
Csound for Android

Steven YI and Victor LAZZARINI
National University of Ireland, Maynooth
{steven.yi.2012, victor.lazzarini}@nuim.ie

Abstract

The Csound computer music synthesis system has
grown from its roots in 1986 on desktop Unix sys-
tems to today’s many different desktop and embed-
ded operating systems. With the growing popularity
of the Linux-based Android operating system, Csound
has been ported to this vibrant mobile platform. This
paper will discuss using the Csound for Android plat-
form, use cases, and possible future explorations.

Keywords

Csound, Android, Cross-Platform, Linux

1 Introduction

Csound is a computer music language of the MU-
SIC N type, developed originally at MIT for
UNIX-like operating systems[Boulanger, 2000]. It
is Free Software, released under the LGPL. In
2006, a major new version, Csound 5, was re-
leased, offering a completely re-engineered soft-
ware, which is now used as a programming library
with its own application programming interface
(API). It can now be embedded and integrated
into several systems, and it can be used from a
variety of programming languages and environ-
ments (C/C++, Objective-C, Python, Java, Lua,
Pure Data, Lisp, etc.). The API provides full con-
trol of Csound compilation and performance, soft-
ware bus access to its control and audio signals,
as well as hooks into various aspects of its inter-
nal data representation. Several frontends and
composition systems have been developed to take
advantage of these features. The Csound API has
been described in a number of articles [Lazzarini,
2006], [Lazzarini and Piche, 2006] [Lazzarini and
Walsh, 2007].

The increasing popularity of mobile devices for
computing (in the form of mobile phones, tablets

and netbooks), has brought to the fore new plat-
forms for Computer Music. Csound has already
been featured as the sound engine for one of the
pioneer systems, the XO-based computer used in
the One Laptop per Child (OLPC) project [Laz-
zarini, 2008]. This system, based on a Linux ker-
nel with the Sugar user interface, was an excel-
lent example of the possibilities allowed by the
re-engineered Csound. It sparked the ideas for
a Ubiquitous Csound, which is steadily coming to
fruition with a number of parallel projects, collec-
tively called the Mobile Csound Platform (MCP).
One such project is the development of a soft-
ware development kit (SDK) for Android plat-
forms, which is embodied by the CsoundObj API,
an extension to the underlying Csound 5 API.

Android 1 is a Linux-kernel-based, open-source
operating system, which has been deployed on a
number of mobile devices (phones and tablets).
Although not providing a full GNU/Linux envi-
ronment, Android nevertheless allows the devel-
opment of Free software for various uses, one of
which is audio and music. It is a platform with
some good potential for musical applications, al-
though at the moment, it has a severe problem for
realtime use that is brought by a lack of support
for low-latency audio.

In this article we will discuss Csound usage on
Android. We will explore the CsoundObj API
that has been created to ease developing Android
applications with Csound, as well as demonstrate
some use cases. Finally, we will look at what
Csound uniquely brings to Android, with a look
at the global Csound ecosystem and how mobile
apps can be integrated into it.

1http://www.android.com



2 Csound for Android

The Csound for Android platform is made up
of a native shared library (libCsoundandroid.so)
built using the Android Native Development Kit
(NDK)2, as well as Java classes that are com-
pilable with the more commonly used Android
Dalvik compiler. The native library is linked us-
ing the the object files that are normally used to
make up the libcsound, libcsnd, and libsndfile3

libraries that are found part of the desktop ver-
sion of Csound. The Java classes include those
commonly found in the csnd.jar library used for
desktop Java-based Csound development, as well
as unique classes created for easing Csound devel-
opment on Android.

The SWIG4 wrapping used for Android con-
tains all of the same classes as those used in the
Java wrapping that is used for desktop Java devel-
opment with Csound. Consequently, those users
who are familiar with Csound and Java can trans-
fer their knowledge when working on Android,
and users who learn Csound development on An-
droid can take their experience and work on desk-
top Java applications. However, the two plat-
forms do differ in some areas such as classes for
accessing hardware and different user interface li-
braries. To help ease development, a CsoundObj
class was developed to provide out-of-the-box so-
lutions for common tasks (such as routing audio
from Csound to hardware output). Also, applica-
tions using CsoundObj can be more easily ported
to other platforms where CsoundObj is imple-
mented (i.e. iOS).5

One of the first issues arising in the develop-
ment of Csound for Android was the question of
plugin modules. Since the first release of Csound
5, the bulk of its unit generators (opcodes) were
provided as dynamically-loaded libraries, which
resided in a special location (the OPCODEDIR
or OPCODEDIR64 directories) and were loaded
by Csound at the orchestra compilation stage.
However, due to the uncertain situation regard-
ing dynamic libraries (not only in Android but

2http://developer.android.com/sdk/ndk/index.html
3http://www.mega-nerd.com/libsndfile/
4http://www.swig.org
5There are plans to create CsoundObj implementations

for other object-oriented desktop development languages/-
platforms such as C++, Objective-C, Java, and Python,
but at the time of this writing, CsoundObj is only avail-
able in Objective-C for iOS.

also in other mobile platforms), it was decided
that all modules without any dependencies or li-
censing issues could be moved to the main Csound
library code. This was a major change (in Csound
5.15), which made the majority of opcodes part
of the base system, about 1,500 of them, with
the remaining 400 or so being left in plugin mod-
ules. The present release of Csound for Android
includes only the internal unit generators. An-
other major internal change to Csound, which was
needed to facilitate development for Android, was
the move to use core (memory) files instead of
temporary disk files in orchestra and score pars-
ing.

Audio IO has been developed in two fronts: us-
ing pure Java code through the AudioTrack API
provided by the Android SDK and, using C code,
as a Csound IO module that uses the OpenSL API
that is offered by the Android NDK. The latter
was developed as a possible window into a future
lower-latency mode, which is not available at the
moment. It is built as a replacement for the usual
Csound IO modules (PortAudio, ALSA, JACK,
etc.), using the provided API hooks. The Csound
input and output functions, called synchronously
in its performance loop, pass a buffer of audio
samples to the DAC/ADC using the OpenSL en-
queue mechanism. This includes a callback that
is used to notify when a new buffer needs to be
enqueued. A double buffer is used, so that while
one half is being written or read by Csound, the
other is enqueued to be consumed or filled by
the device. The code fragment below in listing 1
shows the output function and its associated call-
back. The OpenSL module is the default mode
of IO in Csound for Android. Although it does
not currently offer low-latency, it is a more ef-
ficient means of passing data to the audio device
and it operates outside the influence of the Dalvik
virtual machine garbage collector (which executes
the Java application code).

The AudioTrack code offers an alternative
means accessing the device. It pushes/retrieves
input/output frames into/from the main process-
ing buffers (spin/spout) of Csound synchronously
at control cycle intervals. It is offered as an option
to developers, which can be used for instance, in
older versions of Android without OpenSL sup-
port.



3 Application Development using
CsoundObj

Developers using the CsoundObj API will essen-
tially partition their codebase into three parts:
application code, audio code, and glue code. The
application code contains the standard Android
code for creating applications, including such
things as view controllers, views, database han-
dling, and application logic. The audio code is
a standard Csound CSD project that contains
code written in Csound and will be run using a
CsoundObj object. Finally, the glue code is what
will bridge the user interface with Csound.



/* this callback handler is called every time a buffer finishes playing */
void bqPlayerCallback(SLAndroidSimpleBufferQueueItf bq, void *context)
{

open_sl_params *params = (open_sl_params *) context;
params ->csound ->NotifyThreadLock(params ->clientLockOut);

}

/* put samples to DAC */
void androidrtplay_(CSOUND *csound , const MYFLT *buffer , int nbytes)
{

open_sl_params *params;
int i = 0, samples = nbytes / (int) sizeof(MYFLT);
short* openslBuffer;

params = (open_sl_params *) *(csound ->GetRtPlayUserData(csound));
openslBuffer = params ->outputBuffer[params ->currentOutputBuffer ];
if (params == NULL)

return;
do {

/* fill one of the double buffer halves */
openslBuffer[params ->currentOutputIndex ++] = (short) (buffer[i]* CONV16BIT);
if (params ->currentOutputIndex >= params ->outBufSamples) {

/* wait for notification */
csound ->WaitThreadLock(params ->clientLockOut , (size_t) 1000);

/* enqueue audio data */
(*params ->bqPlayerBufferQueue)->Enqueue(params ->bqPlayerBufferQueue ,

openslBuffer ,params ->outBufSamples*sizeof(short));
/* switch double buffer half */
params ->currentOutputBuffer = (params ->currentOutputBuffer ? 0 : 1);
params ->currentOutputIndex = 0;
openslBuffer = params ->outputBuffer[params ->currentOutputBuffer ];

}
} while (++i < samples);

}

Listing 1: OpenSL module output C function and associated callback

public interface CsoundValueCacheable {
public void setup(CsoundObj csoundObj);
public void updateValuesToCsound ();
public void updateValuesFromCsound ();
public void cleanup ();

}

Listing 2: CsoundValueCacheable Interface

String csd = getResourceFileAsString(R.raw.test);
File f = createTempFile(csd);
csoundObj.addSlider(fSlider , "slider", 0.0, 1.0);
csoundObj.startCsound(f);

Listing 3: Example CsoundObj usage



CsoundObj uses objects that implement the
CsoundValueCacheable interface for reading value
from and writing values to Csound (listing 2).
Any number of cacheables can be used with
CsoundObj. The design is flexible enough such
that you can design your application to use one
cacheable per user interface or hardware sensor
element, or one can make a cacheable that reads
and writes along many channels.

CsoundObj contains utility methods for bind-
ing Android Buttons and SeekBars to a Csound
channel, as well as for a method for binding the
hardware Accelerometer to preset Csound chan-
nels. These methods wrap the View or sensor ob-
jects with pre-made CsoundValueCacheables that
come with the CsoundObj API. Since these are
commonly used items that would be bound, the
utility methods were added to CsoundObj as a
built-in convenience to those using the API. Note
that CsoundValueCacheables are run within the
context of the audio processing thread; this was
done intentionally so that the cacheable could
copy any values it needed to from Csound, then
continue to do processing in another thread and
eventually post back to the main UI thread via a
Handler.

Figure 1: Android Emulator showing Simple Test
1 Activity

Listing 3 shows example code of using
CsoundObj with a single slider, from the Simple
Test 1 Activity, shown in Figure 1.The code above

shows how a CSD file is read from the projects re-
sources using the getResourceFileAsString utility
method, saved as a temporary file, then used as an
argument to CsoundObj’s startCsound method.
The 2nd to last line shows the addSlider method
being used to bind fslider, an instance of a Seek-
Bar, to Csound with a channel name of ”slider”
and a range from 0.0 to 1.0. When Csound is
started, the values from that SeekBar will be read
by the Csound project using the chnget opcode,
which will be reading from the ”slider” channel.

Figure 2 shows the relationships between dif-
ferent parts of the platform and different us-
age scenarios. An application may work with
CsoundObj alone if they are only going to be
starting and stopping a CSD. The application
may also use CsoundValueCacheables for read-
ing and writing values from either CsoundObj or
the CsoundObject. Finally, an application may
do additional interaction with the Csound object
that the CsoundObj has as its member, taking
advantage of the standard Csound API.

Figure 2: CsoundObj Usage Diagram

A Csound for Android examples project has
been created the contains a number of differ-
ent Csound example applications. These ex-
amples demonstrate different ways of using the
CsoundObj API as well as different approaches
to applications, such as realtime synthesis instru-
ments and generative music. The examples were
ported over from the Csound for iOS examples
project and users can study the code to better
understand both the CsoundObj API on Android
as well as what is required to do cross-platform



development with Csound as an audio platform.

4 Benefits of using Csound on
Android

Using Csound on Android provides many bene-
fits. First, Csound contains one of the largest
libraries of synthesis and signal processing rou-
tines. By leveraging what is available in Csound,
the developer can spend more time working on
the user interface and application code and rely
on the Csound library for audio-related program-
ming. The Csound code library is also tested and
supported by a open-source community, meaning
less testing work required for your project.

In addition to the productivity gain of using a
library for audio, Csound projects–developed in
text files with .csd extensions–can be developed
on the desktop, and later moved to the Android
application. Developing and testing on the desk-
top allows for a faster development process than
testing in the Android emulator or on a device,
as it removes the application compilation and de-
ployment stage, which can be slow at times.

Having the audio-related code in a CSD file
for a project also brings with it two benefits.
First, development of an application can be split
amongst multiple people; one can work on the
audio code while the other focuses on developing
other areas of the application. Second, develop-
ing an application based around Csound allows
for moving that CSD to other platforms, such as
iOS or desktop operating systems. The developer
would then only have to develop the user-interface
and glue code to work with that CSD on each
platform.

Additionally, cleanly separating out the audio
system of an application and enforcing a strict
API (Application Programmer Interface) to that
system is a good practice for application devel-
opment. This helps to prevent tangled, hard to
maintain code. This is of benefit to the beginning
and advanced programmer alike.

5 Conclusions

From its roots in the Music N family of programs,
Csound has grown over the years, continually ex-
panding it features as a synthesis library as well as
its usefulness as a music platform. With its avail-
ability on multiple operating systems, Csound of-
fers a multi-platform option for developing musi-

cal applications. Current Csound 6 developments
to enable realtime modification of the process-
ing graph as well as other features will expand
the types of applications that can be built with
Csound. As Android is now supported within the
core Csound repository, it will continue to be de-
veloped as a primary platform for deployment as
part of the MCP distribution.

6 Availability

The Csound for Android platform and exam-
ples project are included in the main Csound
GIT repository. Build files are included for
those interested in building Csound with the
Android Native Development Kit. Archives in-
cluding a pre-compiled Csound as well as exam-
ples are available at http://sourceforge.net/
projects/csound/files/csound5/Android/.

7 Acknowledgements

This research was partly funded by the Program
of Research in Third Level Institutions (PRTLI
5) of the Higher Education Authority (HEA) of
Ireland, through the Digital Arts and Humanities
programme.

References

R. Boulanger, editor. 2000. The Csound Book.
MIT Press, Cambridge, Mass.

V Lazzarini and J. Piche. 2006. Cecilia and tclc-
sound. In Proc. of the 9th Int. Conf. on Digital
Audio Effects (DAFX), pages 315–318, Mon-
treal, Canada.

V Lazzarini and R. Walsh. 2007. Developing
ladspa plugins with csound. In Proceedings of
5th Linux Audio Developers Conference, pages
30–36, Berlin, Germany.

V Lazzarini. 2006. Scripting csound 5. In Pro-
ceedings of 4th Linux Audio Developers Confer-
ence, pages 73–78, Karlsruhe, Germany.

V Lazzarini. 2008. A toolkit for audio and mu-
sic applications in the xo computer. In Proc. of
the International Computer Music Conference
2008, pages 62–65, Belfast, Northern Ireland.


