
 

David García Garzón
(UPF, CLAM Project)
Xavier Serra Román

(Dolby, CLAM Project)

http://clam-project.org

LAC2013 Graz

IPyCLAM
Enpowering CLAM with Python



 

Outline

● Introduction to CLAM
● API
● Engines (CLAM, JACK...)
● Prototyping
● Conclusions



 

The CLAM project

● Born at Universitat Pompeu Fabra, 2001
● Adopted by Barcelona Media Foundation, 

2007
● Startups, adquisitions by big corporations...

● Team members busy
● Potential contributions won't be released

● Nowadays, it has no support from any parent 
institution like it had in the past.



 

Buried? Not entirely!!

● A bunch of 
developers still push 
in their spare time.

● Big project, few 
hands...

● Wanna join?



 

CLAM



 

CLAM: building blocks



 

CLAM: visual prototyping



 

CLAM: visual prototyping



 

Why Python?

● Fast development
● Interactive
● But... wasn't Python unsafe for real-time?

● Nevermind, RT code is isolated inside modules
● Let Python play the glue role



 

How does IPyClam empower 
CLAM?

● Powerful prototyping language
● PySide/PyQt4

● Interactive manipulation of networks
● Serialization format
● Parametric networks



 

A not so complex network



 

API design goals

● Do not mimic C++ API
● Python expressiveness

● Slices, dynamic attributes, iterators...

● Redundant API:
● Offer the convenient API but also the API that 

being less convenient cover all cases.

● Interactive use:
● Object discovery by tab completion



 

Convenience vs. versatility

● Convenient way

net.processing1.port1
● Short and enables tab completion discovery

● Most versatile way

net[“processing1”].inports[“port1”]
● Invalid Python identifiers
● Collisions with existing methods/attributes
● Collisions with outports/controls/configs



 

An example: JACK stereo wire

from ipyclam import Network
n = Network()
n.source = “AudioSource”
n.sink = n.types.AudioSink
n.source.NSources = 2
n.sink.NSinks = 2
n.source > n.sink
n.backend = “JACK”
n.play()



 

Module creation

● Assign a new attribute or item

n.newproc = ...
n[“newproc”] = ...

● To a string

n.newproc = “AudioSource”

● Or to a member of n.types.

n.newproc = n.types.AudioSources

● Provides available types by tab completion



 

Module configuration

● Attribute or item assignment

net.myprocessing.parameter = “value”
net.myprocessing['parameter'] = “value”
net.myprocessing.config.parameter = “value”

● Holding reconfiguration

with net.myprocessing.config as c :
c.parameter1 = 1000
c.parameter2 = 2000



 

Connections: Broadcasting

● One to one

net.source.outport1 > net.sink.inport1

● One to many

net.source.outport1 > net.sink

● Many to many

net.source > net.sink



 

Connections: Slices

● Connecting intervals

net.source[2:7] > net.sink

● Connecting just even ports

net.source[::2] > net.sink

● Inverting channel order

net.source[::-1] > net.sink



 

Iterables

● Iterable objects:

porttypes = {
port.name: port.type 
for port in net.myproc.outports }

● net.proc.outports
● net.proc.inports
● net.proc.outcontrols
● net.proc.incontrols

● net.processings
● net.types
● net.proc.port.peers
● net.proc.config



 

Audio backends and transport

● Setting the backend property

net.backend = “PortAudio”

● Controling the playback

net.play(), net.stop(), net.pause()

net.isPlaying(), net.isStopped(), net.isPaused()



 

Self replicable

● net.code() generates the code needed to 
regenerate itself.

● Alternative to current XML serialization
● More readable
● Not safe if using the Python interpret!!
● Fast display: If you just type 'net' prints the 

code.



 

Integrated console



 

JACK engine, ¿IPyJack?



 

How?

User API

Stateless

Redundant

Pythonic

Convenient

Engine API

Stateful

Narrow

C like

Functional

● Original intent: decouple syntactic sugar 
from the code that does stuff. Mock-ups.

● Side effect: Reimplementing the engine API 
for a different system, like JACK is fast!



 

PySide/PyQt4 integration



 

Replicating Prototyper behaviour

import QtGui from PySide
import ipyclam.ui.PySide as ui

app = QtGui.QApplication(sys.argv)
net = ipyclam.Network()
net.load(“sms.clamnetwork”)
w = ui.loadUi(“dialog.ui”)
net.bindUi(w)
w.show()
net.play()
app.exec_()



 

A simple osciloscope

● Creating widgets with Qt factories
● Assigning binding properties:

net.source = “AudioSource”
w = ui.createWidget(“Oscilloscope”)
w.setProperty(“clamOutport”, “source.1”)
net.bindUi(w)
w.show()
...



 

Conclusions

● Nice API!
● Reusable for other systems like JACK
● Prototyping: Qt + Python + CLAM
● Integrated console for interactive 

manipulation and exploration of networks.



 

Future work

● Fixing NetworkEditor interaction:
● Canvas update.
● Processing placement

● Examples, examples, examples.
● Numpy based audio backend
● Modules in Python for offline processing
● Other engines: gAlan, Patchage...



 

Questions?



 

Thanks


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31

