The IEM Demosuite, a large-scale jukebox for the MUMUTH concert
venue

Peter PLESSAS and IOhannes m ZMOLNIG
Institute of Electronic Music and Acoustics (IEM), University of Music and Performing Arts (KUG)
Inffeldgasse 10/I11
8010 Graz,
Austria
{plessas, zmoelnig}@Qiem.at

Abstract

In order to present the manifold possibilities of sur-
round sound design in the new MUMUTH concert hall
to a broad audience we developed an easy to use ap-
plication running and interacting with audio demon-
stration scenes from a mobile computing device. An
extensible number of such demonstrations using the
large-scale and variable loudspeaker hemisphere in the
hall are controlled with a user interface optimized for
touch-sensitive input. Strategies for improving operat-
ing safety, as well as the introduction of a client /server
model using the programming language Pure Data, are
discussed in connection with a 3D Ambisonics render-
ing server, both implemented using the Linux operat-
ing system.

Keywords

demonstration, interaction, client-server systems, Am-
bisonics, Pure Data

1 The Mumuth

The University of Music and Performing Arts
Graz (KUG) opened a new building, the Music
and Music Theatre House (MUMUTH), in 2009.
It holds a 600 sqm. concert hall, named in honor
of the Austrian composer Gyorgy Ligeti. This
new venue is used for productions by the uni-
versity’s different departments. Therefore, the
hall has to suit music performances of different
styles as well as theatre and opera works. This
multi-faceted usage pattern demands a flexible
performance space in terms of stage machinery,
room acoustics, sound reinforcement, lighting and
seating. As consequence MUMUTH has no fixed
stage and audience position but offers an array
of pedestals making up the hall’s floor and which
can be individually raised to provide an elevated
audience platform or stages of variable size and
height. While this flexible layout allows for cre-
ative staging of different performances it also im-

poses a serious challenge for the installation of a
sound reinforcement equipment, since any part of
the room can now become the stage or audience
area and as such be of varying size.

2 LI L P ®
AERNNNRCARRRNREREpNNNANACE
L
.
"
@ L]
2 %
|] il
o *
| LLLLLLALTEIL D LTI T T To Tl T
k@ « % 4 42 ||

Figure 1: MUMUTH top view: Floor pedestals
and loudspeaker hang points

1.1 Variable position loudspeaker
hemisphere

The university’s Institute of Electronic Music and
Acoustics (IEM) designed a unique sound rein-
forcement system in order to cope with the many
different demands. It consists of 33 loudspeakers,
which can be lowered from the ceiling on tele-
scopic lifts and be positioned at arbitrary heights
as well as rotation and elevation angles. Figure 2
gives an impression of the room. The speaker
layouts, which can be easily refined within sec-
onds, are stored and recalled, if desired also dy-
namically, during a show. Electroacoustic mea-
surements and listening tests with different loud-
speaker positions permit instantaneously perceiv-
able comparisons. It is this very setup that is
used in 3D sound field rendering using higher or-
der ambisonics from IEM’s own software. It is
also employed in the reproduction of the different
audio scenes in the IEM Demosuite.

Figure 2: Loudspeaker hemisphere

1.2 The integration of higher-order
Ambisonics

With many years of experience in the design
and development of Ambisonics capture and play-
back systems, IEM developed the scalable CUBE-
mixer ambisonics authoring and rendering system
[Musil et al., 2008], which is distributed under a
GPL license!. This system consists of a mixing
application that can run on general purpose hard-
ware and operating systems, and which is open to
user extention and external control being imple-
mented in the Pure Data (Pd) programming lan-
guage. CUBEmixer is employed in the discrete or
Ambisonic spatialization of an arbitrary number
of sources on the loudspeaker hemisphere. The
helical positions of the mount points on the ceiling
as shown in Figure 1 allow to arrange the loud-
speakers in a hemisphere encircling the venue’s
available space with a minimum angular differ-
ence between the speaker positions. CUBEmixer
integrates very well with the MUMUTH audio in-
frastructure, consisting of a Lawo HD Core mix-
ing engine and signal matrix, controlled through
the Lawo mc66 fanless mixing console. Inputs
and outputs are via dedicated interface racks in-
terconnected via MADI optical cables, providing
a total of 4096 physical input and output chan-
nels. Interfacing to the main rendering computer
is done via two RME HDSP MADIPCle cards us-
ing Alsa drivers with 64 bit Debian/GNU Linux.

"http://ambisonics.iem.at /xchange/products/cubemixer

1.3 Enhanced room acoustics

In addition to the sound reinforcement sys-
tem described above, MUMUTH’s concert hall
is equipped with a variable room-acoustics sys-
tem?, allowing to switch between different rever-
beration scenarios enhancing reverb envelopment
and speech intelligibility. With this system the
venue’s acoustics can be tailored to different per-
formance styles such as theatre, classical music,
jazz and to IEM’s concerts of electronic music. As
the variable room-acoustics system is optimized
for sound sources located on the floor level, it is
in general not used together with the loudspeaker
hemisphere.

2 Presenting MUMUTH’s sonic
abilities to a broad audience

Having build a venue the size of MUMUTH, it is
important to convey the idea of a concert hall be-
ing ”a musical instrument on its own” to the gen-
eral public. In order to demonstrate how sound
in space can be creatively composed as well as in-
teractively explored, we decided to create a suite
of music demos that would immediately catch the
listener’s attention and present the abilities of this
new location in an entertaining and convincing
way. An easy-to-use and interactive demo appli-
cation for visitors, playable even while the room
may be set up for a different production, had to
be developed. While this suite of demos would
provide ready-to-run sound scenes, it should at
the same time invite pre-rendered or interactive
extensions to its repertoire playlist from other
artists and researchers alike.

3 Software and Hardware

While looking for a suitable software platform in
which to implement the Demosuite, we decided it
would be preferable to use an environment that
future contributors would most likely be familiar
with. In our research we and our colleagues of-
ten use Pure Data, so taking that environment
as the starting point for implementing the De-
mosuite seemed a good choice: in theory, soft-
ware taken out of our development department
could be transferred directly to the suite. An ad-
ditional bonus was the graphical nature of Pd, as
there was no need to switch between environments

2 Meyersound Constellation

when creating the visual user-interface and the
DSP side of a demo. Finally, the cross-platform
nature of Pd would make it possible to develop
demos on one’s own preferred platform, before de-
ploying it on a stable and low-latency operating
system in the venue.

The MUMUTH had already been equipped with a
PC for realtime signal processing running Debian
GNU/Linuz, so we decided to use that machine
as a stable and well-tested base platform that was
already well integrated into the existing audio in-
frastructure.

This computer is usually controlled from the MU-
MUTH’s separate sound recording studio, though
it is possible to extend keyboard/monitor/mouse
into the concert hall.

However, for the needs of the Demosuite, this ap-
proach was discarded as it would involve the need
to set up a workstation in the concert hall ev-
ery time the demo should be presented, which
might in fact happen spontaneously between two
rehearsals of an opera without advance warning.
Instead we decided to control this computer with
a convenient and portable remote control the pre-
senter could carry around while running the de-
mos. While the environment of our choice (Pd)
is known to run well on both iOS and Android
based smartphone and tablet devices [Brinkmann
et al., 2011], this is unfortunately only true for
the DSP-part of Pd and not for the user inter-
face requiring Tcl/Tk. The only available touch
device we found that could run the Pd-GUI was
the Neophonie WePad. This tablet device runs a
stock 1386 based Linux system?®, making it very
easy to develop new and deploy already existing
software on it.

In order to make Pd suitable for tablet use, its
visual appearance was slightly adapted with a
"kiosk mode” gui plug-in [zmoelnig, 2011] dis-
playing a single patch window in full-screen mode
without any menus.

4 Demosuite Software Design

The Demosuite software consists of two semanti-
cally different parts:

e a static framework that takes care of selecting
and activating a demo and that is controlling

3 Linuz Foundation’s MeeGo

fragments_of_extinction
append Portraits of Acoustic Biodiversity from Primary
Equatorial Rainforest by David Monacchi

=
-
-

7
\<) [10] Monacchi "Fragments of ...
ALL
LAYLIST

ophocebus albigena
in abita
rominent elephants
in habitat Lophocebus (excerpt:
1st order
Insects and anurans (frogs)
in swanp habitat Lophocebus (excerpt)
spectral sharpening, 4th order
. Insects, birds and frogs by Alois Sontacchi
in riverbank forest habitat

Figure 3: Example demo GUI with global volume
fader right and demo selector strip on top

some global parameters such as master vol-
ume, all optimized for touch sensitive user
interfaces.

e a growing number of demos, which are inter-
active audio applications implemented as Pd
patches.

Demos are mutually exclusive, meaning that if a
given demo is currently loaded /running, no other
demo can be loaded/running at the same time.
An example of a user interface for a selected demo,
controlling the playback of pre-rendered sound
files allowing directly switchable different Am-
bisonics orders is shown in Figure 3. Here, play-
back of pre-rendered sound files is controlled along
with switchable Ambisonics orders for direct com-
parison, with additional written comments about
the demo’s contents.

To complicate things a bit, the Demosuite soft-
ware is to run on two hosts in parallel:

e a powerful DSP server, capable of processing
and interfacing multichannel sound fields in
realtime

e a lightweight GUI client that controls this
server over a network connection

The Demosuite software has to provide the com-
munication between the DSP and the GUI parts
and ensure that the internal states of the two
parts stay synchronized even during network dis-
ruptions. In order to add a new demo to the
playlist, corresponding GUI and DSP patches
have to be copied to the two machines respec-
tively.

4.1 Slot Management

We call the container mechanism, that ensures
that the matching parts (GUI and DSP patches)
of a single demo are active and synchronized
across the two computers, the "slot”.

Basically two different approaches to managing a
variable number of demos via this slot mechanism
exist:

e cither all demos are preloaded into a match-
ing number of slots and, upon selection of a
given demo its containing slot gets activated
while all other slots are deactivated

e or there is only a single slot that manages
the synchronous loading and activation of an
arbitrary demo across the two hosts.

Both methods have their advantages and draw-
backs. In the case of the MUMUTH Demosuite
we identified the following relevant characteristics
of the ”pre-load” technique:

e Pros

— fast (since initialization can be done at
startup time)

e Cons

— more resources needed (scales badly)

— "deactivated” demos can remain half-
active (e.g. by continuously generating
messages)

— co-existing demos can influence each
other (if not carefully implemented)

Whereas with the technique of ”dynamic loading
into a single slot” can be characterized as follows:

e Pros

— resources allocated on demand (scales
well)

— "deactivated” demos don’t exist and can
therefore not take any resources

— demos never co-exist
e Cons

— resources allocated on the fly (slow, since
no pre-loading is possible)

— instantiation locks the Pd process

— requires dynamic patching which makes
code less readable (bad for long term
maintenance)

Since the demos are to be implemented by mul-
tiple collaborators and will presumably be of di-
verse code quality, the perfect isolation between
demos in the ”dynamic loading” approach was the
winning argument. Assuming that a single demo
will consume moderate resources in return, the
elongated load time due to dynamic resource al-
location was considered acceptable. Furthermore,
this approach scales well even for a very large
number of demos.

4.2 Slot Interface

A slot consists of two separate programs (the DSP
and the GUI part) that communicate with each
other as well as produce perceptible output (the
DSP will usually render sound, whereas the GUI
will visualize an interface to control the former).
The communication channels for the two parts are
standardized, in order to be able to globally re-
place them with different networking techniques.

4.2.1 control communication

Usually GUI and DSP will run on different com-
puters that are linked via a network connection.
To keep the implementation simple, this commu-
nication is abstracted as unidirectional and asyn-
chronous busses. The network message interface
inside PD is implemented as single [inlet] resp.
[outlet] objects in the GUI and DSP patch of
each demo. Each Pd message that is to be sent
from one peer to the other, has to go through that
single [outlet] and will then appear on the other
side’s sole [inlet] object. No assumption must
be made on the speed of the transmission.

4.2.2 audible and visible output

In addition to choosing and interacting with a
demo, the user should be able to control the
global volume with a single fader, in a unified
way for each and every demo. It is therefore
important that the DSP patch does not access
the soundcard’s DACs (or rather Pd’s representa-
tion thereof) directly, but through a global au-
dio bus. The Demosuite applies a few post-
processing steps on this multi channel audio bus,
namely master volume, multichannels limiting
and a global mute. This is achieved by using

a special [throw~ chn-<N>] object rather than
Pd’s own [dac~ <N>].

The GUI part is trying to make best use of the
allocated screen estate by being implemented as
a Pd ”graph on parent” interface of a fixed size,
defining the available area for the Ul part of a
demo.*

4.3 Loading a Demo

Since the GUI and DSP parts are asynchronous
processes, it is necessary to pay special attention
to the sequence of actions in which to load a demo
in order to guarantee consistent behavior and de-
fined states of both systems at each instant in
time.

Loading is initiated by the user selecting a scene
(e.g. "foobar”) on the interface. The GUI will
then delete the previously loaded demo, so it can
no longer send control messages to the DSP part
of the demo, and enter a transitional state, (show-
ing a "loading...” splash screen). Once this is ac-
complished, a request ”/playlist_entry foobar” is
sent to the DSP part.

Once DSP receives such a request, it will first
delete its part of the the previous scene and sub-
sequently load the ”foobar/dsp.pd” patch, which
receives an initialization trigger. Once the DSP
part of the demo is initialized, it must then send
a ” /dsp_init_done” message, which will cause the
DSP to send a ”/create_gui_slot foobar” request
back to the GUIL. Now that the GUI knows that
the DSP is properly loaded, it can load and dis-
play the ”foobar/gui.pd” patch. The GUI part of
demos having non-trivial internal states can now
query the DSP to transmit the current state of
internal parameters.

5 Communication between GUI and
DSP

Since the DSP and the GUI are running on two
different machines, their communication is done
via a network connection. In MUMUTH, the
tablet is connected via a wireless LAN to en-
sure maximum mobility of the presenter. This
required the following considerations.

4This is probably the most tedious part when writ-
ing new demos. Unfortunately, at the time of this writ-
ing, Pd does not provide a usable auto-scaling function of
?graph on parent” interfaces, which means that whenever
the screen resolution of the remote control changes, the
GUI patches have to be adapted...

5.1 TCP/IP vs. UDP

Traditionally, network connections involving re-
altime audio environments use the simple UDP
rather than the more reliable TCP/IP protocol,
mainly because of the following two reasons:

e overhead: due to it’s simpler nature UDP has
less traffic overhead than TCP/IP, and will
therefore consume less resources

e robustness: since UDP does not track ac-
tive connections, it handles loss of connec-
tivity more gracefully than TCP/IP; esp. it
does not cause the remote point to hang if
the local point experiences a network out-
age. This is especially important considering
the volatile connection with a wireless mobile
device and the non-threaded network imple-
mentation in Pd (that would cause the main
audio thread to hang in case the TCP/IP re-
mote control left the coverage of the wireless
LAN access point!)

5.2 to OSC or not to OSC...

State of the art communication between net-
worked audio workstations is usually implemented
using Open Sound Control (OSC). While Pd still
has no built-in support for OSC and instead pro-
vides objects that speak PD’s own FUDI protocol,
it can be extended using Martin Peach’s ”osc” li-
brary. Unfortunately we found the various avail-
able network transport implementations needed
for this "osc¢” library to be less stable than ex-
pected, especially in cases where the connection
can easily drop, which is expected to happen once
the tablet leaves the W-LAN coverage. Rather
than fixing these implementations, we decided to
write a set of abstractions that hide the actual
implementation of the OSC transport.

On the application layer directly accessible within
a demo (and within most parts of the framework),
”"OSC-style” messages are used. On the layer
below, these messages are currently transmitted
within FUDI containers. Once the issues of the
network transport libraries are addressed with the
ongoing development of Pd’s externals, the wrap-
per objects can easily be switched back to use
OSC containers.

5.3 Network Security

In the current implementation, absolutely no net-
work security is built into the system. An intruder

who has knowledge of the protocol, the network
address and port of the DSP machine can send
arbitrary commands. Since the wireless network
is only available within the concert hall and is
encrypted, we have not experienced any security
related problems so far. In any case, it should be
easy enough to protect the two hosts via a clever
set of firewall rules and network tunnelling tech-
nology such as ssh, SSL or VPN.

5.4 Operating Safety

Whenever the connection between the main DSP
computer machine and the GUI remote control
is interrupted, it is necessary to fallback into a
safe state. In order to monitor the status of the
UDP connection, a special "heartbeat” message
is constantly exchanged between the two comput-
ers. Whenever the user interface assumes to be
connected to the DSP server, it sends out a mes-
sage 7 /client_alive 1”7 in regular intervals (cur-
rently about 3 times per second), which is an-
swered by a ”/server_alive 1”7 message in return.
If either side does not receive its peer’s ”alive”
message for a certain amount of time, it considers
the remote side to have disconnected. Once the
DSP server detects a disconnected GUI, it will
immediately mute its audio outputs in order to
prevent damage to the listener’s ears as well as
to the equipment by uncontrollable audio signals.
Whenever the GUI detects a disconnected DSP
server, it displays a warning message of the lost
connection and locks the interface that otherwise
would control the DSP part of a demo. This is last
measure is important in order to ensure that the
state on both DSP and GUI sides divert as little
as possible, making the reconnection and resum-
ing of a demo an easy task. The GUI will try
to reestablish the connection by periodically at-
tempting to reconnect, send a ” /conn_request 1”
message. This message will eventually trigger an
reconnection attempt of the DSP server.

As soon as the connection is re-established, the
GUI queries the DSP server about it’s current
state and adjusts its internal state and hence the
state of the user controls accordingly.

6 Repertoire

Current examples of demos available in the suite
are:

e Audio scenes of pre-rendered Ambisonic

sources on different spatialisation paths on
the hemisphere with dynamically changing
early reflections and late reverberation, with
Ambisonics-encoded reverb return signals.

e Ambisonic sources in comparison to discrete
loudspeaker playback with additional depth
perception cues.

Extracts from IEM concert productions.

Dedicated pieces from IEM staff and featured
guest composers.

A 3D panning demo using allowing interac-
tive user control.

e Ambisonics field recording examples.

7 Summary

In this contribution we described how an easy-
to-use system of audio demo scenes for the in-
teractive exploration of the new MUMUTH con-
cert space has been realised. We presented an ap-
proach towards networked Pd patches using con-
nection state monitoring together with dynamic
patch creation on different host computers. A so-
lution allowing for easy extensibility of the demo
repertoire while preserving system stability was
discussed along with an alternative network trans-
port layer for Pd messages. The adaption of Pd to
touch-based tablet interfaces and considerations
regarding operational reliability with regard to
high-volume PA systems were shown.

8 Acknowledgements

While the design and realisation of the audio in-
frastructure in MUMUTH has been the result
of a huge team of collaborators, the authors
would especially like to express their gratitude to
IEM/KUG members Gerhard Eckel for initiating
the Demosuite project, and Thomas Musil, Stefan
Warum and Ulrich Gladisch for their exceptional
support.

References

Peter Brinkmann, Peter Kirn, Richard Lawler,
Chris McCormick, Martin Roth, and Hans-
Christoph Steiner. 2011. Embedding pure data
with libpd. In Proceedings of the Pure Data
Convention 2011, Weimar, Germany. http://
www.uni-weimar.de/medien/wiki/images/
Embedding_ Pure_Data_with_libpd.pdf.

Thomas Musil, Winfried Ritsch, and Johannes
Zmolnig. 2008. The cubemixer a performance-,
mixing- and masteringtool. In Proceedings of
the Linux Audio Conference 2008, Cologne,
Germany. http://old.iem.at/projekte/
publications/paper/cm/cm.pdf.

IOhannes zmoelnig. 2011. New clothes
for pure data. In Proceedings of the Linuz
Audio Conference 2011, Maynooth, Ire-
land. http://lac.linuxaudio.org/2011/
download/lac2011_proceedings.pdf.

