Using the BeagleBoard as hardware to process sound

RAFAEL VEGA
El Software Ha Muerto
Medellin, Colombia
rvega@elsoftwarehamuerto.org

Abstract

This paper describes the implementation of diverse
layers of code to enable an open source embedded
hardware device to run audio processing pure data
patches. The evolution of this implementation is
reviewed describing different approaches taken by
the authors in order to find optimal software and
hardware settings. Although some problems are
detected when running specific patches, the system
has a conjunction of features that are relevant for the
floss audio community.

Keywords

Beagleboard, Puredata, sound processing, sound
synthesis, opensource.

1 Introduction

Although there is a large number of open-source
software tools for working with audio, there are few
open-hardware alternatives for musical applications.
There is a need to explore the possibilities of open
hardware in conjunction with open source software
to close the gap between musicians, music producers
and the hardware used to create their sounds. It is
foreseeable that the closer the sound workers get to
the tools they use, the more expressiveness and
creativity that can be achieved.

In the Latin American context, there has been an
evolution of software design for musical and sonic
scenarios along with different MIDI or OSC
interfaces attached to laptops [5] [6] [12]. This
experimental and DIY tools are designed and used in
specific concert or installation situations. Due to
their low cost and ease of production we have
wondered whether these tools could be a solution for
musicians that can barely afford a commercial

DANIEL GOMEZ
Grupo Leonardo, Universidad ICESI
Cali, Colombia
dgomez @icesi.edu.co

electronic musical instrument. This project is the
first step to explore such platform.

This paper describes the diverse approaches taken to
build a stable platform for processing and
synthesizing audio signals using an open source, low
cost, portable computer such as the BeagleBoard. To
achieve this goal, diverse software APIs were
explored and the Linux stack, libpd [3] and JACK
server were chosen for the current implementation.
We present the work so far which is a DSP engine
that can parse pd patches and run in a BeagleBoard.
Although the project should include physical
interfaces that allow for changing parameter values at
run time, these features have not been implemented
at this early stage.

2 Related work

Some open source tools for musicians exist with
varying price ranges, programmability and scope. A
common approach has been to develop hardware and
firmware and release it as GPL or CC, so that users
are able to experiment with the assembly, and
possible tweaking of hardware and software. This
approach is taken by projects such as Meeblip [7] a
diy monophonic synthesizer that works with an
atmega chip; Shruthi-1 [8] is another open source
(GPL firmware and CC schematics) that runs on a
custom mother board. The system that is closer to
our approach is Satellite CCRMA [1] where a
platform is designed to host PureData under a Linux
architecture in the BeagleBoard. Their motivation is
to support the creation of new instruments and
installations guided by low cost, portability and an an
existing community of users such as Pure Data
community. Their project is aimed to enhance the
longevity of new instruments and to become a
possible standard platform for further developments.
Although the hardware and software used are the

mailto:dgomez@icesi.edu.co

same as in our project, our approach differs on the
methodology of the implementation described
further.

3 Our Work

PureData was chosen as the language for the
description of DSP processes for several reasons: It
has been greatly adopted by programmers, sound
designers, musicians and tinkerers to implement their
audio processing algorithms with many of them
using it on-stage (running on a laptop computer). It
has an easier learning curve than text-based
programming languages such as C++ and it's more
suited for rapid implementation of algorithms than
compiled languages. Finally, there is a large amount
of patches already created by it's user community
that can be leveraged by anyone for their creations.

On the hardware side, an inexpensive, portable and
powerful computer was needed and having an open
design would allow for future enhancements or
alterations to the board. Some options such as the
PandaBoard were considered but the open-ness, price
range and community around the BeagleBoard made
it the option of choice. The BeagleBoard project was
started by a group of Texas Instruments employees in
association with Digi-Key with open-source
development in mind and is now supported by a very
active community and available from a number of
international distributors.

The decision was made to write a C++ program
called XookyNabox that would parse a PD patch
using an available library and one of the available
Linux API's to access the input and output audio
buffers. = Three libraries were considered:
PDAnywhere [4] [9], ZenGarden [11] and libpd [10].
PDAnywhere was discarded right away because of
the fact that it uses fixed point arithmetic and the
lack of active development around it. After taking a
quick look at the implementation and API's for
ZenGarden and libpd, ZG was chosen because the
readability of the code and it's ease for embedding
into C++ (and objective-C) projects. This gave way
to the first version of XookyNabox.

The lower level, blocking ALSA API was used to
interface with the hardware, along with a number of
very simple PD patches. It ran but some
synchronization issues were found where the sound
output for simple oscillators was rendered at different
frequencies than expected. The decision was made
then to switch the ALSA API with the higher level
and callback based API of PortAudio. This approach
solved the synchronization issues but it was required
that the program ran as a daemon so that it could be
launched at startup in the BeagleBoard without user
interaction. This became an issue and the the
architecture of the program was changed again.

The next version of XookyNabox still used
ZenGarden and was implemented as a JACK client.
This time it ran as a daemon without issues but once
slightly more complicated patches were used, some
of the PD blocks did not run in the BeagleBoard.
This, and the fact that many vanilla PD blocks were
not implemented in ZenGarden, showed the
necessity to use a more robust PD implementation.
Enter libpd.

The final version of XookyNabox is implemented as
a JACK client and instantiates libpd.

4 The approach that worked

A lightweight, minimalistic Linux distribution that
was able to run on the BeagleBoard was needed and
Angstrom Linux fit the bill [13]. Also, JACK, ALSA,
and the JACK devel libraries are available pre-
compiled in the default package repositories for
Angstrom.

The Linux system was configured to start
automatically at runlevel 3 (without a GUI) and
JACK was set up to launch at system startup with a
sample rate of 48KHz and a buffer size of 256
samples as suggested by the BeagleBoard user
community:

jackd -d alsa -p 256 -n 4 -P hw:0 -C hw:0 -S -r 48000
&;

PD Patch

—_—

XookyMabox | LibPD

JACK

—_—

ALSA

D

Linux

e

BeagleBoard

Image 1. Block diagram of the system.

Here's an overview of the implementation of the
XookyNabox code. The interesting portion is the
process function where mono input buffers from
JACK are combined into an interleaved stereo buffer,
it is then fed into libpd and the reverse process is
applied to libpd's output buffer using a simple
technique described in the Audio Programming Book
by Boulanger and Lazzarini [2]:

//Interleaved io buffers:

float *output =

(float*)malloc (bufferLength*2*sizeof (float)
)i
float *input =

(float*)malloc (bufferLength*2*sizeof (float)
)

/] ========
// = MAIN =
/] ========
int main (int argc, char *argv([]) {

parseParameters (argc, argv);
initLibPd() ;
initJackAudioIO() ;

// Keep the program alive.
while (1) {

sleep(1);
}

return 0;

}

void parseParameters (int argc, char
*argv([]){

// Show help message, retreive
parameters from argv,

// make sure the last parameter is
actually a .pd file...
}

//
// = INITIALIZE LIB PD =
//
void initLibPd () {

// Instantiate libpd, set all relevant
parameters, open the .pd

//file and pass it to the libd object

}

//
// = INITIALIZE AUDIO I/O =
[/ ========================
void initJackAudioIO () {

// Create JACK client, register
callbacks, register

//io ports and get sample rate from
JACK server.

}

/| =======================
// = JACK AUDIO CALLBACK =
//
int process (jack_nframes_t nframes, void
*arg) {

// Get pointers to the input and output
signals

sample_t *inl =
jack_port_get_buffer

sample_t *in2 =
jack_port_get_buffer

sample_t *)
portIl, nframes);
sample_t *)
portI2, nframes);

sample_t *outl = (sample_t *)
jack_port_get_buffer (port0l, nframes);
sample_t *out2 = (sample_t *)

jack_port_get_buffer (port02, nframes);

// Jack uses mono ports and pd expects
interleaved

//stereo buffers.

for (unsigned int i=0; i<nframes; i++){

input[i*2] = *inl;
input [(i*2)+1] = *in2;
inl++;

in2++;

}
// PD Magic!
libpd_process_float (input, output);

for (unsigned int i=0; i<nframes; i++){
*outl = output[i*2];
*out2 = output[(i*2)+1];
outl++;
out2++;
}; return 0O;

It is worth mentioning that an iOS version of
XookyNabox was written successfully as a
CocoaTouch application that uses libpd and the
CoreAudio API's.

5 The patches

The system was tested with basic signal
processing and sound synthesis patches constructed
exclusively using objects from pd-vanilla. The pd
patches were transferred to the SD card that stores
the file system for the Linux installation on the
Beagle Board. Once the system is powered, the
XookyNabox code fetches a file called “patch.pd”
and tries to load it. We had successful experiences
with some patches, but on the other hand, others did
not load at all. The tested patches had no
interactivity, they were just single processes that
either generated or processed sound in an automatic
fashion.

The list of successfully loaded processing patches
includes ring, fm and am modulation, filtering and
clipping. Successful synthesis patches include
additive, subtractive and FM modulation, although
envelopes were impossible to create. The problem
with controlling the amplitudes over time was a crash
of the XookyNabox program that occurred when a
patch tried to set the phase of an osc~ object to any
specific angle. The same problem occurred when
using basic objects for creating envelopes (line,
line~, vline~ and delay) so a limit to the testing
emerged due to system failures.

The first debugging process was to make a list of
objects that, if included, made patches crash, but, at
the time of writing this paper, we just got started
with checking for the different errors that came form
the pdlib when loading the mentioned objects. At
this point there is no clarity on the cause of the
program crash.

6 Conclussions and future work

At the time of writing the paper, there are still
complications in the loading of some pd patches
related with specific connections and objects. This
complications are below the XookyNabox code and
go deeper into libpd in combination with the other
JACK, ALSA and Angstrom settings. The actual
possibilities of the system are limited and a thorough
debugging has to be made.

Paralell to a debugging phase, the development of an
interactive electronic bridge to allow communication
of electronic Sensors (accelerometers,
potentiometers, sliders, buttons, etc) to control the
patch in real time is a next step in the project.

Although there are some problems to solve, the use
of pd patches in a portable, light and relatively low
cost computer makes foreseeable a new generation of
easily programmable customized audio hardware.

7 Acknowledgements

This paper is the consequence of a long term
collaboration within different groups of enthusiasts
and academics namely the AudioProgramming group
in Medellin, the ACORDE research group, the
LEONARDO research group, Julidn Brolin Giraldo
at the Un-Loquer hackerspace and the invaluable
support from Juan Reyes.

References

[1] Edgar Berdahl, and Wendy Ju (2011) “Satellite
CCRMA: A Musical Interaction and
SoundSynthesis Platform” Proceedings of the New
Interfaces for Musical Expression congreess 30
May-1 June 2011, Oslo, Norway.

Available online:
https://ccrma.stanford.edu/~eberdahl/Papers/NIME
2011SatelliteCCRMA.pdf

[2] Richard Boulanger and Victor Lazzarini (2010)
“The Audio Programming Book” The MIT Press,
2010.

[3] Peter Brinkmann, Peter Kirn, Richard Lawler,
Chris McCormick, Martin Roth, Hans-Christoph
Steiner “Embedding Pure Data with libpd” Pure
Data Convention Weimar, Berlin 2011.

[4] Gunter Geiger (2003) PDa: Real Time Signal
Processing and Sound Generation on Handheld
Devices. Proceedings of the 2003 International
Computer Music Conference (San

Francisco), International
Association, 2003.

[5] Pérez, J., & Jaramillo, J. (2011). MEII: Sistema
interactivo para promover la construccién

expresiva musical en niflos de 4 a 8 afios. Revista
S&T, 9(17), 55-66. Cali: Universidad Icesi

Computer Music

Web Resources

[6] Juan Reyes, Sonare,
https://ccrma.stanford.edu/~juanig/artes/sonare.ht
ml

[7] meeblip http://meeblip.noisepages.com

[8] shruthi-1 http://mutable-instruments.net/shruthil

[9] Gunther Geiger, PDa, http://pd-
anywhere.sourceforge.net

[10] Peter Brinkmann, Peter Kirn, Richard Lawler,
Chris McCormick, Martin Roth, Hans-Christoph
Steiner, libpd, https://github.com/libpd/libpd

[11] Zen Garden
https://github.com/mhroth/ZenGarden

[12] Leonrado Parra, FatChorizo,
http://youtu.be/upDvvVOrGuM

[13] Linux Angstrom http://www.angstrom-
distribution.org

	1 Introduction
	Although there is a large number of open-source software tools for working with audio, there are few open-hardware alternatives for musical applications. There is a need to explore the possibilities of open hardware in conjunction with open source software to close the gap between musicians, music producers and the hardware used to create their sounds. It is foreseeable that the closer the sound workers get to the tools they use, the more expressiveness and creativity that can be achieved.
	2 Related work
	3 Our Work
	PureData was chosen as the language for the description of DSP processes for several reasons: It has been greatly adopted by programmers, sound designers, musicians and tinkerers to implement their audio processing algorithms with many of them using it on-stage (running on a laptop computer). It has an easier learning curve than text-based programming languages such as C++ and it's more suited for rapid implementation of algorithms than compiled languages. Finally, there is a large amount of patches already created by it's user community that can be leveraged by anyone for their creations.
	4 The approach that worked
	5 The patches
	The system was tested with basic signal processing and sound synthesis patches constructed exclusively using objects from pd-vanilla. The pd patches were transferred to the SD card that stores the file system for the Linux installation on the Beagle Board. Once the system is powered, the XookyNabox code fetches a file called “patch.pd” and tries to load it. We had successful experiences with some patches, but on the other hand, others did not load at all. The tested patches had no interactivity, they were just single processes that either generated or processed sound in an automatic fashion.
	6 Conclussions and future work
	At the time of writing the paper, there are still complications in the loading of some pd patches related with specific connections and objects. This complications are below the XookyNabox code and go deeper into libpd in combination with the other JACK, ALSA and Angstrom settings. The actual possibilities of the system are limited and a thorough debugging has to be made.

