
Csound 6, Old Code Renewed
LAC2013

John ffitch, Victor Lazzarini and Steven Yi

National University of Ireland, Maynooth

LAC Graz, May 2013

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 1 / 23

Background

Introduction

In March 2012, a decision was taken to move the development of
Csound from version 5 to a new major version, 6.

Moving to a new version allowed developers to rethink key aspects of
the system, without the requirement of keeping ABI or API
compatibility with earlier iterations.

The only restriction, which is a fundamental one for Csound, is to
provide backwards language compatibility, ensuring that music
composed with the software will continue to be preserved.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 2 / 23

Background

Introduction

In March 2012, a decision was taken to move the development of
Csound from version 5 to a new major version, 6.

Moving to a new version allowed developers to rethink key aspects of
the system, without the requirement of keeping ABI or API
compatibility with earlier iterations.

The only restriction, which is a fundamental one for Csound, is to
provide backwards language compatibility, ensuring that music
composed with the software will continue to be preserved.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 2 / 23

Background

Introduction

In March 2012, a decision was taken to move the development of
Csound from version 5 to a new major version, 6.

Moving to a new version allowed developers to rethink key aspects of
the system, without the requirement of keeping ABI or API
compatibility with earlier iterations.

The only restriction, which is a fundamental one for Csound, is to
provide backwards language compatibility, ensuring that music
composed with the software will continue to be preserved.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 2 / 23

Background

A Short History of Csound

Csound can be traced back to Barry Vercoe’s MUSIC 360 package for
computer music (1968), which was itself a variant of Max Mathews’
and Joan Miller’s MUSIC IV (1964).

Following the introduction of the PDP-11 minicomputer, a modified
version of the software appeared as MUSIC 11.

Later, with the availability of C (and UNIX), this program was re-written
in that language as Csound, allowing a simpler cycle of development
and portability, in comparison to its predecessor. In the early 2000s,
the final releases of version 4 attempted to retrofit an application
programming interface (API), so that the system could be used as a
library.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 3 / 23

Background

A Short History of Csound

Csound can be traced back to Barry Vercoe’s MUSIC 360 package for
computer music (1968), which was itself a variant of Max Mathews’
and Joan Miller’s MUSIC IV (1964).

Following the introduction of the PDP-11 minicomputer, a modified
version of the software appeared as MUSIC 11.

Later, with the availability of C (and UNIX), this program was re-written
in that language as Csound, allowing a simpler cycle of development
and portability, in comparison to its predecessor. In the early 2000s,
the final releases of version 4 attempted to retrofit an application
programming interface (API), so that the system could be used as a
library.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 3 / 23

Background

A Short History of Csound

Csound can be traced back to Barry Vercoe’s MUSIC 360 package for
computer music (1968), which was itself a variant of Max Mathews’
and Joan Miller’s MUSIC IV (1964).

Following the introduction of the PDP-11 minicomputer, a modified
version of the software appeared as MUSIC 11.

Later, with the availability of C (and UNIX), this program was re-written
in that language as Csound, allowing a simpler cycle of development
and portability, in comparison to its predecessor. In the early 2000s,
the final releases of version 4 attempted to retrofit an application
programming interface (API), so that the system could be used as a
library.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 3 / 23

Background

Csound 5

The need for the further development of the Csound API, as well as
other innovations, prompted a code freeze and a complete overhaul of
the system into version 5, released as a library with a few basic
frontends, in 2006.

Much of this development included updating 1970s programming
practices by applying more modern standards. One of the major aims
was to make the code reentrant, so that its use as a library could be
made more robust.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 4 / 23

Background

Csound 5

The need for the further development of the Csound API, as well as
other innovations, prompted a code freeze and a complete overhaul of
the system into version 5, released as a library with a few basic
frontends, in 2006.

Much of this development included updating 1970s programming
practices by applying more modern standards. One of the major aims
was to make the code reentrant, so that its use as a library could be
made more robust.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 4 / 23

Background

Csound operation in a nutshell

As a MUSIC-N language, Csound incorporates a compiler for
instruments. During performance, these can be activated (instantiated)
by various means, the traditional one being the standard numeric
score.

The steps involved in the compiler can be divided into two: parsing,
and compilation proper.

At instantiation, an init-pass loop is performed, executing all the
once-off operations for that instance. This is then inserted in a list of
active instruments, and its performance code is executed sequentially,
processing vectors (audio signals), scalars (control signals) or frames
of spectral data.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 5 / 23

Background

Csound operation in a nutshell

As a MUSIC-N language, Csound incorporates a compiler for
instruments. During performance, these can be activated (instantiated)
by various means, the traditional one being the standard numeric
score.

The steps involved in the compiler can be divided into two: parsing,
and compilation proper.

At instantiation, an init-pass loop is performed, executing all the
once-off operations for that instance. This is then inserted in a list of
active instruments, and its performance code is executed sequentially,
processing vectors (audio signals), scalars (control signals) or frames
of spectral data.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 5 / 23

Background

Csound operation in a nutshell

As a MUSIC-N language, Csound incorporates a compiler for
instruments. During performance, these can be activated (instantiated)
by various means, the traditional one being the standard numeric
score.

The steps involved in the compiler can be divided into two: parsing,
and compilation proper.

At instantiation, an init-pass loop is performed, executing all the
once-off operations for that instance. This is then inserted in a list of
active instruments, and its performance code is executed sequentially,
processing vectors (audio signals), scalars (control signals) or frames
of spectral data.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 5 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Motivation

Following the 2011 Csound Conference in Hannover, there were a
number of user requests that would be more easily achievable with a
version bump:

the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running instance
of the engine
additions to the orchestra language, for instance, generic arrays
rationalisation of the API to allow further features in frontends
loadable binary formats, API construction of instruments
further development of parallelism
improved facilities for live coding

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 6 / 23

Csound6

Developments to date: Build system and Tests

In Csound 6, the official build system is now the CMake-based build.
Moving to CMake introduced some hurdles and changes in workflow,
but it also brought with it generation of build system files, such as
Makefiles, XCode projects, and Eclipse projects.

Unit and functional tests have been added to Csound 6’s codebase.
CTest is the test running utility used to execute the individual C-code
tests. In addition, CUnit is employed to create the individual tests and
test-suites within the test code files. Beyond C-code testing, the suite
of CSD’s used for application/integration testing continues to grow, and
a new set of Python tests has also been added for testing API usage
from a host language.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 7 / 23

Csound6

Developments to date: Build system and Tests

In Csound 6, the official build system is now the CMake-based build.
Moving to CMake introduced some hurdles and changes in workflow,
but it also brought with it generation of build system files, such as
Makefiles, XCode projects, and Eclipse projects.

Unit and functional tests have been added to Csound 6’s codebase.
CTest is the test running utility used to execute the individual C-code
tests. In addition, CUnit is employed to create the individual tests and
test-suites within the test code files. Beyond C-code testing, the suite
of CSD’s used for application/integration testing continues to grow, and
a new set of Python tests has also been added for testing API usage
from a host language.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 7 / 23

Csound6

Developments to date: Code Reorganisation

The Csound code base is passing through a significant reorganisation:

obsolete code, such as the old parser, has been removed.
some opcodes have been completely rewritten
The CSOUND struct has been rationalised and reorganised
the public API has been redesigned

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 8 / 23

Csound6

Developments to date: Code Reorganisation

The Csound code base is passing through a significant reorganisation:

obsolete code, such as the old parser, has been removed.
some opcodes have been completely rewritten
The CSOUND struct has been rationalised and reorganised
the public API has been redesigned

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 8 / 23

Csound6

Developments to date: Code Reorganisation

The Csound code base is passing through a significant reorganisation:

obsolete code, such as the old parser, has been removed.
some opcodes have been completely rewritten
The CSOUND struct has been rationalised and reorganised
the public API has been redesigned

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 8 / 23

Csound6

Developments to date: Code Reorganisation

The Csound code base is passing through a significant reorganisation:

obsolete code, such as the old parser, has been removed.
some opcodes have been completely rewritten
The CSOUND struct has been rationalised and reorganised
the public API has been redesigned

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 8 / 23

Csound6

Developments to date: Code Reorganisation

The Csound code base is passing through a significant reorganisation:

obsolete code, such as the old parser, has been removed.
some opcodes have been completely rewritten
The CSOUND struct has been rationalised and reorganised
the public API has been redesigned

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 8 / 23

Csound6

Developments to date: Type System

The Csound language uses strongly typed variables and enforces
these at compile-time. The system of types was hard-coded into the
parser and compiler.

In Csound 6, a generic type system was implemented as well as
tracking of variable names to types. The new system provides a
mechanism to create and handle types, such that new types can be
easily added to the language.

Variable definitions and types are kept after compilation. This allows
the possibility of inspecting variables found in instruments or in the
global memory space.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 9 / 23

Csound6

Developments to date: Type System

The Csound language uses strongly typed variables and enforces
these at compile-time. The system of types was hard-coded into the
parser and compiler.

In Csound 6, a generic type system was implemented as well as
tracking of variable names to types. The new system provides a
mechanism to create and handle types, such that new types can be
easily added to the language.

Variable definitions and types are kept after compilation. This allows
the possibility of inspecting variables found in instruments or in the
global memory space.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 9 / 23

Csound6

Developments to date: Type System

The Csound language uses strongly typed variables and enforces
these at compile-time. The system of types was hard-coded into the
parser and compiler.

In Csound 6, a generic type system was implemented as well as
tracking of variable names to types. The new system provides a
mechanism to create and handle types, such that new types can be
easily added to the language.

Variable definitions and types are kept after compilation. This allows
the possibility of inspecting variables found in instruments or in the
global memory space.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 9 / 23

Csound6

Developments to date: Generic Arrays

In Csound 5, a ‘t’ type was added that provided a user-definable
length, single-dimension array of floating-point numbers.

In Csound 6, with the introduction of the generic type system, the code
for t-types was extended to allow creation of homogenous,
multi-dimensional arrays of any type. Additionally, the argument list
specification for opcodes was extended to allow denoting arrays as
arguments.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 10 / 23

Csound6

Developments to date: Generic Arrays

In Csound 5, a ‘t’ type was added that provided a user-definable
length, single-dimension array of floating-point numbers.

In Csound 6, with the introduction of the generic type system, the code
for t-types was extended to allow creation of homogenous,
multi-dimensional arrays of any type. Additionally, the argument list
specification for opcodes was extended to allow denoting arrays as
arguments.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 10 / 23

Csound6

Developments to date: On-the-fly Compilation

The first steps necessary for on-the-fly compilation, were in the latter
versions of Csound 5, with the introduction of the new parser. Also,
compilation from text files was replaced by a new core (memory) file
subsystem, so now strings containing Csound code could be
presented directly to the parser.

In Csound 6, the monolithic API call to compile/start Csound is broken
down into csoundParseOrc() + csoundCompileTree() (with
these two combined in csoundCompileOrc()) and
csoundStart(). The parsing function creates an abstract syntax
tree (AST) from a string containing Csound code. The compilation
function then creates the internal data structures that the AST
represents, ready for engine instantiation. These operations can be
performed repeatedly.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 11 / 23

Csound6

Developments to date: On-the-fly Compilation

The first steps necessary for on-the-fly compilation, were in the latter
versions of Csound 5, with the introduction of the new parser. Also,
compilation from text files was replaced by a new core (memory) file
subsystem, so now strings containing Csound code could be
presented directly to the parser.

In Csound 6, the monolithic API call to compile/start Csound is broken
down into csoundParseOrc() + csoundCompileTree() (with
these two combined in csoundCompileOrc()) and
csoundStart(). The parsing function creates an abstract syntax
tree (AST) from a string containing Csound code. The compilation
function then creates the internal data structures that the AST
represents, ready for engine instantiation. These operations can be
performed repeatedly.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 11 / 23

Csound6

Developments to date: On-the-fly Compilation

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 12 / 23

Csound6

Developments to date: Sample Accuracy

Csound has always allowed sample-level accuracy, a feature present
since its MUSIC 11 incarnation, by setting the processing block,
(ksmps), to 1 sample.

In Csound 6, an alternative sample accuracy method has been
introduced, using an offset into the processing block, which will round
the start time of an event to a single sample. Similarly, event durations
are also made to be sample accurate, as the last iteration of each
processing loop is limited to the correct number of samples.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 13 / 23

Csound6

Developments to date: Sample Accuracy

Csound has always allowed sample-level accuracy, a feature present
since its MUSIC 11 incarnation, by setting the processing block,
(ksmps), to 1 sample.

In Csound 6, an alternative sample accuracy method has been
introduced, using an offset into the processing block, which will round
the start time of an event to a single sample. Similarly, event durations
are also made to be sample accurate, as the last iteration of each
processing loop is limited to the correct number of samples.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 13 / 23

Csound6

Developments to date: Sample Accuracy

Cycle n

Start in cycle Early end

Cycle 1 Cycle 2 Cycle 3

silent silent

This option is provided with the non-default --sample-accurate
flag, to preserve backward compatibility.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 14 / 23

Csound6

Developments to date: Realtime Priority Mode

Csound has been a realtime audio synthesis engine since 1990,
although it was never provided with strict realtime-safe behaviour.

Given the multiple applications of Csound, it makes sense to provide
separate operation modes for its engine. In Csound 6, we introduce the
realtime priority mode, set by the --realtime option, which aims to
provide better support for realtime safety, with complete asynchronous
file access and a separate thread for unit generator initialisation.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 15 / 23

Csound6

Developments to date: Realtime Priority Mode

Csound has been a realtime audio synthesis engine since 1990,
although it was never provided with strict realtime-safe behaviour.

Given the multiple applications of Csound, it makes sense to provide
separate operation modes for its engine. In Csound 6, we introduce the
realtime priority mode, set by the --realtime option, which aims to
provide better support for realtime safety, with complete asynchronous
file access and a separate thread for unit generator initialisation.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 15 / 23

Csound6

Developments to date: Multicore Operation

In 2009 an experimental system for using multiple cores for parallel
rendering of instruments was written, and later incorporated in Csound
5. While the design was generally semantically correct it only delivered
moderate performance gains.

For Csound 6 we are developing a different approach, where semantic
analysis and the creation/consumption of the DAG of dependencies is
only done on instantiation/destruction of instruments. This uses
watch-lists as found in SAT-solvers.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 16 / 23

Csound6

Developments to date: Multicore Operation

In 2009 an experimental system for using multiple cores for parallel
rendering of instruments was written, and later incorporated in Csound
5. While the design was generally semantically correct it only delivered
moderate performance gains.

For Csound 6 we are developing a different approach, where semantic
analysis and the creation/consumption of the DAG of dependencies is
only done on instantiation/destruction of instruments. This uses
watch-lists as found in SAT-solvers.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 16 / 23

Csound6

Developments to date: Multicore Operation,
preliminary results

-j CloudStrata Xanadu Trapped...
ksmps=500 (sr=96000) ksmps=10 ksmps=100 ksmps=10 ksmps=100 ksmps=1000

1 1 1 1 1 1 1
2 0.54 0.57 0.55 0.75 0.79 0.78
3 0.39 0.40 0.40 0.66 0.76 0.73
4 0.32 0.39 0.33 0.61 0.72 0.70

Relative performance with multiple threads in three existing Csound
code examples, -j indicates the number of threads used

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 17 / 23

Csound6

Other developments

Since the time of the writing of this paper, other developments have
taken place:

Reordering of compilation stages and overhaul of the semantic
system.
support for functions with more than one arguments and opcodes
as functions (that can be inlined in expressions) was added.

out linen(moogladder(vco2(p4,p5),

1000+linen(2000,0.5,p3,0.5),0.7),
1,p3,.1)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 18 / 23

Csound6

Other developments

Since the time of the writing of this paper, other developments have
taken place:

Reordering of compilation stages and overhaul of the semantic
system.
support for functions with more than one arguments and opcodes
as functions (that can be inlined in expressions) was added.

out linen(moogladder(vco2(p4,p5),

1000+linen(2000,0.5,p3,0.5),0.7),
1,p3,.1)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 18 / 23

Csound6

Other developments

Since the time of the writing of this paper, other developments have
taken place:

Reordering of compilation stages and overhaul of the semantic
system.
support for functions with more than one arguments and opcodes
as functions (that can be inlined in expressions) was added.

out linen(moogladder(vco2(p4,p5),

1000+linen(2000,0.5,p3,0.5),0.7),
1,p3,.1)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 18 / 23

Csound6

Other developments

multiple strings in event parameters are now allowed
support for array operations has been added
the 6.00 API has been finalised
further internal changes (local ksmps in instrs, hash tables for
strings, more code reorganisation, etc)
Csound 6 Release Candidate 1 has been finalised, RC2 on its
way.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 19 / 23

Csound6

Other developments

multiple strings in event parameters are now allowed
support for array operations has been added
the 6.00 API has been finalised
further internal changes (local ksmps in instrs, hash tables for
strings, more code reorganisation, etc)
Csound 6 Release Candidate 1 has been finalised, RC2 on its
way.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 19 / 23

Csound6

Other developments

multiple strings in event parameters are now allowed
support for array operations has been added
the 6.00 API has been finalised
further internal changes (local ksmps in instrs, hash tables for
strings, more code reorganisation, etc)
Csound 6 Release Candidate 1 has been finalised, RC2 on its
way.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 19 / 23

Csound6

Other developments

multiple strings in event parameters are now allowed
support for array operations has been added
the 6.00 API has been finalised
further internal changes (local ksmps in instrs, hash tables for
strings, more code reorganisation, etc)
Csound 6 Release Candidate 1 has been finalised, RC2 on its
way.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 19 / 23

Csound6

Other developments

multiple strings in event parameters are now allowed
support for array operations has been added
the 6.00 API has been finalised
further internal changes (local ksmps in instrs, hash tables for
strings, more code reorganisation, etc)
Csound 6 Release Candidate 1 has been finalised, RC2 on its
way.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 19 / 23

Csound6

Other developments

multiple strings in event parameters are now allowed
support for array operations has been added
the 6.00 API has been finalised
further internal changes (local ksmps in instrs, hash tables for
strings, more code reorganisation, etc)
Csound 6 Release Candidate 1 has been finalised, RC2 on its
way.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 19 / 23

Csound6

Third-party frontend example

(example)

Cabbage Live Coder frontend by Rory Walsh

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 20 / 23

Conclusions

Future developments

A number of ideas have also been put forward, which will be tackled in
due course. These include for instance:

support for alternative orchestra languages (through access to the
parse tree format or some sort of intermediary representation)
and programmatic building/editing of instruments.
further language features (e.g. namespaces, tuples, block
scoping, dynamic typing)
decoupling of widget opcodes from FLTK dependency (and
exposure through API)
input / output buffer reorganisation (output buffers added to
instruments)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 21 / 23

Conclusions

Future developments

A number of ideas have also been put forward, which will be tackled in
due course. These include for instance:

support for alternative orchestra languages (through access to the
parse tree format or some sort of intermediary representation)
and programmatic building/editing of instruments.
further language features (e.g. namespaces, tuples, block
scoping, dynamic typing)
decoupling of widget opcodes from FLTK dependency (and
exposure through API)
input / output buffer reorganisation (output buffers added to
instruments)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 21 / 23

Conclusions

Future developments

A number of ideas have also been put forward, which will be tackled in
due course. These include for instance:

support for alternative orchestra languages (through access to the
parse tree format or some sort of intermediary representation)
and programmatic building/editing of instruments.
further language features (e.g. namespaces, tuples, block
scoping, dynamic typing)
decoupling of widget opcodes from FLTK dependency (and
exposure through API)
input / output buffer reorganisation (output buffers added to
instruments)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 21 / 23

Conclusions

Future developments

A number of ideas have also been put forward, which will be tackled in
due course. These include for instance:

support for alternative orchestra languages (through access to the
parse tree format or some sort of intermediary representation)
and programmatic building/editing of instruments.
further language features (e.g. namespaces, tuples, block
scoping, dynamic typing)
decoupling of widget opcodes from FLTK dependency (and
exposure through API)
input / output buffer reorganisation (output buffers added to
instruments)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 21 / 23

Conclusions

Future developments

A number of ideas have also been put forward, which will be tackled in
due course. These include for instance:

support for alternative orchestra languages (through access to the
parse tree format or some sort of intermediary representation)
and programmatic building/editing of instruments.
further language features (e.g. namespaces, tuples, block
scoping, dynamic typing)
decoupling of widget opcodes from FLTK dependency (and
exposure through API)
input / output buffer reorganisation (output buffers added to
instruments)

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 21 / 23

Conclusions

Conclusions

We hope to have demonstrated how the technology embodied in this
software package has been renovated continuously in response to
developments in Computer Science and Music. Our aim is to continue
to support a variety of styles of computer music composition and
performance, as well as the various ways in which Csound can be
used for application development.

It is also important to note, for readers, that the re-engineering of
Csound is taking place quite publicly in the Csound 6 git repository on
Sourceforge
(git://git.code.sf.net/p/csound/csound6-git). Anyone is
welcome to check out and examine our struggles with computer
technology and the solutions we are putting forward here.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 22 / 23

Conclusions

Conclusions

We hope to have demonstrated how the technology embodied in this
software package has been renovated continuously in response to
developments in Computer Science and Music. Our aim is to continue
to support a variety of styles of computer music composition and
performance, as well as the various ways in which Csound can be
used for application development.

It is also important to note, for readers, that the re-engineering of
Csound is taking place quite publicly in the Csound 6 git repository on
Sourceforge
(git://git.code.sf.net/p/csound/csound6-git). Anyone is
welcome to check out and examine our struggles with computer
technology and the solutions we are putting forward here.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 22 / 23

Conclusions

Acknowledgements

Our thanks go to the Csound community for their indulgence,
suggestions and support. In addition, we would like to thank Martin
Brain who introduced the idea of watch-lists and co-developed the
detailed performance algorithm. We also acknowledge the implicit
support from Sourceforge hosting

This work has been partly funded by the Irish HEA PRTLI-5 Digital Arts
and Humanities programme.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 23 / 23

Conclusions

Acknowledgements

Our thanks go to the Csound community for their indulgence,
suggestions and support. In addition, we would like to thank Martin
Brain who introduced the idea of watch-lists and co-developed the
detailed performance algorithm. We also acknowledge the implicit
support from Sourceforge hosting

This work has been partly funded by the Irish HEA PRTLI-5 Digital Arts
and Humanities programme.

ffitch, Lazzarini and Yi (NUIM) Csound 6 LAC2013 23 / 23

