
FaustPad : A free open-source mobile app
for multi-touch interaction

with Faust generated modules

Hyung-Suk Kim
Dept. of Electrical Engineering,

Stanford University
Palo Alto, CA 94305, USA

hskim08@stanford.edu

Julius O. Smith
Center for Computer Research in Music and

Acoustics.
(CCRMA) Stanford University

Palo Alto, CA 94305, USA
jos@ccrma.stanford.edu

Abstract

In this paper we introduce a novel interface for
mobile devices enabling multi-touch interaction with
sound modules generated with Faust1 (Functional
Audio Stream) and run in SuperCollider. The
interface allows a streamlined experience for
experimentation and exploration of sound design.

Keywords

Faust, mobile music, SuperCollider, music app.

1 Introduction

Faust (Functional Audio Stream)[1] is a functional
domain-specific language for real-time signal
processing and synthesis. Programs written in Faust
are translated in to highly efficient C++ code which
can then be compiled into modules for various
architectures and synthesis environments including
SuperCollider, PureData and Chuck. Faust separates
the specification from the underlying implementation
and the UI, allowing the programmer to focus on the
design of signal processing or synthesis modules.

 Quick testing of a module is possible by
compiling the program as a standalone program.
However integrating a UI for a synthesis
environment such as SuperCollider or PureData is
not that trivial. In either case, the user interaction is
limited to mouse-pointer interaction.

Mobile devices introduce a tangible, interactive
experience compared to that of the traditional
desktop. Recent mobile devices, i.e. smart phones,
enable multi-touch interaction as well as other
features, e.g. accelerometer, GPS, gyroscope, which
allow novel methods of interacting with sound.

1http://faust.grame.fr/

Mobile devices have become computationally
powerful enough for audio synthesis directly on the
device. The MoMu toolkit [2] used by the Stanford
Mobile Phone Orchestra (MoPho) is a toolkit for
music synthesis on iOS devices. Unfortunately most
audio SDKs for mobile devices are OS dependent,
requiring separate learning for each new mobile OS.
The computation power of mobile devices is still
limited compared to desktop systems.
Computationally complex modules are hard to run
on mobile devices.

Mobile devices can be used as a music controller
via OSC. TouchOSC, Control OSC2 are examples.
Such apps are general purpose OSC controllers that
are highly customizable. The price of customizability
is that it takes time to set up a module. This can
become very cumbersome if the sound module has a
lot of controls. Physical modeling synthesis
programs can easily have over 20 parameters which
can be very time consuming to setup.

In this paper we present an OSC music controller
app, FaustPad,3 that automatically creates the
interface and necessary OSC settings based on the
compiled results from Faust. This approach reduces
the complicated setup process, allowing a
streamlined experience for experimenting with the
generated sound module.

2 Overview

Setting up a module for interaction requires the
following steps: 1) compiling the program with
Faust, 2) setting up the synthesis environment, and 3)
setting up the mobile device.

2http://charlie-roberts.com/Control/
3Code and documentation for FaustPad, can be found at

https://github.com/hskim08/FaustPad

In this paper we cover setting up a Faust synthesis
module with SuperCollider. In the last section we
look at an example of installing all the modules in
Faust-STK[3], the Synthesis Toolkit port for Faust.

We use Faust to create a SuperCollider extension
which is loaded into scsynth, the SuperCollider
server. FaustPad is used as an alternative scsynth
client, replacing sclang, the SuperCollider
interpreter.

3 Compiling with Faust

Recent Faust releases include scripts to compile
programs into various environments. For
SuperCollider extensions, we used
faust2supercollider to create a
SuperCollider class file (.sc) and a SuperCollider
extension (.scx).

The Faust compiler can create an abstract “user
interface” definition in XML format with the --xml
option. This XML-file is used to create the UI for the
mobile app.

For an in-depth description see “Audio Signal
Processing in FAUST”4.

4 SuperCollider

SuperCollider consists of two parts, the client,
sclang, and the server, scsynth. The two parts
communicate via OSC. FaustPad acts as an
alternative client to sclang.

4https://ccrma.stanford.edu/~jos/spf/Using_FAUST_Su
perCollider.html

SynthDef.new("sitar", {
arg freq = 440.0, gain = 1.0, gate =

0.0, resonance = 0.7, damp = 0.72,
roomsize = 0.54, wet = 0.141, pan_angle =
0.6, spatial_width = 0.5;

Out.ar(0, FaustSitar.ar(freq, gain,
gate, resonance, damp, roomsize, wet,
pan_angle, spatial_width));
}).load(s);

Figure 2: Output example of FaustScParser.

It is easy to import custom synthesis modules into
SuperCollider as “extensions” by copying the .sc
and .scx files into the SuperCollider extension
folder.

Synth definition (SynthDef) files need to be
defined and loaded to create instances of the synth
modules. Control parameter names are also defined
in the SynthDef files. The parameter names of the
SynthDef files must match those of the app. This can
be achieved by parsing the UI definition XML-file
from Faust to create the SynthDef file. The Java
project in the FaustPad github repository creates an
executable jar-file, FaustScParser.jar, that does this.

In sclang, a SynthDef is compiled into byte
code which is then sent to scsynth as an OSC
message. As of the time of writing the SynthDef
needs to be loaded once manually by the script
created by the FaustScParser. Once loaded the
SynthDef is saved on the server and will be loaded
each time scsynth boots. We plan to port
SynthDef compiling into FaustPad to further reduce
the setup process.

5 FaustPad

FaustPad is an OSC controller app with auto
generated UIs tailored to Faust created modules.
Ease of setup comes at the price of customizability.
The app will only work for Faust generated modules.
Given the expandability of Faust, it is a tradeoff
worth making.

One advantage of using a mobile device is multi-
touch. Multiple sliders and buttons can be modified
simultaneously. FaustPad currently supports iOS
devices only. An iPhone or iPod Touch can handle up
to 5 touches and an iPad can handle up to 11 touches
at once.

5.1 Building the UI

A typical Faust user interface definition has two
parts, 1) the definition of widgets, i.e. the control
parameters both passive and active, and 2) the layout

Figure 1: Overview flowchart of FaustPad setup. The
file in parentheses may change depending on the
environment used. Here we show the case for a
SuperCollider Extension.

definition. The separation of components and layout
frees the UI builder from a static layout.

In the current implementation of FaustPad, the app
maintains the given layout, creating foldable “group
views”. The automated building of the UI has two
phases accordingly, 1) the creation of widgets and 2)
the creation of groups which form the layout.

5.2 Layout principles

Faust generated modules may have many control
parameters. This is especially true for physical
modeling synthesis modules such as many of the
modules in Faust-STK. For many parameters, once a
value is set there may be little need to change it
during a performance. In FaustPad, unused groups
can be folded so that the user can focus on the
parameters of interest.

FaustPad also allows multiple modules to be
created. Each module is created in a separate tab.
Tabs are always visible in the tab bar at the bottom
of the UI, allowing quick change of synth module.

5.3 OSC messaging

Each UI component holds its own data, e.g. label,
min/max values, from the UI description file. When
there is a user interaction event, it sends an event to
the OSC messaging object which parses the event
and sends a properly formatted OSC message to the
server. This separation of UI component and OSC
messaging allows configurations for various OSC
messaging protocols for different synthesis

environments. The OSC messaging object also
listens for incoming OSC messages that can be used
for automation and feedback from the server.

6 Example: Faust-STK

We have tested FaustPad with Faust-STK, included
in the Faust release. The example files come with a
Makefile for each environment including
SuperCollider. Creating the UI description files is
less trivial, because the Makefile removes the
files at the end of the compilation. This can be
avoided by modifying faust2supercollider
and Makefile.sccompile. After setting up the
aforementioned scripts then loading all SynthDefs,
we could use all 21 Faust-STK modules in FaustPad
by simply copying the files to the FaustPad
documents directory.

7 Extending FaustPad

The FaustPad user interface only adheres to the
user interface description file and makes no
assumption of the underlying structure until the
moment a OSC message is sent in the OSC
messaging object. Thus it is possible to extend the
FaustPad to other OSC enabled synthesis
environment such as PureData or Chuck. As of the
time of writing, we are in the process of adding
support for PureData via pd-faust5.

5http://docs.pure-lang.googlecode.com/hg/pd-faust.html

Figure 3: Screenshots of FaustPad for iPad and iPod Touch. The FaustPad UI works for any orientation. In the
iPod Touch screenshot, groups are folded to show only controls of interest.

8 Conclusion

With FaustPad we have explored methods for
enabling a streamlined experience for interacting
with Faust generated synthesis modules.

The separation of specification, device
implementation and UI description of Faust enables
support for multiple synthesis environments with
multiple UIs. With FaustPad we explored the
possibilities of using an alternative UI on a mobile
device.

We have tested the experience by compiling Faust-
STK synthesis modules for SuperCollider. Though
there were some non-trivial modifications to code
that were needed to obtain the UI description files,
once made, it was easy to run and install the
synthesis modules.

FaustPad is still in its early stages and there are
more issues to be addressed. Such issues include
extension of the interface to other environments such
as PureData or Chuck, easy discovery and
connection of server and device via technologies
such as Bonjour/Zeroconf networking.

Connecting to PureData via pd-faust is of
particular interest due to the expandability of
PureData itself. With pd-faust it is possible to
synchronize the interface to a MIDI-OSC transport
for automation allowing live performance and audio
recording use of FaustPad.

Finally, we acknowledge the fact that even though
FaustPad is a free open-source project under a BSD-
like license, it may not be open for anyone to
develop due to the limitations of the iOS SDK.
Porting to other mobile OS, many of which have
become open-source, is another important future
work to be done.

References

[1] Orlarey, Yann; Fober, Dominique; Letz,
Stéphane. 2009. "Faust: an Effcient Functional
Approach to DSP Programming". New
Computanionals Paradigms for Computer Music.
Edition Delatour. ISBN 978-2-7521-0054-2.

[2] Bryan, N. J., Herrera, J., Oh, J., and Wang, G.
2010. “MoMu: A Mobile Music Toolkit.” In
Proceedings of the International Conference on
New Interfaces for Musical Expression. Sydney
2010.

[3] Michon, Romain Smith, Julius O. III. 2011.
"Faust-STK: a Set of Linear and Nonlinear
Physical Models for the Faust Programming
Language". Proceedings of the 11th Int.
Conference on Digital Audio Effects (DAFx-11):
199–204

	1 Introduction
	2 Overview
	3 Compiling with Faust
	4 SuperCollider
	5 FaustPad
	5.1 Building the UI
	5.2 Layout principles
	5.3 OSC messaging

	6 Example: Faust-STK
	7 Extending FaustPad
	8 Conclusion

