
The Integration of the PCSlib PD library in a Touch-Sensitive
Interface with Musical Application

José Rafael Sub́ıa Valdez
IUNA - UNQ
Buenos Aires
Argentina

jsubiavaldez@gmail.com

Abstract

This paper describes the study and use of the PC-
Slib library for Pure Data and its implementation in
the project “Interface Design for the development of a
touch screen with musical application” [Causa, 2011]
The project consists of a touch-sensitive interface that
allows the drawing of musical gestures that are then
mapped to a harmonic structure generated by the PC-
Slib library. Pure Data also is responsible of the trans-
lation and reproduction of the musical gestures via
MIDI.

Keywords

Pitch Class Sets, XML, Musical Gesture, Harmonic
Structure

1 Introduction

The creation of touch sensitive screens over the
years, has led to many performance instruments
and tools. However, this technology has not yet
entered the music writing and composing for fixed
media category such as scores. Touch Screen in-
struments like the ReacTable 1 or the Lemur 2

have existed for a few years now. These innovative
instruments have broken down technological walls
permitting the development of more interfaces in-
cluding the one developed in this project. Nev-
ertheless, the ReacTable, the Kitara Digital Gui-
tar 3 and such, have exploited the “Real-Time”
characteristic of these interfaces. Their use has
been focalized as instruments to perform and not
so much to write music. Some other develop-
ments that approach the same questions stated
in this project have been scarcely documented.
French composer, Philippe Leroux used a system

1www.reactable.com
2www.jazzmutant.com/lemur overview
3www.misadigital.com/guitars.htm

that translated drawings entered in a Wacom 4

tablet to pitches resembling the inputted sketch
[Vassilandonakis, 2008]. This project used Open-
Music 5 to do so. Nonetheless, while Leroux’s
system intends to capture human gesture such as
hand writing to be used or to create music struc-
tures, this project explores the use of codified tra-
ditional nomenclature. “Ugarit” is a touch sensi-
tive screen that allows the writing of music by
entering codified drawings that represent specific
and traditional musical gestures.The result is a
graphic score that will only produce sound after
the notes are entered. With the help of the Pitch
Class Sets [Forte, 1974] theory and its implemen-
tation in Pure Data through the PCSlib library,
“Ugarit” lets the user concentrate in writing mu-
sical gestures and building music pieces without
preoccupying him or herself of the harmonic struc-
ture. “Ugarit” maps the drawings to a harmonic
structure that the system previously creates al-
lowing its operator to think the writing of music
in a different way.

Figure 1: “Ugarit” Multitouch screen

“Ugarit” could also allows the teaching of mod-

4www.wacom.com/
5http://repmus.ircam.fr/openmusic/home



ern music theories in a unique manner. Its cheap
development, and its friendly interface, lets it to
be assembled in schools everywhere. “Ugarit”
would be perfect for teaching music for children
or any kind of non-specialized public. Because
it uses a modern approach to music paradigms, it
would be updating the music theory taught to the
public. It allows users to create music focusing in
melodic contours and assembling musical gestures
in time. Such ways of thinking music are the key
to understand the creation of some of the modern
music of the XXI century. It lets the user experi-
ment with these nontraditional music concepts by
taking care of complex harmonic structures inter-
nally. This permits the creation of “modern-like”
music without the full knowledge of complex con-
cepts needed to produce it.

2 Data Interpretation (Connection of
the Touch Sensitive Interface and
Pure Data)

2.1 Musical Data Entry

A team of four artists/programmers that were di-
vided in two groups developed the complete sys-
tem. Emiliano Causa and Sebastian G. Botasi de-
veloped the graphical part of the interface while
Mat́ıas Romero Costas and the author of this pa-
per programmed the audio part. This paper only
describes in detail the implementation of a spe-
cific part of the program, but a brief schematic
of the entire workflow is illustrated in the block
diagram bellow. [fig. 2]

The musical data entry is accomplished through
an XML6 file generated by Processing7 after the
census and analysis of the touchscreen interface
drawing. PD then reads the file through the
“Detox” object. This object is developed as an
external in the “jasch lib” library developed by
Jan Schacher. “Detox” allows reading the XML
file informing the user when a “tag-tree” is opened
or closed. The data is then routed through a se-
ries of abstractions that stores it in “coll” objects.
Mat́ıas Romero Costas8 developed this part of the
program. It was later modified and completed
with the part of the program that maps the val-

6XML files are text files with especific formats that can
be interpreted by different programs

7http://www.processing.org/
8For more information, read documentation writen by

the autor.

Figure 2: System workflow

ues of the surface to the pitches of the harmonic
structure, this will be explained later.

2.2 Music Gesture players

The musical gestures implemented in the touch
screen interface are “chord”, “trill”, “tremolo”,
“melody”, “note”, “arpeggio” and “glissando”.
All of them were implemented in a way that all
action constituting the gesture, are united in a
group of parameters. For this, the players assem-
ble messages, used as buffers or temporary memo-
ries, that feed the “makenote” and “noteout” ob-
jects. “Makenote” and “Noteout” objects convert
and send the processed midi messages to the cor-
responding outputs. These messages are created
by receiving stored data from the “col” objects
that deliver stored data in groups corresponding
to gestures one at a time when the groups indexes
are equivalent to playback time.

2.2.1 Tremolo and Trill

Essentially, the algorithm for trill and tremolo are
the same since the gesture works the same way. A
buffer generates two messages that store the two
values to be interleaved at a certain speed during
the duration of the event. The only difference is
that the tremolo player. Sets the two messages
with the two pitches entering from the screen,
while the trill player only receives one pitch and
trills with a semitone above it. This is accom-



Figure 3: Tremolo Subpatch where the“coll” object
is

plished by simply adding one to the entered pitch.

Figure 4: specific gesture to draw that produces a
“tremolo”

2.2.2 Chord

The chord player uses a single line message as
a buffer and builds one with all the pitches of
the chord. The program must set the message
correctly inserting the pitches and key velocities
of the notes for the “makenote” object to play the
chord properly. For this player, as well as for the
“arpeggio” player, it was necessary to modify the
abstractions where “coll” objects are, in order to
filter the different start times of each individual
note of the gesture entering from the surface and
set only the time of the first note as the same
for each. This was achieved with the abstraction
“once” developed by Thomas Musil in Austria. It
allows only the first value to pass acting as a gate.

2.2.3 Arpeggio

The Arpeggio playback, as well as the chord play-
back, results with the same modification of ab-
stractions where the corresponding “coll” object
is placed. In addition, the arpeggio involves us-

ing the start time of the first note and then an
algorithm that plays the rest of the notes in suc-
cession. For this, we had to use 5 messages as
temporary memory where the arpeggio notes (5
maximum) would be stored and then executed by
a small counter that triggers them one by one in
rapid succession, a fundamental characteristic of
the arpeggio.

Figure 5: Arpeggio Player Subpatch

2.2.4 Glissandos

The glissando player is very simple. It always
makes a linear interpolation between one note and
another. It uses the note from which the glissando
starts and the note to which it arrives and then
interpolates these two pitches linearly using the
“step” object, the object can also set the step size
of the increase.

2.2.5 Melody and Notes

The two gestures “melody” and “note” use the
same player called “NotaPlayer” (NotePlayer)
since their respective abstractions where the “col”
object are, delivers the pitches used in the musical
gesture one by one. This allows the use of a single
note player because the gesture may be divided
temporarily without any problem and each note
can have different and independent durations.

3 Pitch structuring using PCSlib

3.1 Basic Pitch Class Set theory
background

Howard Hanson first introduced Pitch Class Set
(PCS) theory in the 1960’s. It was initially cre-
ated as a new way to analyze and classify tonal



music but soon music theorists like Allen Forte
and Robert Morris started to use it for atonal
temperate music. The theory is based in the in-
terval relations created between notes in a music
piece. It allowed theorists to find coherent and
close relations in harmonic structures of modern
music that were difficult to find in those times.

The PCS theory uses the same analog Set The-
ory used in combinatorial algebra seen in math-
ematics. It allows classifying and studying rela-
tions between groups of notes that have the same
interval characteristics. The theory establishes
that each group of notes has a prime form, this
permits a better way to classify groups of notes.
To do this, the theory considers that all pitches
should be enumerated from zero to eleven starting
from C (see Table 1). This admits a better order
for classifying same set types that only differ in
the pitches involved (see Table 2). It also estab-
lishes that the octave relation is not important,
meaning that if a Db4 is played and a F6 follows,
the interval taken into consideration would be a
major third, ignoring the two-octave difference.

C C# D D# E F F# G G# A A# B
0 1 2 3 4 5 6 7 8 9 10 11

Table 1: Cromatic Scale enumerated from 0

Finally, the PCS theory allows mathematic op-
erations in groups of pitches. Some simple op-
erations include transposition, inversion and ret-
rogradation. More complex operations are also
viable and are the true potential of this theory
applied to composition.

0 3 4 7 PCS 4-17 Prime Form
1 10 9 6 PCS 4-17 Inverted & Transposed

Table 2: Same Class Set with different Pitches, note
that the same Set Class has the same intervals

3.2 Harmonic Structure Creation

The harmonic structure used is made with the
“pcs chain” object part of the PCSlib library
[Di Liscia and Cetta, 2011a]. This object pro-
duces Pitch Class Set chains of the same set class
[Di Liscia and Cetta, 2011b]. This part of the pro-
gram is located in a subpatch and lets you choose
a PCS of five or six notes. Then the object will
split the PCS in two and will provide all possible

Figure 6: Patch that generates de Harminoc Struc-
ture with “pcs chain”

combinations. The user then selects the partition
to start the chain. The object provides a list of all
possible partitions; the last option is always the
best fit to saturate the total chromatic scale. The
program uses this option to create the harmonic
structure.[fig. 6]

3.3 Mapping of the harmonic structure
to the inputted musical gesture

The harmonic structure will be essential to the
color of any gesture entered. To achieve this,
a compromise is necessary between the gesture,
which is delivered in discrete MIDI values, and
the pitches that will have to be changed to cor-
rectly fit the harmonic structure. This allows mu-
sical coherence of any piece of music written on
the surface and allows the user greater freedom to
concentrate on musical gesture without worrying
about the pitches to use.

To accomplish this, we had to develop several
algorithms that find the best accommodation of
the pitches incoming from the gestures drawn on
the surface to the harmonic structure. This way,
the distortion between the drawing in the surface
and the resulting pitches played is set to the min-
imum as possible. A clear example of such distor-
tion would be the accommodating of the pitches
from the drawn gesture to pitches that are too
far apart from the registry and “ambitus” of the
gesture entered. [fig. 7]

Through different algorithms the program is
able to restructure the pitches inputted. Each
solution was different for each musical gesture be-



Figure 7: Diagram of how a part of the Permutation
Algorithm works

cause the Pitch Class Sets theory relates to each
gesture in a different manner. This means that
the algorithm in the illustration above will not
work to accommodate the pitches of the gesture
called “melody”. However, all the particular solu-
tions to the problem have the same analysis sys-
tem [Di Liscia and Cetta, 2011c] for the data entry
from the surface. The analysis will help compare
the pitches of the gesture to the pitches of the
harmonic structure created. It will sort the data
and extract the absolute pitches eliminating the
octave relationship. On the other hand, it does
keep track of the “octave” in which the pitches
are subtracted from, finally with the help of the
object “pcs pf” it is able to find out to which set
class the pitches entered form. All programming
is achieved thanks to a set of abstractions included
in “Pd-extended” known as “list-abs”. These ab-
stractions allow the manipulation of lists, a cor-
nerstone in algorithmic programming for pitch re-
lation manipulation.

3.3.1 Mapping of the gesture “chord”
and “arpeggio” to PCS

The program that maps the music gesture
“chord” and “arpeggio” is the same due to the
fact that the “arpeggio” is a chord whose notes
are deployed in time when played. The solution
to the correct mapping has several steps. In addi-
tion to the analysis [fig. 8] previously explained,
the program must compare the arrangement of
the incoming pitches from the chord generated to
the pitches previously generated in the harmonic

structure.

Figure 8: Patch that analizes the incoming MIDI
pitches

This operation is performed by subtracting one
chord to the other and finding the smallest dif-
ference in intervallic distance from one another.
Then, the chord generated is swapped with the
object “pcs perm” until the permutation with
least difference is found. This means that the
chord that replaces the entrant is chosen accord-
ing to which has the greatest similarity in the dis-
position of the entered pitches and the area cov-
ered by the chord. The program does not analyze
deeper if there are several permutations with the
same result, it chooses the first one with the least
difference to optimize processing time. Finally,
the program seeks the best accommodation for
octave placement with an algorithm which states
that if the difference in semitones between two
notes is higher than 6, the interval can be in-
verted to bring one chord closer to the ambitus
of the original inputted chord. Example of the al-
gorithm, the 2 PCS are subtracted and then the
intervals are added. (see Table 3 & Table 4).

3 5 7 10 Touch-screen
4 0 11 7 Harm. Struct.
1 + 5 + 4 + 3 = 13

Table 3: Interval Subtraction of PCS & addition of
intervals



3 5 7 10 Touch-screen
0 4 7 11 Harm. Struct.
3 + 1 + 7 + 11 = 5 Best Option

Table 4: Interval Subtraction of PCS & addition of
intervals (Best Option for Replacement)

3.3.2 Mapping of the gesture “glissando”
and “tremolo” to PCS

Gestures “glissando” and “tremolo” were equally
resolved because both receive data from the XML
file the same way. The XML file delivers the ini-
tial and final pitch that the players need to re-
produce the gestures, which must be accommo-
dated to reproduce correctly the pitches entering
from the harmonic structure. For this, the per-
mutation algorithm explained in the above pro-
cess is the same, but was simplified by omitting
the ”pcs perm” object. The program compares
the intervals entered form the XML file and the
extracted from the harmonic structure. If the dif-
ference between the two intervals exceeds the aug-
mented forth, the interval is inverted to better
resemble the drawn gesture in the surface.

3.3.3 Mapping of the gesture “melod́ıa”
(melody) to PCS

The mapping of “melody” gesture to the previ-
ously designated PCS in the harmonic structure
was accomplished in several steps. First, you
must understand the concept of “melodic con-
tour” and how the algorithm keeps its design and
direction regardless of whether the area in which
it develops is distorted. This is necessary because
for the contour drawing to be maintained, it is
more important to keep the direction of the inter-
vals before the closeness of the notes.

The program creates a matrix where the two
different PCS are entered, one incoming from the
XML file and the other from the harmonic struc-
ture. The PCS are sorted according to a posi-
tion index designated by the melody. The pitches
are later rearranged in ascending order. First,
an index number is allocated to each pitch of the
melody entered from the XML file. For example,
if you enter the PCS [3 0 7 9 5] as the melody con-
tour, an index is given to each pitch producing a
matrix like shown below. (see Table 5).

It is later re-order in ascending order for it to
later be compared with the PCS entering from the

Figure 9: Diagram that shows the posible distortion
of the gesture “melody”

0 1 2 3 4 Index (Sorted)
3 0 7 9 5 PCS from the XML

Table 5: Step 1 of the melodic contour mapping

harmonic structure. (see Table 6).

1 0 4 2 3 Index (un-sorted)
0 3 5 7 9 PCS from the XML

Table 6: Step 2 of the melodic contour mapping

Now the PCS from the harmonic structure can
be entered, it is sorted in ascending order and
inserted into the matrix. For example, the PCS
from the harmonic structure will be [4 11 6 2 8]
that once re-ordered will look as follows: [2 4 6 8
11]. Now you can place that vector in the table
and the matrix will be as follows (see Table 7).

1 0 4 2 3 Index (un-sorted)
0 3 5 7 9 PCS from the XML
2 4 6 8 11 PCS from Harm. Structure

Table 7: Step 3 of the melodic contour mapping

Thus we have the two PCS sorted from lowest
to highest order and the index vector from the
melodic order is now un-sorted. Then all that re-
mains is to rearrange the matrix according to the
first vector re-ordering from smallest to largest
and extract the row number three. Resulting in
the following. (see Table 8).



0 1 2 3 4 Index (Sorted)
3 0 7 9 5 PCS from the XML
4 8 11 2 6 PCS from Harm. Structure

Table 8: Step 4 of the melodic contour mapping

The PCS from the harmonic structure in the
correct order to keep the melodic contour is [4 2 8
11 6]. As for the drawing of the melody, the result
is the contour maintenance and so, it causes the
least amount of distortion of the drawing entered
from the surface.

Figure 10: melodic contour maintained dispite the
new pitches

All this part of program was development in
the “abstraction” called “zzzzmelodia” and uses
the ”matrix” object included in the ”iemmatrix”
library. Finally, the new pitches are replaced in
the “coll” object, which are then reproduced when
the complete surface input is executed.

3.3.4 NO - Mapping of the gesture
“Nota” (note) to PCS

The music gesture “nota” (note) was the only one
left without mapping to a previously designated
pitch entering from the harmonic structure. This
is because the independence that ”nota” has as
a gesture and its immediate relation to a pitch,
led to the conclusion that it was the only gesture
totally free from the harmonic structure mapping
process.

4 Conclusions

The Touch-Sensitive Interface with Musical Ap-
plication was developed in 2011 and exhibited as

a prototype on September 23, 2011. Through-
out its development, objectives were achieved by
solving problems step by step. Pure Data proved
to be very versatile for data processing as imple-
mented in this project even though it is difficult
to achieve this type of programs in environments
known as “max”. The PCSlib library showed to
be very complete and it allowed experimental ap-
proaches in the creation of harmonic structures
with the use of the Pitch Class Sets theory. The
touch sensitive surface named “Ugarit” opens new
paradigms for cheap technology with extreme po-
tential for teaching music in new ways. It could
take music education a step closer to modern mu-
sic by implementing PCS theory in the teaching of
music and modern music theories by underlining
the importance of musical gesture and intervallic
relations.

The “Ugarit” was developed in a research pro-
gram of a public university in Argentina. It is
still in a complete experimental stage due to lack
of income. Because the team depends entirely on
public resources, the further development of the
project is uncertain. However, its success after
presenting it, proved to be a viable project. Now
the developing team must wait and see what will
become of this project. Most recently they have
presented a complete report of the project and
all the work done during this early stage. For
more information about this project, such as re-
quirements and building steps, it is encouraged to
contact the author of this paper.

5 Acknowledgements

The Author would like to thank the entire team;
Emiliano Causa, Sebastian G. Botasi & Mat́ıas
Romero Costas. With whom he worked during
the complete development of “Ugarit”. And a
special “thank you” to Dr. Pablo Di Liscia & Dr.
Pablo Cetta for their guideness over the years.

PCSlib belongs to the research project “Musi-
cal Applications of sets and combinatorial matri-
ces of set classes” Director Dr. Oscar Pablo Di
Liscia and Dr. Pablo Cetta, in Quilmes National
University.

Touch-Sensitive Interface with Musical Appli-
cation belongs to the research project “Design
and development of applications and interfaces
for augmented reality for synthesis and digital
audio processing” Part of the program PICTO-



ART. Director Carmelo Saitta and Pablo Cetta
in Area Transdepartamental of Multimedia Arts
from National College of Art (IUNA)

References

Emiliano Causa. 2011. Diseño de interface
para el desarrollo de una pantalla sensible al
tacto con aplicación musical. Revista de Inves-
tigación Multimedia (RIM), Buenos Aires, Ar-
gentina.

Pablo Di Liscia and Pablo Cetta. 2011a. Com-
posición asistida en entorno PD. Revista de
Investigación Multimedia (RIM), Buenos Aires,
Argentina.

Pablo Di Liscia and Pablo Cetta. 2011b.
Elementos de Contrapunto Atonal. EDUCA,
Buenos Aires, Argentina.

Pablo Di Liscia and Pablo Cetta. 2011c. Me-
didas de similitud entre sucesiones ordenadas
de grados cromáticos. Revista de Investigación
Multimedia (RIM), Buenos Aires, Argentina.

Allen Forte. 1974. The Structure of Atonal Mu-
sic. Yale University Press, London.

Miller Puckette. Pd documentation.

Yiorgos Vassilandonakis. 2008. An interview
with philippe leroux.


