Signal Processing Libraries for Faust

Julius SMITH
Center for Computer Research in Music and Acoustics (CCRMA)
Music Dept., Stanford University
Stanford, CA 94306,

USA

jos@ccrma.stanford.edu

Abstract

Signal-processing tools written in the FAUST lan-
guage are described. Developments in FAUST libraries,
oscillator.lib, filter.lib, and effect.1lib since
LAC-2008 are summarized. A good collection of sinu-
soidal oscillators is included, as well as a large variety
of digital filter structures, including means for specify-
ing digital filters using analog coefficients (on the other
side of a bilinear transform). Facilities for filter-bank
design are described, including optional delay equal-
ization for phase alignment in the filter-bank sum.

Keywords

Faust, audio signal processing, filters, effects, oscilla-
tors

1

The FAUST (Functional AUdio STream) language,
developed at GRAMH] [1; 2], is well known for its
compact specification of signal-processing block
diagrams, and its compilation into efficient C++
audio applications and plugins. Thanks to the
use of architecture files that encapsulate platform-
specific details, FAUST applications can be conve-
niently generated for a wide variety of host envi-
ronments (Linux, Mac, Windows), and audio plu-
gins can be generated for a wide variety of host ap-
plications such as Pd and SuperCollider, to name
just two [3} 45 [5].

In the architecture subdirectory within the
Faust distribution, there are presently seven
.1lib files containing various utility functions.
Possibly the most commonly used of these is
music.lib, which also imports math.1ib. Three
other .1ib files pertain more specifically to signal
processing utilities:

Introduction

Yhttp://faust.grame.fr/

e oscillator.lib — signal sources
e filter.lib — general-purpose digital filters

e effect.lib — digital audio effects

The remaining two FausT library files are
maxmsp.lib—a Max/MSP compatibility library,
and reduce.lib—enabling function application
across a signal in time, such as maxn(n) =
reduce (max,n) to compute the maximum ampli-
tude of a signal.

The directory examples/faust-stk/ addition-
ally contains instrument.lib, providing com-
mon utility functions for the FAUST-STK collec-
tion [6], such as envelope generators and table-
lookup utilities.

The libraries oscillator|filter|effect.lib
were first discussed at LAC-08 [7]. This pa-
per provides an overview of developments since
then and up to FAUST release version 0.9.46
(Dec. 2011).

2 Faust Library oscillator.lib

The purpose of oscillator.lib is to provide
reference implementations of various elementary
waveform generators, such as sinusoidal, saw-
tooth, and pulse-train, as well as other classic sig-
nals such as pink-noise, etc.

2.1 Sinusoid Generators

All sinusoidal oscillators in oscillator.lib are
invoked via the same API as osc(freq) (defined
in music.lib), where freq is the desired osc-
illation frequency in Hz. However, some provide
two outputs instead of one when both “in-phase”
and “quadrature” (sine and cosine) are available.
All are filter-based. That is, they are implemented
as lossless second-order filters driven by an im-
pulse signal [1,0,0,...], and they use no wave

http://faust.grame.fr/

tablesB All algorithms have been previously pub-
lished [8; 9; 10; 111 P

Presently, the following algorithms are imple-
mented:

oscb “biquad” two-pole filter section
(impulse response)
oscr 2D vector rotation
(second-order normalized ladder)
provides sine and cosine outputs
oscrs sine output of oscr
oscrc cosine output of oscr
oscs state variable osc., cosine output
(modified coupled form resonator)
oscw digital waveguide oscillator
oscws sine output of oscw
oscwc cosine output of oscw

The relative merits of each oscillator type are
summarized below. Note that all differences have
to do with finite numerical precision effects and
dynamic range variations under time-varying con-
ditions. The best overall choice depends on the
situation.

e oscb, the impulsed direct-form biquad@ is the
fastest computationally, requiring only one
multiplication and two additions per sample
of output. However, as is well known, the
amplitude of oscillation varies strongly with
frequency, and it becomes numerically poor
toward freq=0 (“dc”).

)

e oscr, the “2D vector rotation,” requires four
multiplies and two additions per sample. Its
amplitude is invariant with respect to fre-
quency, and it is good all the way down to dc.
Since its coefficients are numerically inexact
roundings of s = sin(2*PI*freq/SR) and c
= cos(2#PI*freq/SR), where SR denotes the
sampling rate (defined in music.lib), there
is long-term amplitude drift corresponding to
the extent the identity s®>+c? = 1 is violated.
This oscillator provides in-phase (cosine) and
phase-quadrature (sine) outputs.

2osc(freq) in music.lib uses a length 2'® wave table.
The linearly interpolated variant osci(freq) adds linear
interpolation.
3https:|//ccrma.stanford.edu/~jos/pasp/-
Digital Waveguide Oscillator.html
‘https:)//ccrma.stanford.edu/~jos/filters/-
Direct Form II.html

e oscs, based on the classic “state variable fil-
ter,” [12 p. 530] and known as the “magic
circle algorithm” in computer graphics, is
quite fast, requiring only two multiplies and
two additions per output sample. Its ampli-
tude varies much less with frequency, and it
too is good down to dc. There is no am-
plitude drift over time, so this one can be
used for very long signal durations. On the
other hand, there is some dependence of osc-
illation amplitude on frequency. At low fre-
quencies, its two state variables are nearly in
phase quadrature, but they become in-phase
at SR/2. Thus, two outputs with approxi-
mately 90-degrees relative phase at low fre-
quencies could be brought out. The output
that is brought out is the “cosine” choice.

e oscw, the second-order digital waveguide os-
cillator, requires one multiply and three ad-
ditions when frequency is constant, and an-
other multiply when frequency is changing.
Otherwise it has all of the good properties of
oscr (except for internal dynamic range nor-
malization), providing sine and cosine out-
puts in exact phase quadrature, and no de-
pendence of amplitude on frequency. How-
ever, unlike oscr, oscw exhibits no amplitude
drift while frequency is fixed. This is because
it uses a “structurally lossless” algorithm de-
rived by transformer coupling of normalized
digital waveguides [10} [8]2 A negative point
relative to oscr is that numerical difficulties
may arise below 10 Hz or so, implying that
oscw is not a good choice for LFOs. Inter-
nally, the state variables of oscw require a
larger dynamic range than those of oscr. It
is likely that oscw would be the most eco-
nomical choice for special-purpose VLSI.

2.2 Virtual Analog Waveforms

The following waveform generators are presently
included, among others:

imptrain(freq) periodic impulse train
squarewave (freq) zero-mean square wave
sawtooth(freq) alias-suppressed sawtooth
sawN(freq) order N anti-aliased saw

Shttps:| //ccrma.stanford.edu/" jos/pasp/-
Digital Waveguide_Oscillator.html

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/filters/Direct_Form_II.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

The sawtooth and sawN algorithms are based
on recently developed “Differentiated Polynomial
Waveform” (DPW) methods for virtual analog
waveform generation [I3; [14]. The default case
is sawtooth = saw2, where saw2 is a differenti-
ated parabolic waveform (order 2). More gen-
erally, sawN is based on a differentiated polyno-
mial of order N. The higher the order, the less
aliasing is incurred. Bandlimited square, triangle,
and pulse-train are derived as linear filterings of
bandlimited sawtooth in FAUST releases beyond
0.9.46.

2.3 Noise Generation

The basic white-noise generator, uniformly dis-
tributed between —1 and 1, is noise, defined
in music.lib. Based on that, oscillator.lib
also defines pink noise, also called “1/f noise”
[15], implemented (approximately) as white noise
through a three-pole, three-zero IIR filter that ap-
proximates a 1/f power responseﬁ The third-
order IIR filter was designed using invfreqz in
Octave (matlab).

3 Faust Library filter.1lib

Filter-related utilities are provided in
filter.lib. The principal functions defined
appear in Fig.[ll p. 4 and Fig.2 p. Bl To save
space, functions introduced at LAC-08 [7] are not
repeated here (such as EKS string synthesizer
elements, comb filters, cubic distortion overdrive,
dc blockers, speaker bandpass, Crybaby wah
pedal, etc.). The subsections below provide
further discussion of various groups. The source
is documented with comments and references so
that anyone knowledgeable in basic digital filter
theory [16] should be able to use it as a (terse)
manual and starting point for further reading.

3.1 Direct-Form Digital Filters

The four direct-form digital filter structures have
coefficients that appear in the filter transfer
functionm The functions tf1(b0,bl,al) and
t£f2(b0,b1,b2,a1,a2) specify first- and second-
order (biquad) digital filter sections, respectively.
Often larger filters are built by stringing first-

Shttps:|//ccrma.stanford.edu/~jos/sasp/-
Example Pink Noise_Analysis.html

"https:| //ccrma.stanford.edu/~jos/filters/-
filters/Four Direct_Forms.html

and second-order sections in series and/or par-
allel. The FAUST language makes this especially
easy to do.

The function iir(bcoeffs,acoeffs) allows
specification of an arbitrary-order IIR digital fil-
ter in direct form. The arguments bcoeffs and
acoeffs are each parallel signal banks that pro-
vide the coefficients, and they may be thought
of as “lists” of coefficients. The pattern match-
ing facility in FAUST allows recursive defini-
tion in terms of such lists. As an example,
t£2(b0,bl1,b2,al,a2) can be alternatively spec-
ified as iir((b0,b1,b2),(al,a2)). As usual in
FAuUsT, the specification is compact:

iir(bv,av) = sub ~ fir(av) : fir(bv);

where fir (bv) specifies a general causal FIR dig-
ital filter, with bv the list (“vector”) of FIR “tap”
coefficients. It is given by

fir(bv,x)
= sum(i,count(bv),take(i+1,bv) * xQi);

where count and take are defined in math.1ib.

3.2 Ladder and Lattice Digital Filters

Ladder and lattice digital filters have superior nu-
merical properties. Using the pattern-matching
facility, it was possible to specify all four ma-
jor types recursively in FAUST. A particularly
valuable case is the normalized ladder filter [17T]
iir nl(bcoeffs,acoeffs), used as the basis for
the super-robust biquad tf2snp(). While nor-
malized biquads are straightforward to design
(e.9.,n1f2() in filter.1lib), the normalized lad-
der filter realizes rational transfer functions of any
order (any number of poles and zeros) in terms of
a power-normalized ladder structure. For an in-
troduction and pointers to references, see [8] and
filter.1ibf

3.3 Digital Filter Sections Specified as
Analog Filter Sections

It is convenient to be able to specify basic filter
section in terms of analog filter coefficients, as op-
posed to the usual digital-filter coefficients. This
is easy to do in FAUST by including a built-in bilin-
ear tmnsformﬁ This makes use of the wonderful

8https:| //ccrma.stanford.edu/~jos/pasp/-
Conventional Ladder Filters.html

https:| //ccrma.stanford.edu/~jos/pasp/-
Bilinear Transformation.html

https://ccrma.stanford.edu/~jos/sasp/Example_Pink_Noise_Analysis.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html
https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

Direct-Form Digital Filters

fir(bcoeffs)
iir(bcoeffs,acoeffs)
tf1(b0,bl,al)
tf2(b0,b1,b2,al1,a2)

Lattice/Ladder Filters

iir_lat2(bcoeffs,acoeffs)
iir k1 (bcoeffs,acoeffs)
iir_lat1l(bcoeffs,acoeffs)
iir nl(bcoeffs,acoeffs)
tf2np(b0,bl,b2,al1,a2)
nlf2(f,r)

Analog-Specified Filters

tf2s(b2,b1,b0,al,a0,wl)
tf2snp(b2,b1,b0,al,a0,wl)
t£2sb(b2,b1,b0,al,a0,wl,wc)
tf1sb(bl,b0,a0,wl,wc)

ITR Low/High/Band-Pass

lowpass(N,fc)
highpass(N,fc)
bandpass (Nh,f1l,fu)
bandstop(Nh,fl,fu)
lowpass3e(fc)
lowpass6e(fc)
highpass6e(fc)
bandpassi2e(f1,fu)
bandpass6e (f1,fu)

Shelfs, Peaking Equalizers

low_shelf1(LO,fx,x)
low_shelf1_1(GO,fx,x)
low_shelf3(LO,fx,x)
low_shelf5(L0,fx,x)
low_shelf

high_x*
peak_eq(Lfx,fx,B)
peak_eq_cq(Lfx,fx,Q)
peak_eq rm(Lfx,fx,w)

Fractional Delay Lines

fdelayN(maxdelay, delay)
fdelayNa(maxdelay, delay)

(8.1 p.B)

general FIR digital filter

general IIR digital filter

first-order direct-form digital filter = iir((b0,b1), (al))
iir((b0,b1,b2),(al,a2))

(3.2 p.B)

two-multiply lattice digital filter

Kelly-Lochbaum ladder digital filter

one-multiply lattice digital filter

normalized ladder digital filter

biquad based on stabilized 2nd-order normalized ladder
second-order normalized ladder digital filter, special API

(9331 p. B)

t£2 specified via s-plane (analog) coefficients

tf2s using a protected normalized ladder filter for t£2
tf2s plus a mapping to bandpass in the digital domain
same as tf2sb but for first-order filter sections

(434 p.[6)

Nth-order Butterworth lowpass, —3 dB frequency at fc Hz

Nth-order Butterworth highpass, —3 dB frequency at fc Hz

Order 2*Nh Butterworth bandpass, —3 dB frequencies f1,fu Hz

Order 2#Nh Butterworth bandstop filter, —3 dB gain at f1,fu Hz
3rd-order elliptic lowpass, 60 dB stopband rejection, 0.2 dB passband rip.
6th-order elliptic lowpass, 80 dB stopband rejection, 0.2 dB passband rip.
highpass transformation of lowpass6e (w + 1/w)

bandpass transformation of lowpass6e

bandpass transformation of lowpass3e

See FAUST example parametric_eq.dsp

1st-order shelf, dc gain LO dB, crossover to unity gain at fx Hz

dc gain GO (linear), crossover to unity gain at fx Hz

3rd-order low shelf

5th-order low shelf

= low_shelf3; // default = third-order case

same high-shelf cases as for low_shelf

2nd-order “peaking equalizer”, peak level Lfx dB, width B Hz at £x Hz
Constant-Q 2nd-order peaking equalizer section, Q = fx/B
Regalia-Mitra 2nd-order peaking equalizer section, w ~ PI*B/SR

(43. p.[6)
Nth-order FIR Lagrange-interpolated delay line, N=1,2,3,4
Nth-order IIR allpass-interpolated delay line, N=1,2,3,4

Figure 1: Functions defined in filter.1lib since LAC-08. See the source code for full usage documenta-

tion and literature references.

Filter Banks

mth_octave_analyzer(0,M,ftop,N)

mth_octave_analyzer6e(M,ftop,N)
mth_octave filterbank(0,M,ftop,N)
mth_octave_filterbank_alt
mth_octave_spectral_level

mth_octave_spectral_level6e
spectral_level

half octave_analyzer (N)
half octave_filterbank(N)
octave_filterbank(N)
octave_analyzer (N)
analyzer(0,1lfreqgs)
filterbank(0,lfreqgs)
filterbanki(0,1lfreqgs)

(8.7 p.[6)

N-band octave filter-bank, M band-slices per octave,
Butterworth band-split order 0 (not 0, must be an odd integer),
N = total number of bands (including dc and Nyquist),

ftop = highest band-split crossover frequency (e.g., 20 kHz)
uses order 6 elliptic band-split filters

mth_octave_analyzer followed by delay equalizer

dc-inverted variant (cheaper for odd 0)

spectrum analyzer using mth_octave_analyzer(5), displays

(in bar graphs) the average signal level in each spectral band
order 6 elliptic crossovers

= mth octave_spectral_level(2,10000,20); // simplest

= mth_octave_analyzer6e(2,10000,N);

= mth_octave_filterbank5(2,10000,N);

= mth_octave_filterbank5(1,10000,N);

= mth octave_analyzer6e(1,10000,N) ;

general analyzer, order 0 Butterworth crossovers at listed freqs
analyzer(0,1lfreqs) : delay equalizer (allpass-complementary)
Inverted-dc variant

Figure 2: Filter-bank functions defined in filter.1lib. See the source code for full usage documentation

and literature references.

feature of FAUST that if the coefficients are con-
stant, all expressions will compile away to leave
numerical digital-filter coefficients. On the other
hand, if a slider-control, say, is providing an ana-
log coefficient, the bilinear transform will be com-
puted in real time (at the control rate) from the
controller by the compiled result. Normally a one-
pole smoother such as smooth(0.99) is used to
interface the final computed coefficient into the
filtering computation at the full sampling rate.

In particular, tf2s(b2a,bla,bla,ala,ala,wl)
equals tf2(b0d,bld,b2d,ald,a2d) specified in
the analog domain, where a last-letter ‘a’ means
‘analog’, and ‘d’ means ‘digital’. (Note the oppo-
site numbering of the coefficients, in conformance
with typical notation.) Thus, the analog transfer
function specified is

_ b2,a s + bl,a s+ bO,a

H
(5) s?+aiqas+aopg

The parameter wl is the digital frequency wy to
which analog frequency w, = 1 is mapped; it de-
termines the frequency-scaling parameter of the
bilinear transform. In lowpass or highpass filter
design, the frequency mapping is applied to the
cutoff frequency (—3 dB point).

Butterworth filters are particularly easy to
specify in analog form [I8} [19; [16], because,
for order N, all N zeros are at infinity and all
N poles lie along a circle in the left-half s-plane.
For example, the second-order Butterworth low-
pass filter with its —3 dB frequency normalized
to wg = 1 is simply

1
24425 4+1

and can be specified as t£2s(0,0,1,sqrt(2),1).

3.3.1 Normalization and Stability
Protection

H(s)

For extreme time-varying filtering applications, a
practically useful variant named tf2snp is pro-
vided that implements tf2s using a normalized
ladder filter (for decoupling signal and coeffi-
cient energy, §3.2) together with stability pro-
jection (easy to do in ladder/lattice digital fil-
ters by simply clipping their reflection coefficients
to the range (—1,1)). This is used in the most
numerically robust Moog VCF implementation
moog vcf 2bn (effect.lib, #).

https:|//ccrma.stanford.edu/~ jos/filters/-
Butterworth_Lowpass_Design.html

https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html

The example vcf_wah pedals.dsp in the
FAusT distribution provides a comparison of three
Moog VCF implementations as well as the second-
order Crybaby wah-pedal and a fourth-order wah-
pedal based on the Moog VCF.

3.3.2 Bandpass Mapped Biquad

The function tf2sb(b2,b1,b0,al,a0,wl,wc) is
a bandpass mapping of the basic analog-specified
biquad tf2s. In addition to the frequency-scaling
parameter wl (which gets set to half the desired
passband width in radians per second), there is
a desired center-frequency parameter wc (also in
rad/s). Thus, t£2sb implements a fourth-order
digital bandpass filter section specified by the co-
efficients of a second-order analog lowpass proto-
type section. Such sections can be combined in
series for higher orders. The order of mappings is
(1) frequency scaling (to set lowpass cutoff wl),
(2) bandpass mapping to wc, then (3) the bilinear
transform, with the usual scale parameter 2*SR,
where SR denotes the sampling rate. The FAUST
implementation for this was based on algebra car-
ried out in maxima.

3.4 Butterworth Lo/Hi/Bandpass Filters

Butterworth lowpass and highpass filters of any
order can be defined recursively in FAUST thanks
again to the pattern-matching facility in the lan-
guage. The elliptic (Cauer) filterd'] are special-
cased because the pole locations are computed
using the elliptic rational function, which is not
available in typical computer math libraries. Such
a function could of course be supplied as a foreign
function in FAUST.

3.5 Shelf and Equalizer Sections

The low/high shelf and peaking equalizer sections
implemented in filter.1lib are described further
in filter.1lib and in [16][7

3.6 Lagrange/Thiran-Interpolated
Fractional Delay Lines

Delay lines interpolated using higher-order FIR
Lagrange interpolation are all used as follows:

fdelayN(maxdelay, delay, inputsignal)

11ht‘cp ://en.wikipedia.org/wiki/Elliptic_filter
12https:|//ccrma.stanford.edu/~ jos/filters/-
Low_High Shelf Filters.html

where N=1,2,3, or 4 is the order of the Lagrange
interpolation polynomial. Note that this API fol-
lows that of fdelay in music.1ib. The requested
delay should not be less than (N — 1)/2 because
the interpolating polynomial needs to be able to
“reach” that far into the “past” when interpolat-
ing.

Delay lines interpolated using higher-order ITR
allpass Thiran interpolation are all invoked as

fdelayNa(maxdelay, delay, inputsignal)

where N=1,2,3, or 4 is the order of the allpass in-
terpolation filter. In this case, it is recommended
that the requested delay be at least N — 1/2 be-
cause an Nth-order allpass provides a delay of N
samples as its coefficients approach zero. Note
that delay arguments that are too small can pro-
duce an unstable allpass filter. For rapid delay
modulations, Lagrange (FIR) interpolation is gen-
erally preferred. However, allpass interpolation
introduces no gain distortion and may therefore
be preferred in nearly lossless feedback loops.

3.7 Filter Banks

A filter bank splits its input signal into a bank
of parallel signals, one for each spectral band.
If the bandpass filters used to create the chan-
nel signals are carefully designed, one may sum
the channel signals to get back the original input
signal (possibly scaled and/or delayed). In this
case, the filter bank is said to be a Perfect Re-
construction (PR) filter bank [20]. However, for
purposes of spectrum analysis, in which only the
channel signal powers are displayed, the PR con-
dition is overkill. Therefore, the filter banks im-
plemented in filter.lib are divided into “an-
alyzers”, which do not have the PR property,
and “filter banks” which are “allpass complemen-
tary”. Allpass-complementary filter banks are
reasonable choices for “graphic equalizer” appli-
cations. An allpass-complementary filter bank is
PR when the allpass reduces to a pure delay and
possible scaling. In this terminology, the filter
banks in filter.1lib are implemented as analyz-
ers in cascade with delay equalizers that convert
the analyzer to an allpass-complementary filter
bank. Spectrum analyzer outputs should at least
be nearly “power complementary”, i.e., the power
spectra of the individual bands should at least ap-
proximately sum to the original power spectrum.

http://en.wikipedia.org/wiki/Elliptic_filter
https://ccrma.stanford.edu/~jos/filters/Low_High_Shelf_Filters.html

The typical filter bank or analyzer is con-
structed as a dyadic filter bank, meaning that
it consists of a sequence of band-splits, forming
a binary tree of lowpass/highpass filter sections.
Since audio applications are presumed, only the
lower band is split when going from one stage to
the next.

In the FAuST distribution, both filter banks and
spectrum analyzers are illustrated in the example
graphic_eq.dsp. See also spectral_level.dsp
which is a standalone spectrum analyzer (nice as
a standalone JACK app).

The example gate_compressor.dsp included
with the FAusT distribution exercises the gate
and compression utilities.

Space limitations preclude further discussion
here. Please see comments in filter.1lib for fur-
ther usage details.

4 Faust Library effect.lib

The modules in effect.lib classify as “digital
audio effects”. In general, they tend to be special-
purpose filters, frequently nonlinear and/or time
varying.

4.1 Moog Voltage Controlled Filters

New since the analog-form Moog VCF [7] is the
implementation moog_vcf 2b of the ideal Moog
VCF transfer function factored into second-order
sections. As a result, its static frequency re-
sponse is more accurate than moog_vcf which
suffers from an unwanted one-sample delay in
its feedback path. On the downside, its coef-
ficient formulas are more complex when one or
both parameters are varied. The res parameter
of moog_vcf 2b[n] is the fourth root of that in
moog_vcf, so, as the sampling rate approaches in-
finity, moog_vcf (res,fr) becomes equivalent to
moog_vcf_2b[n] (res~4,fr) (when res and fr
are constant).

4.2 Artificial Reverberation

The reverberation modules in effect.1lib are de-
scribed in [8]. Of special note is the high-quality
reverberator called zita revl, ported to FAUST
from the C++4 source of zita-revl written by Fons
Adriaensen['d It combines Schroeder allpass and
FDN reverberation techniques [8] 14

3http://kokkinizita.linuxaudio.org/linuxaudio/-
zita-revi-doc/quickguide.html

Yhttps://ccrma.stanford.edu/~ jos/pasp/Zita_Revi.html

5 Conclusion

Developments since LAC-08 for FAUST libraries
oscillator|filter|effect.lib were outlined.
The overall goal is to accumulate reference imple-
mentations of commonly used algorithms in mu-
sic/audio signal processing, with a general prefer-
ence for expressive parametric algorithms yielding
the highest performed sound quality per unit of
computation.

6 Acknowledgments

Special thanks to Yann Orlarey for contributing
various improvements to the functions described
in this paper and making others possible at all,
particularly with respect to the use of pattern
matching. Special thanks also to Albert Gréf for
adding the pattern-matching facility to the FAUST
compiler.

References

[1] Y. Orlarey, D. Fober, and S. Letz,
“Syntactical and semantical aspects of
Faust”, Soft Computing, vol. 8, no. 9, pp.
623-632, 2004.

[2] A. Graf, “Term rewriting extension for the
FAUST programming language”, in Proc. §th
Int. Linuz Audio Conf. (LAC2010), Utrecht,
http:l//lac. linuzaudio.oryg/, 2010,
http://lac.linuxaudio.org/2010/papers/-
30.pdf.

[3] Y. Orlarey, A. Grif, and S. Kersten, “DSP
programming with FAUST, Q and
SuperCollider”, in Proc. 4th Int. Linux
Audio Conf. (LAC2006), ZKM Karlsruhe,

http://lac.zkm.de/2006/proceedings. shtml,

2006, pp. 39-40,

http://lac.zkm.de/2006/proceedings.shtml-

#orlarey_et_al.

[4] A. Graf, “Interfacing Pure Data with
FAausT”, in Proc. 5th Int. Linux Audio
Conf. (LAC2007), TU Berlin,
http:l//www. kguw. tu-berlin.de/ 1ac2007/-
proceedings.shtml, 2007,
http://www.kgw.tu-berlin.de/~1ac2007/-
papers/lac07_graef .pdf.

[5] J. O. Smith, “Audio signal processing in
Faust”, 2012,
https://ccrma.stanford.edu/~ jos/aspf/.

http://lac.linuxaudio.org/
http://lac.linuxaudio.org/2010/papers/30.pdf
http://lac.zkm.de/2006/proceedings.shtml
http://lac.zkm.de/2006/proceedings.shtml#orlarey_et_al
http://www.kgw.tu-berlin.de/~{}lac2007/proceedings.shtml
http://www.kgw.tu-berlin.de/~{}lac2007/papers/lac07_graef.pdf
https://ccrma.stanford.edu/~jos/aspf/

Moog VCF
moog_vct (res,fr)

moog_vcf 2b(res,fr)
moog_vcf _2bn(res,fr)

Phasing and Flanging
vibrato2 mono(. ..
phaser2 mono(. ..
phaser2_stereo(. ..
flanger mono(. ..
flanger_stereo(...

N N

Envelopes/Compression/Expansion
amp_follower ud(att,rel)
amp_follower (rel)

autowah (level)

gate mono(thresh,att,hold,rel)

gate_gain mono (thresh,att,hold,rel,x)
gate_stereo(thresh,att,hold,rel,x,y)
compressor_mono (ratio,thresh,att,rel)

compressor_stereo(...)
limiter_1176_R4 _mono
limiter_1176_R4_stereo

Artificial Reverberation

jcrev, satrev

fdnrev0(...)

prime_power _delays(N,pathmin,pathmax)
zita_rev_fdn(f1,£2,t60dc,t60m,fsmax)
zita_rev_stereo(...)

zita revl_ambi(...)

mesh_square (N)

Other Modules

stereo_width(w)
apnl(al,a2,x)
piano_dispersion filter(M,B,f0)

See FAUST example vcf_wah_pedals.dsp

analog-form Moog VCF

res = corner-resonance amount between 0 (none) and 1 (max)
fr = corner-resonance frequency in Hz (less than SR /6.3 or so)
Moog VCF implemented as two biquads (t£2)

two protected, normalized-ladder biquads (tf2np)

See FAUST example phaser_flanger.dsp

modulated allpass-chain (see effect.1lib for usage)

phasing based on 2nd-order allpasses (see effect.lib for usage)
stereo phaser based on 2nd-order allpass chains

mono flanger

stereo flanger

See FAUST example gate_compressor.dsp

att = attack time-constant (sec) going up

rel = release time = time-constant (sec) going down (att=0)
level O to 1

squelch signal when below thresh (in dB),

for at least hold seconds

“gain computer”

two mono gates using same gain computer

single-channel dynamic-range compression:

ratio = compression ratio dB-in over dB-out above thresh
thresh = dB level threshold above which compression kicks in
stereo case, common gain computer

= compressor_mono(4,-6,0.0008,0.5);

stereo case

See FAUST examples freeverb|reverb_designer|zita revl.dsp
Historical early Schroeder reverberators

Feedback Delay Network (FDN) reverberator [§]

utility for finding prime-power delays across a range

order 8 FDN used in zita-revl - see effect.lib for usage

stereo version of zita-revl - see effect.lib for usage

zita-revl in ambisonics mode

N by N square digital waveguide mesh

stereo width effect based on the Blumlein Shuffler
nonlinear allpass filter used in FAUST-STK [6]
closed-form piano-string allpass by Rauhala et. al [21]

Figure 3: Functions defined in effect.lib since LAC-08.

[6] R. Michon and J. O. Smith, “FAusT-STK:

A set of linear and nonlinear physical
models for the FAUST programming

language”, in Proc. 14th Int. Conf. Digital
Audio Effects (DAFz-11), Paris, France,
September 19-23, 2011.

[7]

[10]

[16]

[17]

J. O. Smith, “Virtual electric guitars and
effects using FAUST and Octave”, in Proc.
6th Int. Linuz Audio Conf. (LAC2008),
http://lac. linuzaudio. org/, 2008.

J. O. Smith, Physical Audio Signal
Processing, https://-
ccrma.stanford.edu/~ jos/pasp/, Dec.
2010, online book.

J. Dattorro, “Effect design: Part 3:
Oscillators: Sinusoidal and pseudonoise”, J.
Audio Eng. Soc., vol. 50, no. 3, pp. 115-146,
2002.

J. O. Smith and P. R. Cook, “The
second-order digital waveguide oscillator”,
in Proc. 1992 Int. Computer Music Conf.,
San Jose. 1992, pp. 150-153, Computer
Music Association,
http://ccrma.stanford.edu/~ jos/wgo/.

J. W. Gordon and J. O. Smith, “A sine
generation algorithm for VLSI
applications”, in Proc. 1985 Int. Computer
Music Conf., Vancouver. 1985, Computer
Music Association.

H. Chamberlin, Musical Applications of
Microprocessors, Hayden Book Co., Inc.,
New Jersey, 1980.

V. Vilimaki, “Discrete-time synthesis of the
sawtooth waveform with reduced aliasing”,
IEEE Signal Processing Letters, vol. 12, no.
3, pp- 214-217, 2005.

V. Véliméki, J. Nam, J. O. Smith, and J. S.
Abel, “Alias-suppressed oscillators based on
differentiated polynomial waveforms”, IEFE
Trans. Audio, Speech, and Language
Processing, vol. 18, no. 5, May 2010.

R. F. Voss and J. Clarke, “‘1/f noise’ in
music: Music from 1/f noise”, J. Acoust.
Soc. of Amer., vol. 63, no. 1, pp. 258263,
Jan. 1978.

J. O. Smith, Introduction to Digital Filters
with Audio Applications, http://-
ccrma.stanford.edu/~ jos/filters/,
Sept. 2007, online book.

A. H. Gray and J. D. Markel, “A
normalized digital filter structure”, IEEE

Trans. Acoustics, Speech, Signal Processing,
vol. ASSP-23, no. 3, pp. 268-277, June 1975.

18]

[19]

[20]

[21]

C. S. Burrus, Digital Signal Processing and
Digital Filter Design (Draft), Connexions,
Sept. 2009, online book:

http://cnx.org/content/col10598/1latest/.

T. W. Parks and C. S. Burrus, Digital
Filter Design, John Wiley and Sons, Inc.,
New York, June 1987, contains FORTRAN
software listings.

P. P. Vaidyanathan, Multirate Systems and
Filter Banks, Prentice-Hall, 1993.

J. Rauhala and V. Vilimaki, “Tunable
dispersion filter design for piano synthesis”,
IEEFE Signal Processing Letters, vol. 13, no.
5, pp- 253256, May 2006.

http://lac.linuxaudio.org/
http://ccrma.stanford.edu/~jos/pasp/
http://ccrma.stanford.edu/~jos/wgo/
http://ccrma.stanford.edu/~jos/filters/
http://cnx.org/content/col10598/latest/

	Introduction
	Faust Library oscillator.lib
	Sinusoid Generators
	Virtual Analog Waveforms
	Noise Generation

	Faust Library filter.lib
	Direct-Form Digital Filters
	Ladder and Lattice Digital Filters
	Digital Filter Sections Specified as Analog Filter Sections
	Normalization and Stability Protection
	Bandpass Mapped Biquad

	Butterworth Lo/Hi/Bandpass Filters
	Shelf and Equalizer Sections
	Lagrange/Thiran-Interpolated Fractional Delay Lines
	Filter Banks

	Faust Library effect.lib
	Moog Voltage Controlled Filters
	Artificial Reverberation

	Conclusion
	Acknowledgments

