
An Approach to Live Algorithmic
Composition using Conductive

Renick Bell

May 9, 2013





2 intro

Renick Bell

doctoral
student at
Tama Art
University
in Tokyo

working on

Conductive, a Haskell library for live coding

presented a paper about Conductive at LAC 2011 in Maynooth

photo of the Tama Art University library, http://openbuildings.com
/buildings/tama-art-university-library-profile-148/media



3 outline

intention1.

Conductive concepts2.

problem with previous performance style3.

generating interonset interval (IOI) patterns4.

density5.

TimespanMap6.

evaluation7.

future8.



4 intention

to perform generative music live with the computer as an
active partner

to make it possible for me to do much more than I am
physically able to do on traditional musical instruments



5 not just Han
Bennink

I showed this slide in my
presentation in 2011.

Han Bennink playing with
Peter Brötzmann at the
RPI Armory, Troy, NY (25
April 2008); photo by Mark
A. Lunt, Creative
Commons license;
http://www.flickr.com
/photos/maldoror-
2008/2442869131
/in/photostream/



6 sometimes I want Paal
Nilssen-Love

He
might
not
play
the
wall
or his

mouth, but he sometimes plays more furiously.

Paal Nilssen-Love @ Smeltehytta, Kongsberg Jazz Festival
2011-07-09, photo by Heiko Purnhagen (c) 2012

Actually, though, a Hans Bennik or Paul Nillsen-Love is not enough.



7 actually an orchestra of Han
Benninks and Paul Nilssen-Loves

This is
actually
what I want:
Butch Morris
conducting
an ensemble
of Han
Benninks
and Paal
Nilssen-
Loves.

But how can
I get there?

photo of Butch Morris by Claudio Casanova
http://outlawpoetry.com/2013/02/12/steve-dalachinsky-
conduction-is/



8 background

the Conductive library:

facilitates live coding in Haskell

for control data, using other synthesizers to synthesize sound

first release in Nov. 2010



9 Conductive concepts

Player

interonset interval (IOI) function

action function

TempoClock



10 Player

A Player is an
abstraction
that:

initiates a
process

waits for a
period of time

initiates another
process

waits for another period of time

and repeats this as long as it is running.

The processes that a Player initiates are described in
action functions.

In my case at present, the action functions are triggering sample-
playing synthdefs in scsynth (SuperCollider synthesis engine).

The focus at the moment is on how long to wait, which
determines the rhythm of the music.



11 IOI

IOI = interonset interval

For one Player, the period from the start of one event to the
start of the next event.

It is possible than an event has not finished running when the next
event starts.

It is expressed in terms of beats, which in turn are based on a
TempoClock.



12 IOI function (1)

An IOI function is passed:

the MusicalEnvironment

the Player

the beat that it should be playing on

and the actual current beat.

Using this data or not, it calculates the next beat that it should
run its action function on.



13 IOI function (2)

They could be based on lists of IOI values, like in a typical score.

[1,1,1,1] might represent a measure of four beats.

A simple technique is looping through a list, succesively returning
each value.

The design is up to the user.



14 constraints of live coding:
time/concentration

When performing, I don't have enough time to focus on each
aspect deeply.

There's no time to write many lists of IOI values by hand.



15 generating sets of IOI values

I'm currently using an algorithm like this:

make a set of potential IOIs based on a core value1.

make a set of subphrases based on those potential
IOIs

2.

make a final phrase by choosing from those
subphrases up to a user-specified length of time

3.

This uses the concepts of repetition and variation to create
arguably aesthetically-pleasing patterns.



16 example of a generated set

This example leaves out some of the parameters and details; for a
complete example, see the paper.

core unit = 1

potential IOIs = 1, 2, 3

potential subphrases = [1,2,1], [3,1], [2,2]

final phrase = [1,2,1,1,2,1,2,2,3,1]

This final phrase could be called a pattern.



17 what is the relationship
between lists?

Consider two sets of patterns.

1. [1,1,1,1]
2. [1.5,1,0.25,0.25,3]

1 and 2 are dissimilar and feel unrelated.

3. [1,1,1,1]
4. [1,1,1,0.5,0.5]

3 and 4 are similar and feel related.



18 livecoding, time constraints

In this version of Conductive, I often use five to eight Players,
meaning five to eight IOI patterns.

If I want to rapidly make series of changes to parameters
involved in performance, there's no time to think about and then
write out related patterns.

One of my stated goals at the end of my presentation in 2011 was
to reduce the number of parameters which I had to directly
manipulate by making abstractions based on musical
features.

The first of these that I have tried is event density.



19 density

A musical feature describing the number of events in a given
time period.

[1,1,1,1] (four events in four beats, less dense)3.

[1,1,1,0.5,0.5] (five events in four beats, more dense)4.



20 density map

A density map is:

based on a single IOI pattern

a complete set of related patterns

ordered from minimum to maximum density



21 density algorithm description

Given an IOI pattern:

reduce the density by joining two values

increase the density by replacing a value with:

a smaller potential IOI value1.

and the difference between it and the value being replaced2.

join them into a list ordered by density

To create the density map, it is necessary to know:

the potential IOI values

and an input phrase.



22 example density map 1

input phrase: 3, 1, 2, 2

potential IOIs: 1, 2, 3



23 example density map 2

input phrase: 3, 1, 2, 2

potential IOIs: 1, 2, 3

a complete table:

0: [8]
1: [4,4]
2: [4,2,2]
3: [3,1,2,2]
4: [2,1,1,2,2]
5: [2,1,1,2,1,1]
6: [2,1,1,1,1,1,1]
7: [1,1,1,1,1,1,1,1]

Knowing which set of IOI values to use depends on the density
value.



24 density map to IOI value

The IOI function can:

refer to a density value1.

find the current set of IOIs2.

use that to determine the beat of the next event.3.



25 changing the density by hand
takes time

However, if there are five to eight Players, it is troublesome to
constantly change the density value of each of the Players over
time.

There seems not to be enough time to do so and continue to
focus on the other elements of a performance.



26 TimespanMaps

TimespanMaps are structures which deal with values that
change over time.

When passed a time, they return a value.

It could be called an "interval map".



27 how timespan maps work,
timespan map algorithm

A TimespanMap contains:

a list of interval starting times

a value for each interval

a length in terms of time that determines the end of the
final interval.

When passed a time that falls within an interval, the map returns
the corresponding value.

Once passed a time that exceeds the length of the TimespanMap,
it loops back to the beginning of the TimespanMap.



28 example TimespanMap (1)

A very simple TimespanMap:

length: 2
0: "a"
1: "b"



29 example TimespanMap (2)
length: 2
0: "a"
1: "b"

At time 0, the value is "a". More times and their values:

0.5, "a"

1, "b"

1.25, "b"

1.99, "b"

2, "a"

3, "b"

...



30 writing timespan maps takes
time

However, composing these TimespanMaps also takes time,
particularly for writing those with a large number of intervals.

That occurs for example in the case of a value that changes
gradually from one extreme to another over a relatively long
period of time.



31 interpolation of timespan maps

One solution to writing such TimespanMaps is using interpolation.

At the moment, only linear interpolation is used.

Example of an interpolated TimespanMap:

*TestingConductive> interpolatedTimespanMap 4 2 [(0,0),(2,1)]
TimespanMap {mapLength = 2.0, timespanMap = fromList [(0.0,0.0),(0.5,0.25),(1.0,0.5),(1.5,0.75)]}



32 demonstration of all together

Three Players:

kick samples

snare samples

hihat samples



33 the good

Assigning samples by using TimespanMaps reduced the number of
Players.

Varying rhythm became much easier.

It became easier to control performances.

The results became less random and more musical.

Performances are more interesting than previously.



34 the bad

The musical feature of density is not enough.

Using only sample playback is not satisfying.

A higher-yet-still-flexible level of rhythmic specification might still
be possible.

The amount of data and mutable data storage needed for a
performance increased.

That complexity can also be hard to keep in one's head and
manage.



35 the
future

more

sophisticated generation of rhythms (can anyone suggest
particular approaches or composers to look at?)

more types of synthesis that are manageable live

similar development for pitch and harmony

development of other musical features beyond density

concise interpolation strategies for TimespanMaps

visualization

code management tools for live coding

cleaning up the code again



and on and on...



36 performance

I am performing bass music with this system on Saturday evening.

I hope you will come to that performance.



37 more info, code

http://renickbell.net



38 thanks

Thanks to Henning Thielemann for discussions.

Thanks to the reviewers for useful suggestions on the paper.

Thanks also goes to my advisors Akihiro Kubota and Yoshiharu
Hamada and other staff at Tama Art University for research
support.



39 questions? suggestions?

Things you don't understand? Criticisms? Comments?

Can you recommend people with concise algorithms for
generating music?

Can you email me concise periodic or almost periodic functions
with interesting properties?

What about good books or essays that explain such functions in
a friendly (or not-so-friendly) manner?


