);
freq = hslider("freq", 3, 0, 10, 0.01);
dtime = hslider("delay", 0.025, 0, 0.2, 0.001);
depth = hslider("depth", 0.02, 0, 1, 0.001);

tblosc(n,f,freq,mod) = (1-d)*rdtable(n,waveform,i&(n-1)) +
d*rdtable(n,waveform,(i+1)&(n-1))

with {
waveform = time*(2.0*PI)/n : f;
phase = freq/SR : (+ : decimal) ~ _;
modphase = decimal(phase+mod/(2*PI))*n;
i = int(floor(modphase));
d = decimal(modphase);

};

chorus(dtime,freq,depth,phase,x)
= x+level*fdelay(1<<16, t, x)

with {
t = SR*dtime/2*(1+depth*tblosc(1<<16, sin, freq, phase));

};

process = vgroup("chorus", (left, right))
with {

left = chorus(dtime,freq,depth,0);
right = chorus(dtime,freq,depth,PI/2);

};

Figure 1: Faust program chorus.dsp.

configure --help in the faust-lv2 source direc-
tory to get a list of these.

3.2 MIDI plugins

faust-lv2 also fully supports instrument plugins
a.k.a. software synthesizers, which can be em-
ployed as the head of the synth-e�ects chain in
a MIDI track of your DAW. These are imple-
mented by a separate lv2synth architecture.
Besides all of the features of the audio plu-

gins described above, plugins created with the
lv2synth architecture also provide the necessary
logic to drive a polyphonic synth with automatic
voice allocation. To make this work, the Faust
dsp must be able to function as a monophonic
synth which provides controls named freq, gain
and gate to set the pitch (as a frequency in
Hz), velocity (as a normalized value in the range
0...1) and gate (as a binary 0 or 1 value) of
a note, respectively; the example below illus-
trates how this is done. The desired maxi-

mum number of voices can be con�gured with
the --nvoices option (when using the faust-lv2
source package) or by setting the NVOICES macro
in the lv2synth.cpp �le accordingly. The plugin
will manage at most that many instances of the
Faust dsp. The actual number of voices can be
changed dynamically from 1 to NVOICES with a
special Polyphony control provided by the plu-
gin.

This kind of plugin always provides a MIDI
input port and interprets incoming MIDI note
and pitch bend messages, as well as a number of
General MIDI standard controller and system
exclusive (sysex) messages, as detailed below.
By default, the synth units have a pitch bend
range of ±2 semitones (General MIDI default)
and are tuned in equal temperament with A4
at 440 Hz. These defaults can be adjusted as
needed using some of the controller and sysex
messages described below.

• The �all notes o�� (123) and �all sounds o��
(120) MIDI controllers stop sounding notes
on the corresponding MIDI channel.

• The �all controllers o�� (121) MIDI con-
troller resets the current RPN (�registered
parameter number�) and data entry con-
trollers on the corresponding MIDI channel
(see below).

• The registered parameters (RPNs) 0 (pitch
bend range), 1 (channel �ne tuning) and 2
(channel coarse tuning) can be used to set
the pitch bend range and �ne/coarse mas-
ter tuning on the corresponding MIDI chan-
nel in the usual way, employing a combina-
tion of the RPN (101, 100) and data entry
controller pairs (6 and 38, as well as 96 and
97). Please check the MIDI speci�cation for
details.

• Universal realtime and non-realtime
scale/octave tuning messages following the
MIDI Tuning Standard (MTS), Section
MIDI Tuning Scale/Octave Extensions,
can be used to set the synth to a given
octave-based tuning speci�ed as cent o�-
sets relative to equal temperament, which
is repeated in every octave of the MIDI
note range 0...127. Please check Section
4.1 below for further details.

For instance, consider the organ.dsp example
from the faust-lv2 distribution (cf. Fig. 2).
Note the freq, gain and gate controls which

turn this Faust dsp into a monophonic synthe-
sizer. Polyphony with automatic allocation of
up to NVOICES voices is implemented in the plu-
gin architecture. Also note the midi:ctrl 10
attribute in the label of the pan control. This
is Faust control metadata which denotes that
MIDI controller 10 (the MIDI pan position con-
troller) should be associated with this control
value. The plugin architecture will add a MIDI
input port and the required MIDI controller pro-
cessing to the plugin in order to implement this.
(Whether your LV2 host actually passes such
MIDI controller messages to the plugin depends
on the host, though.)
Compiling the plugin works as with audio plu-

gins, using faust2lv2synth in lieu of faust2lv2:

faust2lv2synth organ.dsp

You'll get an organ.lv2 folder which you
simply copy to your LV2 library directory to
have the plugin recognized. In addition to the

target-speci�c options recognized by faust2lv2,
faust2lv2synth also lets you specify the desired
maximum number of voices with the -nvoices
option which takes the desired number of voices
as its argument (the default is 16). In principle,
any positive integer can be speci�ed here, but
the feasible range will of course depend on how
much cpu power you have to spare.
Figure 3 shows the organ.lv2 instrument

along with some other Faust-generated LV2 plu-
gins running in Qtractor.

4 Special features and limitations

In this section we discuss some notable features
and limitations of the Faust LV2 implementa-
tion. The generated plugins should work with
any LV2 1.0 compatible host which supports ei-
ther the urid or the older uri-map extension
(most if not all LV2 hosts will have this). MIDI
input requires a host capable of delivering MIDI
events through LV2's event extension. faust-
lv2 also supports the dynmanifest extension (see
Section 4.2 below), but this is an optional fea-
ture which is by no means required for proper
operation of the plugins.

4.1 MIDI tunings

The MTS support of instrument plugins men-
tioned in the previous section calls for a more
detailed explanation. The general format of the
supported MTS messages is as follows (using
hexadecimal notation):

f0 7f/7e id 08 08/09 bb bb bb tt ... tt f7

Note that the f0 7f and f0 7e headers are
used to denote a universal realtime and non-
realtime sysex message, respectively, and the �-
nal f7 byte terminates the message. Both types
of messages will take e�ect immediately, but the
realtime form will also change the frequencies
of already sounding notes. The device id can
be any 7-bit value from 00 to 7f and will be
ignored, so that the unit will always respond
to these messages, no matter which device id is
speci�ed. The following 08 id denotes an MTS
message, followed either by the 08 subid to de-
note 1-byte, or the 09 subid to denote 2-byte
encoding (see below).
The lv2synth architecture keeps track of sep-

arate tunings for di�erent MIDI channels. The
three bb bytes together specify the bitmask of
MIDI channels the message applies to, most sig-
ni�cant byte �rst; the bitmask 03 7f 7f thus
sets the tuning for all MIDI channels, while the

http://home.roadrunner.com/~{}jgglatt/tech/midispec.htm
http://www.midi.org/techspecs/midituning.php
http://www.midi.org/techspecs/midituning.php{\T1\textbackslash }#oct{\T1\textbackslash }_ext

declare name "organ";
declare description "a simple additive synth";
declare author "Albert Graef";
declare version "1.0";

import("music.lib");

// control variables

vol = hslider("vol", 0.3, 0, 10, 0.01); // %
pan = hslider("pan [midi:ctrl 10]", 0.5, 0, 1, 0.01); // %
attack = hslider("attack", 0.01, 0, 1, 0.001); // sec
decay = hslider("decay", 0.3, 0, 1, 0.001); // sec
sustain = hslider("sustain", 0.5, 0, 1, 0.01); // %
release = hslider("release", 0.2, 0, 1, 0.001); // sec
freq = nentry("freq", 440, 20, 20000, 1); // Hz
gain = nentry("gain", 0.3, 0, 10, 0.01); // %
gate = button("gate"); // 0/1

// relative amplitudes of the different partials

amp(1) = hslider("amp1", 1.0, 0, 3, 0.01);
amp(2) = hslider("amp2", 0.5, 0, 3, 0.01);
amp(3) = hslider("amp3", 0.25, 0, 3, 0.01);

// additive synth: 3 sine oscillators with adsr envelop

partial(i) = amp(i+1)*osc((i+1)*freq);

process = sum(i, 3, partial(i))

* (gate : vgroup("1-adsr", adsr(attack, decay, sustain, release)))

* gain : vgroup("2-master", *(vol) : panner(pan));

Figure 2: Faust program organ.dsp.

bitmask 00 00 01 only a�ects the tuning of the
�rst MIDI channel.
The tt bytes specify the tuning itself, as a se-

quence of 12 tuning o�sets for the notes C, C],
D, etc., thru B. In the one-byte encoding (subid
08), each tuning o�set is a 7 bit value in the
range 00...7f, with 00, 40 and 7f denoting -64,
0 and +63 cents, respectively. Thus equal tem-
perament is speci�ed using twelve 40 bytes, and
a quarter comma meantone tuning could be de-
noted, e.g., as 4a 32 43 55 3d 4e 36 47 2f 40
51 39. The two-byte encoding (subid 09) works
in a similar fashion, but provides both an ex-
tended range and better resolution. Here each
tuning o�set is speci�ed as a 14 bit value en-
coded as two data bytes (most signi�cant byte
�rst), mapping the range 0...16384 to -100..+100
cents with the center value 8192 (40 00) denot-
ing 0 cents. Please check the MMA's MIDI Tun-
ing Standard document for details.
Using these messages you can tune a Faust

synth in any octave-based temperament you

like, provided that your DAW supports send-
ing sysex messages to LV2 instrument plugins.
(Qtractor allows you to enter the sysex messages
in its �Buses� dialog. Ardour 3 doesn't support
editing sysex messages yet, but it is still under
development, so there is hope that this will be
�xed before the �nal release.) A large reposi-
tory of historical and contemporary microtonal
tunings is available on the website of the Scala
program; writing a little script to convert the
Scala tuning �les to binary sysex �les in one of
the formats described above should be a fun ex-
ercise for Linux audio developers.

4.2 Dynamic manifests

Plugins created with faust-lv2 support the LV2
dynamic manifest extension, so that all requi-
site information about the plugin's name, au-
thor, ports, etc. can also be included in the plu-
gin module (.so �le) itself. This also cuts down
the compilation time since the manifest doesn't
have to be generated from the plugin executable

http://www.midi.org/techspecs/midituning.php
http://www.midi.org/techspecs/midituning.php
http://www.huygens-fokker.org/scala/
http://www.huygens-fokker.org/scala/
http://lv2plug.in/ns/ext/dynmanifest/

Figure 3: faust-lv2 plugins running in Qtractor.

beforehand.
Note that in order to provide better com-

patibility with current LV2 hosts, which usu-
ally don't have this extension enabled, this fea-
ture isn't used by default in the provided build
scripts. But you can select it by con�gur-
ing faust-lv2 with the --dyn-manifest option,
when using the faust-lv2 source package, or with
the -dyn-manifest option of the faust2lv2 and
faust2lv2synth scripts included in recent Faust
versions.

4.3 GUIs

One major limitation of faust-lv2 is that it does
not support custom plugin GUIs in the current
version. This might be added in the future, but
for the time being you'll have to rely on the LV2
host to display a GUI for the control elements.
Both Ardour and Qtractor do a reasonably good
job at this. (However, the hierarchical layout of
GUI controls prescribed by the Faust source is
lost in the generic plugin GUIs provided by LV2
hosts.)

5 Future work

While the LV2 plugin implementation of the
Faust LV2 architectures is fully functional and
reasonably complete already, there are ways in
which they could be further improved. Some
items which are worth further consideration are
listed below.

• Add improvements for smoother playback.

In particular, the polyphony control pro-
vided by lv2synth.cpp is fairly disruptive
right now, as it simply resets all voices each
time the control changes.

• Add custom plugin GUIs which honor the
hierarchical GUI layout de�ned in the Faust
source. Corresponding code is readily avail-
able in other Faust architectures such as
jack-gtk and jack-qt, but would need to be
integrated with the LV2 architectures and
the LV2 GUI extension.

• Update the architectures so that they em-
ploy the new atom-based interface for MIDI
input instead of the older (and now depre-
cated) LV2 Event extension.

• Add support for the new LV2 Time exten-
sion, which provides transport information
such as the current position, tempo and
time signature to a plugin.

• Implement MIDI output for passive Faust
controls. It's unclear if and how existing
LV2 hosts would process such data, how-
ever, so there's still some research to be
done there.

Besides these, LV2's extensible nature might call
for completely new plugin types in the future.
While the audio and instrument plugin types
implemented by faust-lv2 seem to cover the re-
quirements of the current generation of DAWs,

http://lv2plug.in/ns/ext/atom/
http://lv2plug.in/ns/ext/event/
http://lv2plug.in/ns/ext/time/

it is good to know that Faust's and LV2's mod-
ular nature will make it easy to support new
types of audio applications when they emerge.

References

H. Meyer, A. Degert, and P. Shorthose. Gui-
tarix tube ampli�er simulation for Jack/
Linux. http://guitarix.sourceforge.net,
2013.

R. Michon and J. O. Smith. Faust-STK:
a set of linear and nonlinear physical mod-
els for the Faust programming language. In
G. Peeters, editor, Proceedings of the 11th
International Conference on Digital Audio
E�ects (DAFx-11), pages 199�204, Paris,
2011. IRCAM.

Y. Orlarey, D. Fober, and S. Letz. FAUST :
an e�cient functional approach to DSP pro-
gramming. In G. Assayag and A. Gerzso,
editors, New Computational Paradigms for
Computer Music. Editions Delatour France,
2009.

D. Robillard. LV2 1.2.0 Speci�cations. http:
//lv2plug.in/ns/, 2013.

S. Savolainen. Emulating a combo organ us-
ing Faust. In Proceedings of the 9th Interna-
tional Linux Audio Conference, pages 21�29,
Utrecht, 2010. Hogeschool voor de Kunsten.

http://guitarix.sourceforge.net
http://lv2plug.in/ns/
http://lv2plug.in/ns/

	1 Introduction
	2 Installation and basic usage
	3 Supported plugin types
	3.1 Audio plugins
	3.2 MIDI plugins

	4 Special features and limitations
	4.1 MIDI tunings
	4.2 Dynamic manifests
	4.3 GUIs

	5 Future work

